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Abstract

The present paper describes the extension of least squares kinetic upwind method for moving grids
(LSKUM-MG). LSKUM is a kinetic theory based upwind Euler solver. LSKUM is a node based solver
and can operate on any type of mesh or even on an arbitrary distribution of points. LSKUM-MG also has
the capability to work on arbitrary meshes with arbitrary grid velocities. Results are presented for a moving
piston problem and flow past an airfoil oscillating in pitch. © 2001 Elsevier Science Ltd. All rights re-
served.
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1. Introduction

Computation of unsteady flows is an important problem in the field of aerodynamics. Pre-
diction of aeroelastic behaviour in industrial applications needs an accurate prediction of the
unsteady pressure loads. Helicopter rotor load aerodynamics is one example where unsteady flow
computation is essential. Flow through turbine blades involving stators and rotors is another
typical case where unsteady flow computation is needed. All such applications in general involve
moving boundaries. Computation of flows involving moving boundaries in general involves
moving grids. Some of the approaches [1] involving moving grids, transform the equations of
motion to a moving frame. Also the boundary condition is treated in the moving frame itself. But
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these methods generally require interpolation of solution from the moving grids to background
static grids.

In the present approach using least squares kinetic upwind method (LSKUM) we address these
issues in an innovative way where many of the difficulties faced by the conventional methods are
circumvented. LSKUM is a kinetic theory based upwind Euler solver. This method has the ca-
pability to work on any type of mesh or even on an arbitrary distribution of points [2]. The
motivation for the present work was to extend the method to moving grids without involving any
transformation of the equations of motion to a non-inertial frame. Also general formulation is
required in the sense if there is no grid movement, it must automatically reduce to that for sta-
tionary grids. Such a type of formulation could then work on any grid in which each grid point
could have arbitrary grid velocity. The method can be applied to multi moving surfaces and also
does not need any interpolation of the solution from moving grids to background stationary grids.
The boundary condition has been implemented in the present approach in a very elegant way
using specular reflection model of kinetic theory of gases. We first present detailed mathematical
formulation of 1D LSKUM on moving grids with some results. Then the extension of LSKUM to
moving grids for 2D problems along with results for flow past an airfoil oscillating in pitch are
presented.

2. 1D LSKUM on moving grids

2.1. Formulation

Consider the 1D Boltzmann equation

~~
at

~ ~ ax =J

	

(1)

where f is the velocity distribution function, v is the molecular velocity. 1 J represents a collision
term which vanishes in the Euler limit, when f is a Maxwellian distribution. The Maxwellian
distribution, F, in one dimension is given by

~

F =
o

#~~~~~~~~ ~ ~~~ ~ ~~~~~

	

~~~

where /3 = 1/(2RT), and Io is the internal energy due to non-translational degrees of freedom, 10 =

~~~~i~ RT and u is the fluid velocity, R is the gas constant and T is the absolute temperature of the
fluid. Therefore in the Euler limit we get

OF ~~

at
~ ~

aax =
o

	

(3)

Now let w represent the grid velocity of any grid point. Then we can rewrite Eq. (3) equivalently
as

1
Here we use the word ""molecular" " not in the sense of physical molecule we generally understand, but a general term

to mean particles or pseudo-molecules as understood in particle methods.
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Introduce a special derivative
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This special derivative is a derivative following the grid point and is very similar to the usual
derivative following a fluid particle used often in fluid dynamics. Further let ~v = v - w be the
particle velocity relative to the grid point. Then Eq. (4) can be compactly written as

~ ~
dF

	

~ ~ ~~ ~ ~

	

~~~
~~ ~~~~~~

	

~~

This equation also has some very interesting characteristics. Consider the case when the grid
velocity w becomes equal to fluid velocity u. In this case we have ~v = v - u = c, where c is known
as the peculiar velocity in kinetic theory of gases. We should also note that c is a normally dis-
tributed random variable around zero mean velocity, and can take all possible values varying
from -cx to +00. The special time derivative of F along the grid point path now becomes the total
derivative along the particle path u = dx/dt. Thus Eq. (5) can then be written as

(

~~

~~ ~ ~~~~~~ ~~ ~ ~ at
~ ~ ~~ ~

	

~~~

The Boltzmann equation for the above moving grid (moving with u) now can be written as

dF OF

dt +
c

ax

The above equation is the starting point of the Lagrangian description of the fluid flow through
the kinetic model. In fact this is the basic equation around which Manoj et al. [3] have developed
the kinetic smooth particle hydrodynamics (KSPH) method. When the grid velocity becomes zero
then the above formulation reduces to that for a static grid automatically. The development of 2D
KSPH method starts with

~ 0
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(4)

(8)

dF ~ ~~ ~~ ~ ~~ ~~ ~ ~

	

~~~
at ax av

and then uses least squares discretisation of the spatial derivatives in Eq. (9). The streamline
upwind version of KSPH is based on locally rotated frame (s, n) where s is along a local streamline
and n is the normal coordinate. Then Eq. (9) in this rotated frame becomes

dF ~~

	

~~
-~ 6 ~

-
~

~ 6~ at t = 0

	

(10)

where ccl and 66 2 represent the components of the peculiar velocity along the local streamline di-
rection and its normal. Upwind stencil (US) can be used to discretise aF/as while full stencil (FS)
can be used to discretise OF/an. OF/an. OF/an. OF/an. OF/an. OF/an. Such a discretisation is perfectly reasonable as fluid is advected
along s-direction.
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Let us come back to the case when grid velocity w is arbitrary. Splitting v v into positive and
negative parts and discretising the time derivative to first-order in the Eq. (6), we get the update
scheme for the distribution function F as

F
n+1 = F" - At

~ ~ nv~ w~ OF ~~ ~ ~ ~~~ ~~

~ ~~ ~
	

2 Ox

where F"+ 1 represents the updated distribution at the new position of the grid, At represents the
time step. Following the moment method strategy [4] we now define a moment function vector, V',
as

~ 1 ~~ ~ ~~~ ~~ ~~ Z
J

	

~~~~

and the P moment of F by,

~~~ ~ ~ 10~ ~~ ~ ~~ ~~

	

~~~ o

~ The updating of the velocity distribution is now mapped [4] to the updating of the state vector
U at the Euler level by taking Y' moments of the Eq. (11). Thus we have at the Euler level the state
update formula

~~~~ ~ ~~ ~ ~~ ~
~~~m ~ ~~~

m
~~ ~~

	

~~

	

~~~~

where

~ ~~ ~~ ~ ~

~ 2~~~
~~	 ~ ~ ~~m

U is the state vector given by U = ( p pu pe
)T'

GXm m represent the split fluxes for a moving grid.
The split fluxes GXm m are related to the usual KFVS [4] fluxes, and are given by

GXm m = ~~~~X~

	

~~~~

where GXm m represent the split fluxes for a moving grid, ~X~ represent the split fluxes which are
similar to those for a static grid except that the fluid velocity components in this case are relative
to the grid velocity and matrix [A] transforms the fluxes to those on the moving grid. The fluxes
~X~ and the transformation matrix [A] are given by



where

u=u-w,
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~ ~~~~ w = grid velocity

2.2. Least squares evaluation of the spatial derivatives for moving grid

Consider 1D grid as shown in Fig 1. Let o be any node at which we want to update the solution.
Further wo is the grid velocity of node o and wi is the grid point velocity of any point i in the
neighbourhood of the point o. We can observe from Eq. (11) that in order to obtain a first-order
update to the solution at point o we need to evaluate ~ ~~ ~~~~~~~ ~~~~ vo is the molecular velocity
relative to grid point velocity wo . For 1D grid, the least squares approximation to FF o is given by,

~ ~~~~~ ~ ~
~~~~

	

~~~~~ ~~~ ~ ~~ ~ ~~~

	

~ ~~ ~ ~~~ ~~~~
~

We easily observe from the above formula, evaluation of ~ ~~
v~~~~~

~~ ~~~~ ~~~~~~~~ ~~~ ~~~~~

~~~~~~ of the moments of F at the neighbourhood points i of the node o. We refer to these
neighbouring points as secondary nodes and the neighbouring points of the neighbourhood of
node o is referred to as tertiary points. At the secondary nodes we need to evaluate ~ ~~ ~~~~~~ ~~~
therefore F F must be expressed in terms of ~vo , that is,

TERTIARY NODE

	

SECONDARY NODE

~

Fig. 1. 1D Moving grid.
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~

~~ ~ ~~ ~~ ~~~ ~ ~ ~~~~~ ~ ~~~~~~~~~ ~ ~~~~]

~~

	

J~

The relative fluid velocity at node i with respect to the grid velocity at node o is denoted by
u i (w o ) and must not be confused with ~~ ui ( wi ) which is the relative fluid velocity at node i with
respect to wi . The important point being made here is that i represents a secondary node and the
primary node being o at which spatial discretisation is done and hence all computations must be
done with respect to velocity relative to primary node.

Let us also consider the two-step defect correction procedure for second order approximation
to the derivative FFo . In the first step, the fi rst order approximation is evaluated using Eq. (18). In
the second step, we just replace AF F by A~Fi to get the second-order approximation to the deriv-
ative, that is,

F~~~ ~ ~	 a~~

	

~~~~~ ~~~ ~ ~~~ ~
2

~~~~~~~~~~ ~~~~ ~ ~~~ ~ ~~~

	

~~~~
~

From the above expressions we can see that in order to get a second-order accurate solution for
a moving grid, we need to obtain first-order derivatives at the secondary points. This in turn
requires moving fluxes at the tertiary points which as mentioned before have to be evaluated with
respect to molecular velocity relative to the primary node o.

2.3. Kinetic treatment of boundary condition for a moving solid wall

In this section we describe the updating of the velocity distribution on moving boundaries.
Consider a point P which lies on the piston moving with a velocity u p as shown in Fig. 2. In order
to update the distribution F at a body point P we follow the principle of specular reflection used
for static boundaries, except that now for a moving boundary, we consider the velocity of the
molecules relative to the moving piston.

The Maxwellian at P is now split into two parts as

FP = FI U FR

	

(20)

where FI is the Maxwellian corresponding to the incident particles and FR is the Maxwellian
corresponding to the reflected particles. In the present case of a moving piston we can easily see
that all the particles with velocity ~v < 0 relative to the piston will hit the wall. Thus we have

F, =F1(vv) for vv<0
The reflected part is then constructed from the incident distribution using the specular reflection
principle as

FR = FI (~u) for ~v>0 where ~u = -~v, ~v=v-up .

P
UP

	

C S

Fig. 2. Moving piston problem.



Therefore the update for the distribution F and hence for U can be written as
~ ~ ~~~ =

~ ~

	

R
~~~

~ ~ R ~

where

~ l ~~~~~ = Fl l - ~~~F~ for ~v < 0

~
R~~

(vv) = ~n~~
(117);

~

	

~

~~n+1 n+1
_

~~ ~ ~~~~

2.4. Results for moving piston problem

The LSKUM on moving grid has been applied to 1D piston problem. We have considered both
compression as well as expansion cases (corresponding to piston moving in and out).

For the compression case (u p > 0), given the pressure ratio p2/p l , the piston velocity and the
density ratio across the shock are given by the following relations [5]

where subscript 2 represents higher pressure side and subscript 1 represents lower pressure side, p
pressure, a speed of sound and p density. Similarly for the expansion case up < 0 we have

~ ~~~~

~
P
~

~~~ ~ ~~ ~~ ~ ~

p y-1 Pl

~~~ ~~ ~ ~ ~ ~~ ~~~

~~

~

	

~ ~~ ~
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u~ ~v for ee>0

(23)

(24)

where subscript 2 represents lower pressure side and subscript 1 represents higher pressure side.
In the present computations for a given pressure ratio we calculate the piston velocity using

above expressions. In the code we specify this piston velocity as input parameter and obtain the
pressure jump as a part of the solution. For the compression as well as the expansion cases, the
grid velocity of the first grid point is equal to the piston velocity. The grid velocity of the last grid
point is equal to the shock speed (C S ) for the compression case and for the expansion case it is
equal to the speed of the sound (ate ). The grid velocity for the interior points is then linearly
interpolated between the end values. This is pictorially shown in Fig. 3.

Figs. 4 and 5 show results for the compression case with the piston velocity u p = 469.8 m/s
which corresponds to a pressure jump of 5. Figs. 4 and 5 show the density and pressure jump
propagation at different time instants obtained by using first order LSKUM on a grid with 1001

av z
~P ~

	

~~ ~ ~p

~

	

~

v+'
~

	

~~

~~~~
~ ~~ P2 ~ Y-

~

~~

	

Y+1

~~~~~ ~ ~ Y-1~~ (22)
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YY+1 ~ ~~
~~~
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GRID VELOCITY FOR COMPRESSION
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Fig. 3. Grid velocity ty interpolation for 1D piston problem.
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Fig. 4. Density plot for pressure ratio 5.

points. It can be seen from these plots that the moving shock has been captured very well. For this
case the exact density ratio is 2.818 which is exactly reproduced by computations.

Figs. 6 and 7 show the plots for the shock propagation in terms of density and pressure jumps.
These plots are for u p = 2640.78 m/s which corresponds to a pressure jump of 100. Again we can
see that LSKUM solver has successfully captured the shock propagation even for this high
pressure ratio condition. The grid for this case contains 1001 points.
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20

Fig. 8 shows a comparison of the first and second order calculations for a compression case
with pressure ratio of 5, using 501 points in the grid. Obviously the second order solution captures
the discontinuity more sharply. Figs. 9 and 10 show the results for the expansion case with
pressure ratio of 0.02. The grid used in this case has 1001 points. It can be observed that the
smooth variation of density has been captured very well.
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GRID SIZE= 1001, Pressure ratio= 100
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Fig. 7. Pressure plot for pressure ratio 100.
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Fig. 8. Comparison of first- and second-order solution: pressure plot.
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Tables 1 and 2 give a quantitative comparisons of the computations with the exact values for
both compression and expansion cases. It can be observed clearly from these tables that there is
excellent agreement with the exact values.
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Table 1
Compression case: comparison with exact values

3. LSKUM on moving grids 2D

3.1. Formulation

Consider the 2D Boltzmann equation

Of
~~

+ v,
ax

+ v2 of ~ ~

	

~~~~
~

where f is the velocity distribution function, v1 and V2 are the cartesian components of the mo-
lecular velocity. J represents a collision term which vanishes in the Euler limit, when f is a Max-
wellian distribution. The Maxwellian distribution, F, in two dimension is given by~ ~ o - ~~~ ~ ~ ~~~~ ~ ~~~~ ~ ~~~~ ~ ~~~~ ~ ~~~~~

	

~~~~
where /3 = 1/(2RT), and Io is the internal energy due to non-translational degrees of freedom, 10 =

~vi~ RT and ul and u2 are the cartesian components of the fluid velocity, R is the gas constant and
T is the absolute temperature of the fluid. Therefore in the Euler limit we get

OF ~~ + v1 OF ~~ + v2
a~

~ ~

	

~~~~~
Now let w1 and w2 represent the cartesian components of the grid velocity of any grid point.

Then we can rewrite Eq. (27) equivalently as
~at ~ ~~ ~~ ~ ~~ ay ~ ~ ~~~ ~ ~~~

O~~

~ ~~~ ~ ~~~ ~~ ~ ~

	

~~~~
Introduce a special derivative

~ ~ ~
(IF

	

~~

	

~~

	

~~
at

	

~
at

~ ~~ ax ~ ~~
aaymoving

Pressure ratio u p (m/s) (P2/P1)exact (P2/P1)eomp.

5
10

469.8
2640.8

2.818

5.669

2.818

5.669

Table 2

Expansion case: comparison with exact values

Pressure ratio u p (m/s) (P2/P1)exact (P2/P1)eomp.

0.2 -355.4 0.316 0.316
0.02 -740.74 0.061 0.061
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This is a special derivative following a grid point and further let vv l = v, - w,, vv2 = v2 - w2 be
the components of the particle velocity relative to the grid point. Then Eq. (28) can be written as

~ ~
dF

	

~ ~~ ~~ ~ ~~ ~~ ~ ~

	

~~~~
~~ ~~~~~~

	

~~

	

~~

This is the 2D Boltzmann equation for a moving grid. Splitting ~v, and ~v2 into positive and
negative parts and discretising the time derivative to first order in the above equation, we get the
update scheme for the distribution F as

~ ~ n
Fn+' - F" - At

~V,
	 + I

~vl
OF

+ ~v, -I~vI OF
~ ~~ ~ ~~~ ~~ ~ ~~ ~ ~~~ ~~ ~

ax

	

~ ax

	

~ ay

	

~ ~~

	

~~~~

where F"+' represents the updated value ofF at the new position of the grid, At represents the time
step. The updating of F is now mapped [5] to the updating of the state vector U at the Euler level
by taking Y' moments of the Eq. (30). We then obtain

~

~~~~ ~ ~~ ~ ~~
~~~m

~ ~~~~ ~ ~~~m
~ ~~~ ~ ~

	

~~~~
~~

	

~~

	

~~

	

ay

where

~

	

~ ~ ~ ~~~ ~~~ ~~~ ~~	
~~

~~	 ~ ~~

~
~~~ ~ ~ ~

J

~~
j

~~~
J

~~~ ~~ ~ ~
0

	

~

	

~

y,
~

vv' + INNN~

2

~

Y' ~
VV2+ IVV21

~

~

= GXmm

= GYm+m+

~

	

~

Y' ~
~V2

-I

~V21

~ ~ ~~ ~
~

~

U is the state vector given by U = ( p pu,
for a moving grid. The moving split fluxes

~~ ~ = [A]G +
~

where Gm m represent the split fluxes for a moving grid, GSS represent the split fluxes which are
similar to those for a static grid except that the velocity components in this case are relative to the
grid velocity and matrix [A] transforms the fluxes to moving grid. The transformation matrix [A] is
given by

pu t pe
)T'

GXm m and GYm m represents the split fluxes
are given by the following expressions,

(32)
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The expressions for the split fluxes GS S are as follows. The x-components of GS S are given by
~ ~

~~~~~~~~

	

~~~~~~~~ ~ ~~~
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~~~~~~
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The y-components of GS S are given by

~
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~ GY+ (2)~
~GY+ (3)

GY + (4)

~ ~ ~~~ ~~

	

~ ~ ~~~ ~~
~~ ~	

~

	

~~ ~

	

2 ~

~~~ ~~~~~~~

	

~~~
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~~~~~~~~~~~~~~~~
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~

2RT

3.2. Kinetic treatment of moving boundary condition for solid wall 2D

Consider a boundary point b lying on a moving surface as shown in Fig. 11. Let
Wb

= w l i + w2j

be the grid point velocity along the tangential and the normal direction x -y as shown in the figure.
Following the specular reflection principle [4], the velocity distribution function at b is constructed
as the union of two half Maxwellians corresponding to the incident and reflected particles, that is,

fb - FI U FR

p{uu2A2 2 ± B2 }
p{uuluu2A2 2 ± uuiB2}

~ ~ ~ ~~ ~ ~2 ~~~ ~ ~~~~ ~

~ ~~~ ~ ~+I p~ ~~~~~
2

~ (y+1 ~ ~ ~~~~~ ] ~

The incident part corresponds to the particles with the relative velocity normal to the wall vv2 < 0.
The reflected part is constructed from the incident part as shown below.

FI = FI (~vl , ~v2 ) for ~v2 < 0

FR = FI(vvi, -vv2 ) for vv2 > 0

The update formula at a boundary point b is then given by

,

(33)

(35)

~
~

~

(36)
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Fig. 11. A typical moving boundary.
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~
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~~~

~
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aY
~~~

~
~~

a~
~~~

~

~~~ ~ ~ ~~ ~~ ~

=0 for l=3

(37)

where At is the time step, ~~m~ and ~~m~
represent the x and y quadrant split moving fluxes

respectively in the first and second quadrants. For example ~~~ ~ represents x quadrant split
fluxes in the first quadrant, i.e. for v l < 0, v 2 < 0. Similarly ~~m~~ ~~m~ and ~~~ ~ represents x
quadrant split fluxes in the second quadrant, third and fourth quadrant respectively.

The moving boundary fluxes which are expressed in terms of the quadrant wise split fluxes are
given by the following expressions,

~m
~

= ~~~~~S
~

	

~~~~

where ~m~ represents the quadrant wise split fluxes for a moving grid, ~S " represents the
quadrant wise split fluxes which are similar to that of a static grid except that the velocity
components in this case are relative to the grid velocity and matrix [A b ] converts the fluxes to
moving grid. The small difference in [Ab ] compared to the [A] for interior points is, the element
a b (3, 3) of the matrix [A b ] is zero. The transformation matrix [A b ] is given by



~ n~~ = F F+1
~ for ~v2 < 0

~ ~~ ~~ ~~~ ~ ~ ~~~~ ~ ~~~~~ ~ ~~~~ ~ ~~~~~ ~ ~~~~~
~~~ ~

~ ~~~ - ~

	

~~ ~ ~ ~~~~ ~~ v ~ ~ ~ ~~~~ ~~

	

~~

	

~~~~~~ - ~ ~~~ ~ ~~

	

~

	

~~ ~
	

~

	

~~ ~
V~

~
~~~ ~ ~

~

3.3. Kinetic treatment of boundary condition on moving outer boundary

The treatment of the boundary condition for moving outer boundary [6] is very much similar to
the above analysis, which in turn is very much similar to the kinetic outer boundary condition
developed by Ramesh et al. [7] for stationary grids. As before, the velocity distribution at any
point b on the moving outer boundary is constructed as the union of two half Maxwellians
corresponding to incoming and outgoing particles. The velocity distribution corresponding to the
incoming particles is constructed from the freestream conditions and that for the outgoing par-
ticles is obtained from the interior points. Therefore for the union of the two velocity distributions
we have,

fn+1 ~ ~ ~~~ ~ ~ ~~~
~

	

~

	

out

where

(42)
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The x-component of the quadrant split fluxes are given by,
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The y-component of the quadrant split fluxes are given by,
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Taking Y' moments of Eq. (42) we get the update formula for the outer boundary points as,
~ ~

~~~~ ~ ~~ ~ ~~
~~~m

~

~
~~~m

~

~ ~~~m~
~ ~~~m~

	

~~~~~

	

~

	

~~

	

~~

	

~~

	

aY

where At is the time step, ~~ ~~,~ and ~~ ~ ~ represent the quadrant split moving fluxes in the third
and fourth quadrants respectively. The expressions are already given in previous section. The term
U;;, in Eq. (43) is function of U~ and Ub b given by the expression,
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Fig. 12. Instantaneous lift coefficient versus angle of attack - comparison with experiment.
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Fig. 13. Instantaneous pitching moment coefficient versus angle of attack - comparison with experiment.

3.4. Results and discussions for 2D problem

The present method, that is, LSKUM on moving grid has been applied to computation of
unsteady flow past an airfoil undergoing pitching oscillations with the hinge at quarter chord
point of the airfoil. The airfoil chosen is NACA 0012. This is a standard AGARD [8] test case and
has been used by many investigators for checking their numerical algorithms. The oscillation cycle
is defined by,

a = am + oa o sin(wt) where a m = 0.016° oa o = 2.51°.

Reduced frequency based on chord length c of the airfoil is k = we/2U,,,,, = 0.0814, where w is
the circular pitch frequency and U,,,,, is free stream fluid velocity. The freestream Mach number for
this test case is 0.755. An unstructured grid with 4074 points has been used. It has 160 points on
the airfoil and 40 points on the farfield boundary. Farfield boundary is at 10 chords distance. The
necessary connectivity information was generated using quad-tree based search algorithm [9].
There are many ways of moving the grid. One simple method employed in the present work is
pitching up and down of the whole grid along with the airfoil. For such a grid movement it is very
easy to calculate the grid velocity. Figs. 12 and 13 shows the comparison of computations with
experiment of AGARD test case [6], the lift coefficient C C and pitching moment coefficient C m

(about quarter chord) versus instantaneous angle of attack a have been considered for such a
comparison. Fig. 14 shows instantaneous Cp plots for various angles of attack. Fig. 15 shows
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instantaneous Mach contours for various angles of attack clearly showing the movement of the
shock at different time instants characterising the unsteady behaviour of the flow.

4. Conclusions

The LSKUM first developed by Ghosh and Deshpande [2] and later on further developed by
Ramesh [9] has been extended in a novel way to problems involving moving grid. This method
called LSKUM-MG is based on introduction of special derivative following a grid point and
therefore reduces to the usual Lagrangian formulation when grid point velocity equals fluid ve-
locity. The KSPH method developed by Manoj et al. [3] can be considered as a special case of
LSKUM-MG. The present LSKUM-MG solver has been applied to the 1D moving piston
problem and accurate results have been obtained. Also the 2D LSKUM-MG has been used
successfully to compute the unsteady flow past airfoil oscillating in pitch. Treatment of boundary
conditions on moving walls has also been developed within the kinetic framework. The computed
results compare quite well with the experimental results of the AGARD [8] test case. Application
of the LSKUM-MG developed in the present work to store separation problem involving time
dependent chimera meshes is a very challenging problem with a lot of potential.
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