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Abstract

We show that the one-dimensional Oslo rice-pile model is a special
case of the abelian distributed processors model. The exact steady
state of the model is determined. We show that the time evolution
operator W for the system satisfies the equation Wn+1 = Wn where
n = L(L + 1)/2 for a pile with L sites. This is used to prove that W
has only one eigenvalue 1 corresponding to the steady state, and all
other eigenvalues are exactly zero. Also, all connected time-dependent
correlation functions in the steady state of the pile are exactly zero for
time difference greater that n. Generalization to other abelian critical
height models where the critical thresholds are randomly reset after
each toppling is briefly discussed.

1 Introduction

In their pioneering work in 1987, Bak et al proposed the well-known sandpile
model as a paradigm for self-organized criticality [1]. Since then, many dif-
ferent variants of sandpiles have been studied. These include models where
the height of the pile is a real variable [2], different toppling rules [3], with
preferred direction [4], stochastic topplings [5], models with fixed energy [6],
etc.. While there is a fair amount of understanding by now about many of
these models, the understanding of different universality classes of critical
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behavior possible, and of relationship to the critical steady states seen in
other driven systems remains unsatisfactory [7].

The static properties of the BTW sandpile model can be related to the
equilibrium properties of q → 0 limit of the q-state Potts model and the
statistics of spanning trees [8]. The directed model [4] can be related to the
well-known voter and the Takayasu aggregation models [9]. However, the
exponents characterizing the avalanche distributions in sandpile models are
not determined completely by the critical exponents of the q = 0 Potts model.
We have argued that the generic behavior of sandpile like models is in the
universality class of directed percolation [10]. However, the critical behavior
of special models, like the BTW or the Manna models, is certainly not in this
class. Paczuski and Boettcher have given arguments relating the exponents
of sandpile model to that of growing interfaces [11]. Generically, the growing
surfaces are expected to be in the universality class of Kardar-Parisi-Zhang
type models, not of directed percolation. It seems desirable to have a closer
look at the relation between sandpile models and growing surfaces. This
relationship is most clearly seen [12] in the simple Oslo rice-pile model [13].

The Oslo rice-pile is one of the simplest of models of self-organized crit-
icality and seems to be able to describe quite well the real experiments on
rice-piles [14]. It shows non-trivial avalanche exponents even in one dimen-
sion. There are some exact results known about this model [15], and the
values of avalanche exponents are known quite accurately [16]. The damage
propagation in the model has also been studied [17]. It seems worthwhile to
try to see if the model can be solved exactly. While attempts in this direc-
tion have not been successful so far, it does seem to have a rather unusual
mathematical structure. In this paper, I will try to outline some of these
properties, and hope that this will encourage further work.

2 Definition of the Model

The Oslo rice-pile model is a one-dimensional cellular automaton model with
stochastic toppling rules. It is defined as follows [13]: We consider a line of
L sites, labelled by integers 1 to L. At each site i, there is a non-negative
integer height variable hi, called the height of the pile at that site. We start
with a configuration in which all heights are zero. At each site i, there is
also a variable σc

i , called the critical threshold, which takes values 2 or 1 with
probabilities p and q = (1 − p) respectively, independently at each site.
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We shall call hi−hi+1 as the local slope of the pile at site i, and denote it
by σi. We define hL+1 = 0, so that the local slope at the site i = L is equal
to hL. We call a site i stable if σi ≤ σc

i . A configuration is said to be stable,
if all sites in the configuration are stable.

If a site i is unstable, it relaxes by sending one grain to site on its right.
In this process, hi will decrease by 1, and hi+1 will increase by 1. If a
configuration has more than one unstable sites, then they are updated in
parallel. ( We will show later that actually the order of topplings does not
matter). After each toppling at a site, the critical threshold at that site
is reset, and takes a new random value 1 or 2 with probabilities q and p
respectively.

The system is driven by adding a grain at the leftmost site i = 1. This
increases the local height by 1. If this leads to an unstable configuration, it
is relaxed by topplings till a stable configuration is reached. And then we
again add a grain at i = 1.

If we evolve the system like this, it reaches a self-organized critical state
at large times, where the distribution of avalanches shows a power law tail
with an L-dependent cutoff.

3 The Abelian Property

It is convenient to specify the configurations in terms of local slopes σi. A
particular configuration {hi} corresponds to a unique set of slope variables
{σi}, and vice versa. In terms of the slope variables, the evolution rules of
the rice-pile become the following:
i) If a particle is added from the left, σ1 increases by 1.
ii)a. If σi > σc

i with 2 ≤ i ≤ L− 1, then σi decreases by 2, and σi−1 and σi+1

increase by 1.
b. If σ1 > σc

1, then, σ1 decreases by 2, and σ2 increases by 1.
c.If σL > σc

L, then, σL decreases by 1, σL−1 increases by 1.
iii) After a toppling at site i, σc

i is reset to a new randomly chosen value.
It is interesting that these rules are same as for a one-dimensional critical

height model, where the critical threshold is a random variable, and its value
at a site is reset randomly after each toppling at that site. This correspon-
dence to an abelian critical height model is not possible in higher dimensions,
or if grains in the Oslo model are added at all sites, and not only at the left
end.
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It is convenient to work with this one-dimensional critical height model,
in which the “particles” are the “slopes variables” of the original model. To
avoid confusion, in this paper we shall call the rice-particles of the original
model “grains”, and use the word “particles” to refer to the slope variables.
Thus, in a single toppling event at site i, (2 ≤ i ≤ L−1), a grain is transferred
from i to (i + 1), but two particles are moved from i, one each to the sites
(i − 1) and (i + 1). The topplings at the boundary sites can be similarly
described.

As another simplification, we need not keep track of the critical thresh-
olds, if we adopt the following rule for relaxation whenever a new particle is

added to a site : If, after addition, the new height is > 2, the site topples; if
the height is 2, it topples only with probability (1−p); and if the new height
is 1, it does not topple. Clearly, the actual evolution is same as under the
original definition.

This model, then is a special case of the general Abelian distributed
processors model defined earlier [9]. We consider each site as a finite-state
automaton, with a local pseudo random number generator (PRNG), and a
single integer giving the number of particles at the site. If an added particle
makes the number of particles greater than the current threshold, a fixed
number of particles, as specified by the matrix ∆, are transferred to other
sites. A new random number is drawn from the PRNG, and used to choose
a new threshold. It is easily shown that in any configuration with more
than one unstable sites, the final state of this system does not depend on
the order in which these sites are relaxed, for any particular sequence of
thresholds generated by the PRNG. This establishes the abelian property for
the rice-pile model.

4 Operator Algebra

Let us denote by V a linear vector space spanned by its basis vectors |C〉,
where |C〉 are the stable configurations of the rice-pile. We shall characterize
the configurations C by the slope variables {σi}. There are 3L such configu-
rations for a chain of length L. Note that the values of the critical slopes σc

i

are not specified in C.
The state of the rice-pile at time t is characterized by a probability vector

|Prob(t)〉, which is an element of V. If the probability that the rice-pile occurs
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in configuration C at time t is given by p(C, t), we write

|Prob(t)〉 =
∑

C

p(C, t)|C〉. (1)

We now define linear operators ai ( i = 1 to L ) acting on V, by their
actions on the basis vectors |C〉. Starting from the stable configuration C,
we increase the slope variable σi by 1, and allow the resulting configuration
to relax if necessary. If the resulting configuration is C′ with probability
wi(C

′|C), we define
ai|C〉 =

∑

C′

wi(C
′|C)|C′〉. (2)

We then have
[ai, aj ] = 0, for all i, j. (3)

The time-evolution of the system is Markovian. Let |Prob(t)〉 be the proba-
bility vector of the state of the system after t paticles have been added, and
the system is allowed to relax. We then have the master equation

|Prob(t + 1)〉 = W |Prob(t)〉, (4)

which defines the time evolution operator W. For the rice-pile model, with
particles added only at the left end, clearly, we have W = a1.

Let us now give a more explicit representation of the operators {ai}. If
ai acts on a configuration where σi = 0, we get a state with σi increased to
value 1, and all other σ’s are unchanged.

ai| . . . , σi = 0, . . .〉 = | . . . , σi = 1, . . .〉. (5)

If ai acts on a configuration with σi = 1, then with probability p, it increases
its value to 2. With probability (1 − p), it causes a toppling there, which
would change σi to 0, and add a particle at sites (i ± 1).

ai| . . . , σi = 1, . . .〉 = p| . . . , σi = 2, . . .〉 + qai−1ai+1| . . . , σi = 0, . . .〉. (6)

Acting on a configuration with σi = 2, ai will always cause a toppling, and
we have

ai| . . . , σi = 2, . . .〉 = ai−1ai+1| . . . , σi = 1, . . .〉. (7)

These equations fully define the action of the operators ai. They also
hold for the boundary sites i = 1, and i = L, if we assume the conventions

a0 = 1, and aL+1 = aL. (8)
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Applying these rules repeatedly, we can determine the effect of any of the
the operators {ai} on any stable configuration. For example, consider the
case L = 2. Let us determine the result of a1 acting on |2, 2〉. We get,

a1|2, 2〉 = a2|1, 2〉 = a1a2|1, 1〉 = a1( p|1, 2〉 + qa1|1, 1〉). (9)

These two terms can be evaluated further as

a1|1, 2〉 = p|2, 2〉+ qa2|0, 2〉, (10)

with
a2|0, 2〉 = a1a2|0, 1〉 = a2|1, 1〉 = p|1, 2〉+ qa1|1, 1〉, (11)

and
a1|1, 1〉 = p|2, 1〉 + qa2|0, 1〉 = p|2, 1〉 + pq|0, 2〉 + q2|1, 1〉. (12)

Putting all these together, we get

a1|2, 2〉 = p2|2, 2〉 + (1 − p2) [ p|1, 2〉 + qp|2, 1〉+ q2p|0, 2〉 + q3|1, 1〉] (13)

We also note that these operators satisfy the equations

a3
i = ai−1aiai+1, for all i. (14)

This is equivalent to the observation that on adding three particles at site i,
a toppling there must occur at site i, so that it is same as adding a particle
each at the sites i − 1, i and i + 1.

Given any product of the form a2a1a7a2a2 . . ., we first use the commuta-
tivity property to bring it to the form an1

1 an2

2 . . ., where n1, n2, . . . are non-
negative integers. Then, we use the reduction rules Eq. (14) to express it
as a sum of lower powers such that ni ≤ 2 for all i. Consider evaluating ar

1

for r = 1, 2, . . .. As the number of possible answers is finite, we must have a
minimum value of r, such that ar

1 is equal to a lower power of a1. Normally,
one would guess that r is of order exp(L), the number of different terms al-
lowed. Interestingly, it turns out to be much smaller, and we now show that
r = L(L + 1) + 1 for all L.

Using Eq.(14), it is straightforward to show that

a
L(L+1)
1 = a2

1a
2
2a

2
3 . . . a2

L. (15)

Multiplying both sides of this equation by a1, and again using the reduction
rules Eq.(14), we get

a
L(L+1)+1
1 = a2

1a
2
2a

2
3 . . . a2

L. (16)
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As a1 = W, we get
WL(L+1)+1 = WL(L+1). (17)

This equation holds as an operator equation, over the 3L dimensional
vector space V, the space of all stable configurations. This has the remarkable
consequence that eigenvalues of W are either 0 or 1. W is a stochastic
matrix. As there is a finite probability that the maximal state |2, 2, . . . , 2〉
can be reached from any stable configuration, all recurrent configurations are
reachable from any other, and there is a unique steady state for this Markov
process. This implies that there is only one eigenvector of W with eigenvalue
1. Let us call it |Ψst〉 Thus all the other 3L − 1 eigenvalues of W are 0.

From Eq.(17), it follows that for any vector |φ〉 in V, WL(L+1)|φ〉 is pro-
portional to |Ψst〉. Also, as W preserves the probability sum, for any initial
basis vector |C〉, we get

WL(L+1) |C〉 = |Ψst〉. (18)

A simpler way to determine |Ψst〉 is to use the equation

|Ψst〉 = a1|2, 2, 2 . . .2〉. (19)

This equation is interesting, as it says that if we take the initial config-
uration as the one in which each σi has the highest allowed value, and just
add one more grain, the stochastic evolution would result in different final
stable configurations with probabilities exactly equal to their values in the
steady state. To prove this result, we need only note that for any stable
configuration,

ai| . . . , σi = 2, . . .〉 = a3
i | . . . , σi = 0, . . .〉. (20)

Then we can write

a1|2, 2, 2 . . .2〉 = a3
1|0, 2, 2 . . .〉 = a1a2|0, 2, 2 . . .〉 = a1a

3
2|0, 0, 2 . . .〉 (21)

= a2
1a2a3|0, 0, 2 . . .〉 = a2

1a2a
3
3|0, 0, 0 . . .〉 = etc., (22)

finally giving

a1|2, 2, 2 . . .〉 = a2
1a

2
2a

2
3 . . . a2

L|0, 0, 0 . . .〉 = |Ψst〉. (23)

In fact, it is possible to get a result stronger than Eq.(18). We note that
most of the stable configurations are transient, and do not occur in the steady
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state. The different recurrent configurations of the Oslo rice-pile have been
characterized [15]. For any recurrent configuration C with m grains, arguing
as above, we can show that

a
L(L+1)−m
1 |C〉 = a2

1a
2
2a

2
3 . . . a2

L|0, 0, 0 . . .0〉 (24)

Since the lowest allowed value of m in recurrent configurations is L(L+1)/2,
corresponding to the configuration |1, 1, 1, . . .〉, we get that for any recurrent
configuration R,

a
L(L+1)/2
1 |R〉 = |Ψst〉 (25)

Let X(t) be some scalar observable whose value depends on the stable
configuration of the pile after t grains have been added. Then any particular
evolution of the rice-pile will generate a stochastic time-series {X(j)}, j =
1, 2, . . .. For example, X(t) may be the total height of the pile h1 at time t,
or the number of grains in the pile. Clearly, this time-series has nontrivial
correlations. For example, h1(t+1) ≤ h1(t)+1. For any two such observables
X(t) and Y (t), we define the connected time-dependent correlation function
CXY (τ) in the steady state as

CXY (τ) = 〈X(t)Y (t + τ)〉 − 〈X(t)〉〈Y (t + τ)〉 (26)

However, from Eq.(25), it follows that the conditional expectation value of
Y (t + τ), given that the observable X has a particular value X(t), must
be equal to its unconditional expectation value, whenever τ ≥ L(L + 1)/2.
Thus, CXY (τ) is exactly equal to zero for τ ≥ L(L+1)/2, for all observables
X and Y .

For τ < L(L + 1)/2, the correlation function CXY (τ) is not always zero.
This correlation function can be nontrivial, even though W has only one
nonzero eigenvalue, because W is non-hermitian. This is easily checked for
the simple cases L = 2, 3.

5 Generalizations

It is straightforward to generalize the discussion given above to more general
abelian sandpile model (ASM) [19]. Consider a stochastic sandpile model
defined on a set on N vertices labelled by integers 1 to N . At each site
is a height variable zi, which takes non-negative integer values. There is
an N × N integer matrix ∆, which specifies how particles are transferred
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under topplings: If zi is greater than or equal to a site-dependent threshold
value zi,c, there is a toppling at site i, the heights at all sites j are updated
according to the rule

zj → zj − ∆i,j. (27)

The matrix ∆ is assumed to satisfy the good-behavior conditions, same as for
ASM [19]. After each toppling at a site i, the critical threshold at that site is
randomly reset to a new value zic = r, with r lying in a finite range of values
zmin

i,c and zmax
i,c from a known probability distribution Probi(zic = r). This

distribution functions can be different at different sites. Note that while the
threshold is randomly reset, we are assuming that the matrix ∆ specifying
how particles are transferred under toppling does not change. Without any
loss of generality, we may assume that zmin

i,c = ∆i,i. This corresponds to
setting the minimum allowed value of zi to be zero for all sites i.

It is easy to see that this model is still abelian, and that just like the
ASM with deterministic rules, there are forbidden subconfigurations in this
model. In fact the forbidden subconfigurations are exactly the same as in
the deterministic ASM specified by the toppling martix ∆ [19]. The number
of allowed configurations in the stochastic model is larger, as the maximum
allowed value of zi is larger. We define a new matrix ∆̃ such that

∆̃i,j = ∆i,j, for i 6= j; (28)

and
∆̃i,i = zmax

i,c . (29)

Then, it is easy to see that any allowed configuration for a deterministic ASM
with toppling matrix ∆̃ is also a recurrent configuration of the stochastic
model, and vice versa. The number of recurrent configurations is given by
det(∆̃). However, all configurations are not equally likely to occur in the
steady state.

For the 1-dimensional model studied in this paper, the only non-zero
entries of ∆̃ are ∆̃i,i = 3, for i < L, and ∆̃L,L = 2, and ∆̃i,i±1 = −1. The
determinant is easy to calculate, recovering the results of [15].

Again, for this stochastic model, we define operators {ai} corresponding
to adding a particle at site i, and relaxing. Then these operators commute
with each other. In addition, they satisfy the equations

a
zmax
i,c

i = a
(zmax

i,c
−zmin

i,c
)

i

∏

j 6=i

a
−∆i,j

j . (30)
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This equation is a generalization of the Eq.(14) in the previous section.
As before, we find that the eigenvalues of the operators {ai} are either all
zero, or same as that for the deterministic ASM with toppling matrix ∆.
The steady state |Ψst〉 of the stochastic model is given by

|Ψst〉 =
∏

i

a
(zmax

i,c
−zmin

i,c
)

i |Φst〉, (31)

where |Φst〉 is the steady state of the deterministic ASM with toppling matrix
∆. To prove this statement, we note that if for the deterministic model
ai|C〉 = |C′〉, then for the stochastic model we must have

ai

∏

i

a
(zmax

i,c
−zmin

i,c
)

i |C〉 =
∏

i

a
(zmax

i,c
−zmin

i,c
)

i |C′〉, (32)

as each toppling which is required to relax from C to C′ in the deterministic
case, will also be allowed in the stochastic case with the larger threshold
values, so long as there are enough extra untoppled particles present[18].
Then, if |Φst〉 is an eigenvector of all ai with eigenvalue 1 in the deterministic
model, |Ψst〉 would be so for the stochastic one.

It may be noted that this operator algebra does not depend on the proba-
bility distribution of the random thresholds, and depends only on the values
of zmax

i,c and zmin
i,c , and the toppling matrix ∆. All nontrivial eigenvalues of

{ai} are solutions of algebraic equations (30), and are the same as for the
corresponding ASM with toppling matrix ∆.

The Oslo rice-pile model is special in that in this case, the deterministic
ASM with same matrix ∆ has only one recurrent configuration, and the
|Φst〉 = |1, 1, 1, . . .〉. This explains why W has only one non-trivial eigenvalue.

The distribution of avalanche sizes, and the weights of different configura-
tions in the steady state certainly do depend on the probability distribution
of thresholds. These are rather difficult to calculate explicitly even for the
original one-dimensional model, except for very small values of L. Exact
calculation of these for general L seems more difficult. This seems to be an
interesting open problem.
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