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Starting from a quantum Langevin equation (QLE) of a charged particle coupled to a heat bath
in the presence of an external magnetic field, we present a fully dynamical calculation of the sus-
ceptibility tensor. We further evaluate the position autocorrelation function by using the Gibbs
ensemble approach. This quantity is shown to be related to the imaginary part of the dynamical
susceptibility, thereby validating the fluctuation-dissipation theorem in the context of dissipative
diamagnetism. Finally we present an overview of coherence-to-decoherence transition in the realm
of dissipative diamagnetism at zero temperature. The analysis underscores the importance of the
details of the relevant physical quantity, as far as coherence to decoherence transition is concerned.

PACS numbers: 03.65.Yz, 05.20.-y, 05.20.Gg, 05.40.-a, 75.20.-g

I. INTRODUCTION

The problem of a quantum charged particle in the
presence of a magnetic field is an old and important
one [1]. When Landau gave the theory of diamagnetism
a major breakthrough in solid state physics was made
possible [2, 3]. The physics of Landau levels is of
great interest in the quantum Hall effect [4] and high
temperature superconductivity [5]. In the present
paper we address the issue of what happens when we
combine the Landau problem with the Drude transport
treatment which naturally brings in the phenomenon of
environment-induced dynamics [6].
The consequences of coupling of a system to its envi-
ronment are threefold. First, energy may irreversibly be
transferred from the system to the environment giving
rise to dissipation [7, 8, 9]. Second, the spontaneous
fluctuations injected by the environment into the system
govern the response of the system degrees of freedom to
weak, external stimuli [10, 11]. Finally the entanglement
between the system and environment degrees of freedom
destroys the coherent superposition of quantum states,
leading to decoherence [12].
We discuss all the three above mentioned effects in the
context of Landau diamagnetism which is inherently
and intrinsically quantum in nature. For the purpose
of investigating fluctuation, dissipation and decoherence
in what we call Landau-Drude diamagnetism [13] it is
convenient to use the formulation given by Ford et al
[14, 15], following the classical treatment due to Zwanzig
[16]. Starting from the Feynmann-Vernon model in
which a particle moving in an arbitrary potential is
assumed to be linearly coupled with a collection of
quantum harmonic oscillators [17], these authors derive
a quantum Langevin equation (QLE). We use this QLE
as the basis of our further discussion, in what may
be referred to as the Einstein approach to Statistical
Physics [18].
From QLE we calculate the dynamical susceptibility
tensor. We then evaluate the position autocorrelation
function from the Euclidean action of the Feynmann-

Vernon model using the Gibbsian ensemble approach.
This quantity is a measure of spontaneous fluctuations
in the degrees of freedom of the system. We discuss the
relation between the position autocorrelation function
and the imaginary part of the susceptibility and thus
establish the fluctuation-dissipation theorem in the
context of dissipative diamagnetism.
The destruction of quantum coherence by environment-
induced dissipation is of central interest in atomic
physics [19], condensed matter physics [20], as well
as chemical and biological reactions [21]. We discuss
this environment-induced decoherence in the context of
dissipative diamagnetism. Landau diamagnetism has
its origin in coherent circular motion of the electron in
a plane normal to the magnetic field. This coherent
motion is disturbed due to interaction with environ-
mental degrees of freedom, e.g. defects, phonons, etc.
We illustrate how the system transits from the coherent
‘Landau regime’ to the decoherent ‘Bohr-Van Leeuwen
regime’ [22, 23]. We show that the coherent-decoherent
transition depends on the particular dynamical quantity
(e.g., correlation function, occupation probability, etc.)
under consideration.
The paper is organized as follows. In the next section
we discuss our model Hamiltonian and the correspond-
ing QLE. In Sec. III we calculate the generalized
susceptibility tensor. Sec. IV deals with the position
autocorrelation function and its relation to the sus-
ceptibility, thus establishing the fluctuation-dissipation
theorem in the context of dissipative diamagnetism. In
Sec. V we study the coherence-to-decoherence transi-
tion. Finally we summarize our results and present a
few concluding remarks in Sec.VI.

II. MODEL, QLE AND EINSTEIN APPROACH

We start with the Feynmann-Vernon Hamiltonian for

a charged particle in a magnetic field ~B, coupled to an
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environment of quantum harmonic oscillators [17]

H =
1

2m

(

~p − e

c
~A
)2

+
1

2
mω2

0~q
2

+
∑

j

[ 1

2mj

~pj
2 +

1

2
mjω

2
j (~qj − ~q

)2]

, (1)

where ~p and ~q are the momentum and position opera-

tors of the particle, and ~A is the vector potential. The
second term due to Darwin [24] represents a confining
potential to recover the correct boundary contribution.
Now following Ford et al [14, 15] one can write the QLE
emanating from Eq.(1) as [13]

m~̈q+

∫ t

−∞

dt′γ(t−t′)~̇q(t′)+mω2
0~q−

e

c
(~̇q× ~B) = ~F (t), (2)

where the auto-correlation and the commutator of ~F (t)
are given by

〈

{Fα(t), Fβ(t′)}
〉

= δαβ

2

π

∫ ∞

0

ℜ[γ̃(ω + i0+)]~ω

coth(
~ω

2kBT
) cos{ω(t − t′)}dω, (3)

〈

[Fα(t), Fβ(t′)]
〉

= δαβ

2

iπ

∫ ∞

0

ℜ[γ̃(ω + i0+)]~ω

sin{ω(t− t′)}dω, (4)

where γ̃(s) =
∫ ∞

0
dt exp(ist)γ(t) (Im s > 0).

At this stage we introduce the nomenclature of Ohmic
dissipation as well as non-Ohmic dissipation. Defining
the spectral density of the environmental degrees of free-

dom as J(ω) = π
2

∑N
j=1 mjω

3
j δ(ω − ωj), we can rewrite

the memory kernel γ(t) in terms of the spectral density
as

γ(t) = Θ(t)
2

mπ

∫ ∞

0

dω
J(ω)

ω
cos(ωt), (5)

where Θ(t) is the Heaviside step function. In the
strictly Ohmic case, damping is frequency-independent
and the spectral density J(ω) = mγω. The memory
kernel γ(t − t′) is thus replaced by mγδ(t − t′), so that
ℜ[γ̃(ω + i0+)] reduces to mγ, a constant. In this limit
we get an ordinary Langevin equation. It is interesting
to note that the underlying stochastic process is still
non-Markovian, even though there is no memory. In the
non-Ohmic case (e.g. due to a phonon bath) the spectral
density is defined as J(ω) = mγ̃(ω), where γ̃(ω) = γω3.
The damping kernel γ̃(ω) then brings in memory-friction
effects.

III. GENERALIZED SUSCEPTIBILITY

TENSOR

In this section we consider the linear response of the

position coordinate to an external force ~f(t), assumed
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FIG. 1: (color online) The imaginary part of susceptibility
χxx (a) Ohmic dissipation case (J(ω) ∼ ω) for two ωc values.
(b) Ohmic dissipation case for two γ values. (c) Non-Ohmic
dissipation case (J(ω) ∼ ω3) for two ωc values. (d) Non-
Ohmic dissipation case for two γ values.

small. By imagining the force to have been switched on at
time t = −∞ all transient effects can be ignored and the
nontransient response can be captured by the frequency-
dependent generalised susceptibility. The corresponding
QLE now reads

m~̈q +

∫ t

−∞

dt′γ(t − t′)~̇q(t′) + mω2
0~q − e

c
(~̇q × ~B) =

~F (t) + ~f(t). (6)

We rewrite Eq. (6) in a Fourier transformed form

[

(m(ω2
0 − ω2) − iωγ̃(ω))δαβ + iω

e

c
ǫαβρBρ

]

q̃β(ω) =

F̃α(ω) + f̃α(ω), (7)

with

Z̃i(ω) =

∫ ∞

0

dteiωtZi(t)

(i = 1, 2, 3, 4; Z1 = γ, Z2 = qβ , Z3 = Fα, Z4 = fα),

and ǫαβρ is the Levi-Civita symbol, α, β, ρ being the three
spatial directions (i.e. α, β, ρ = x, y, z). In linear response
theory one can write [25]

qα(t) =

∫ t

−∞

dsχαβ(t − s)(Fβ(s) + fβ(s)), (8)

where χαβ is the generalised susceptibility tensor. In
Fourier transformed form Eq. (8) becomes

q̃α(ω) = χαβ(ω)[F̃β(ω) + f̃β(ω)]. (9)

Rewriting Eq. (7) as

Yαβ(ω)q̃β(ω) = [F̃α(ω) + f̃α(ω)], (10)
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FIG. 2: (color online) The real part of susceptibility χxx (a)
Ohmic dissipation case (J(ω) ∼ ω) for two ωc values. (b)
Ohmic dissipation case for two γ values. (c) Non-Ohmic dis-
sipation case (J(ω) ∼ ω3) for two ωc values. (d) Non-Ohmic
dissipation case for two γ values.

the generalised susceptibility can be evaluated as

χαβ = [Y −1(ω)]αβ , (11)

with

Y (ω) =





∆(ω) iω e
c
Bz −iω e

c
By

−iω e
c
Bz ∆(ω) iω e

c
Bx

iω e
c
By −iω e

c
Bx ∆(ω)



 , (12)

where ∆(ω) = m(ω2
0 − ω2) − iωγ̃(ω). Clearly

χ(ω) =
1

Det[Y (ω)]





χxx χxy χxz

χyx χyy χyz

χzx χzy χzz



 , (13)

where

Det[Y (ω)] = ∆(ω)[∆2(ω) − (ω
e

c
)2 ~B2];

χii = ∆2(ω) − (ω
e

c
)2B2

i , (i = x, y, z);

χxy = χ∗
yx = −(ω

e

c
)2BxBy − iω

e

c
Bz∆(ω);

χxz = χ∗
zx = −(ω

e

c
)2BxBz + iω

e

c
By∆(ω);

χyz = χ∗
zy = −(ω

e

c
)2ByBz − iω

e

c
Bα∆(ω), (14)

where (∗) denotes the complex conjugate of the corre-
sponding variable.

The expression is simplified when the magnetic field is
taken along z axis, thus

χ(ω) =
1

Det[Y (ω)]





∆2(ω) −iω e
c
∆(ω)B 0

iω e
c
∆(ω)B ∆2(ω) 0
0 0 ∆2(ω) − (ω e

c
)2B2



 . (15)

For this particular case the real part of the susceptibility
is

χ′
xx = χ′

yy

=
1

2m2

[ (ω2
0 − ω2 + ωωc/2)

(ω2 − ω2
0 + ωωc)2 + ω2γ̃2(ω)

m2

+
(ω2

0 − ω2 − ωωc/2)

(ω2 − ω2
0 − ωωc)2 + ω2γ̃2(ω)

m2

]

, (16)

and the imaginary part is

χ′′
xx = χ′′

yy

=
γ̃(ω)ω

2m2

[ 1

(ω2 − ω2
0 + ωωc)2 + ω2γ̃2(ω)

m2

+
1

(ω2 − ω2
0 − ωωc)2 + ω2γ̃2(ω)

m2

]

, (17)

where the cyclotron frequency ωc = eB
mc

. For the Ohmic
dissipation case the susceptibility has four poles at

ω = ±ω̃+ = [
ωc + iγ

2
±

√

4ω2
0 + ω2

c − γ2 + 2iωcγ

2
]

ω = ±ω̃− = [
−ωc + iγ

2
±

√

4ω2
0 + ω2

c − γ2 − 2iωcγ

2
].(18)

On the other hand, for the non-Ohmic case these
poles cannot be evaluated analytically. The numerical
results for the Ohmic dissipation as well as non-Ohmic
dissipation cases are presented below.
We plot in Fig. (1) the dissipative part of the x-
component of susceptibility i.e. χ′′

xx(ω) versus ω for
different values of ωc and γ in accordance with Eq.
(17). We note that χ′′

xx(ω) is odd in ω for the Ohmic
dissipation case and has Lorentzian line shapes for finite
damping values, with peaks centered at the poles. For
the non-Ohmic case χ′′

xx(ω) is even in ω. It is evident
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from Fig. (1-b) that for finite but weak damping one can
obtain all the four peaks for the ohmic dissipation case
whereas for high damping only two peaks are obtained.
The same is true for the non-Ohmic case (Fig. (1-d)).
The only difference is that the magnitude of the peak
height is higher for the non-ohmic case and is always
positive. Also the peak width increases with the increase
of γ for both Ohmic and non-Ohmic cases. On the
other hand the width of the peak decreases with the
increase of ωc, as is expected on physical grounds. In the
non-Ohmic case the number of peaks also increases from
two to four with the increase of ωc, whereas it remains
two for the Ohmic case with the increase of ωc, if γ is
kept large. Thus, dissipative effects are stronger for the
Ohmic case.
In Fig. (2) we plot the reactive part or the real part
of the x-component of susceptibility (χ′

xx(ω)) versus
ω for different values of ωc and γ in accordance with
Eq. (16). χ′

xx(ω) is odd in ω for the Ohmic as well as
non-Ohmic cases. The spreading of the peaks increases
but the peak height decreases with the decrease of ωc for
the Ohmic case. On the other hand both the spreading
and peak height decrease with the decrease of ωc for the
non-Ohmic case. But the features are same with the
variation of γ for both Ohmic and non-Ohmic cases —-
the peak height increases but the spreading decreases
with the decrease of γ. In addition the number of peaks
increases from one to two with the decrease of γ in the
Ohmic as well as non-Ohmic cases.
The z component of the susceptibility tensor is of course
the same as that of a damped harmonic oscillator
because it has nothing to do with ωc.

IV. FLUCTUATION - DISSIPATION

RELATIONSHIP: GIBBS APPROACH

In Sec. III we calculated the susceptibility as the
asymptotic (i.e. t → ∞) response from a fully time-
dependent formulation of the underlying QLE. Because
detailed balance relations (viz. Eqs. (3) and (4)) are
built-in within the QLE, as the heat bath is assumed to
be in thermal equilibrium at a fixed temperature T, the
asymptotic response is expected to be related to the equi-
librium properties of the system. This expectation is at
the heart of what Kadanoff calls the Einstein approach to
Statistical Mechanics [18] in which equilibrium answers
are sought to be obtained from the asymptotic limit of
time-dependent results. It is then natural to ask whether
the response obtained from the Einstein approach can be
related to spontaneous or equilibrium fluctuations that
can be independently calculated from the standard Gibb-
sian formulation of equilibrium Statistical Mechanics. If
we can establish this relation it will not only be tan-
tamount to establishing the fluctuation-dissipation the-
orem for the phenomena at hand, but also to demon-
strating the equivalence of the Einstein and the Gibbs
approaches to Statistical Mechanics [26].
With this preamble the position autocorrelation function

in equilibrium is defined as

C(t) =< ~x(t) · ~x(0) >= Tr(~x(t) · ~x(0)ρβ), (19)

where ρβ is the equilibrium density matrix of the full
system and ~x is the two dimensional position vector in
the x-y plane.. We determine C(t) by first calculating
its imaginary time version starting from the Euclidean
action of the system as described by Eq. (1)

SE [~x] =

∫

~β

0

dτ
(m

2
~̇x2 +

m

2
ω2

0~x
2 + imωc(~̇x × ~x)z

)

+
1

2m

∫

~β

0

dτ

∫

~β

0

dσγ̃(τ − σ)~x(τ) · ~x(σ)

+

∫ ~β

0

dτ ~f (τ) · ~x(τ), (20)

where the first term takes care of the system part, the
second term accounts for the coupling to the environ-
ment and the third term corresponds to the interaction
with an external force in imaginary time. This helps us
to determine the correlation function by variation with
respect to this force [27, 28]

< ~x(τ) · ~x(σ) >= ~
2Tr

( δ

δ ~f(τ)

δ

δ ~f(σ)
ρβ

)

~f=0
. (21)

It is sufficient to restrict ourselves to the classical
path for the calculation of the autocorrelation function
[27, 28]. Thus the Fourier representation of the classical
Euclidean action becomes [26, 27]

SE
cl = − 1

2m~β

+∞
∑

n=−∞

[ 1

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 − iωcνn

+
1

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 + iωcνn

]

×
∫ ~β

0

dτ

∫ ~β

0

dσ ~f(τ)~f (σ) exp(iνn(τ − σ)), (22)

where νn = 2πn
~β

are the so-called Matsubara frequencies.

Since the force appears only through the action in the
exponent of the equilibrium density matrix, we can eas-
ily evaluate the functional derivatives according to Eq.

C
+

Re     ω

Im ω

C
−

Re     

Im ω

ω

(b)(a)

FIG. 3: The analytic continuation of the imaginary time cor-
relation function to real times by using the contours depicted
in (a) and (b) to obtain Eq. (24) and Eq. (25) respectively.
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(21) and obtain the position autocorrelation function in
imaginary time:

C(τ) =
1

mβ

+∞
∑

n=−∞

[ 1

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 − iωcνn

+
1

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 + iωcνn

]

exp(iνnτ). (23)

The real time correlation function cannot be obtained

by simply replacing τ by it, because for negative times
the sum does not converge. The idea is to express the
sum in Eq. (23) as a contour integral in the complex
frequency plane. To do this, we need a standard trick of
Statistical Mechanics [29]. Look for a function which is
well-behaved at infinity, but has poles at ω = iνn. This
requirement is fulfilled by ~β

1−exp(−~βω) . Now doing the

integration along the contour shown in Fig. (3-a) we find

∫

C+

dω
~β

1 − exp(−~βω)

[ exp(−ωτ)

ω2
0 − ω2 + iγ̃(ω)ω

m
+ ωωc

+
exp(−ωτ)

ω2
0 − ω2 + iγ̃(ω)ω

m
− ωωc

]

= −2i
π

ω2
0

− 2πi
[

∞
∑

n=1

exp(iνnτ)

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 − iωcνn

+

∞
∑

n=1

exp(iνnτ)

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 + iωcνn

]

. (24)

Similarly, an integration along the contour shown in Fig. (3-b) leads to

∫

C−

dω
~β

1 − exp(−~βω)

[ exp(−ωτ)

ω2
0 − ω2 − iγ̃(ω)ω

m
− ωωc

+
exp(−ωτ)

ω2
0 − ω2 − iγ̃(ω)ω

m
+ ωωc

]

= 2i
π

ω2
0

+ 2πi
[

−1
∑

n=−∞

exp(iνnτ)

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 − iωcνn

+

−1
∑

n=−∞

exp(iνnτ)

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 + iωcνn

]

. (25)

Subtracting Eq. (25) from Eq. (24) we obtain

1

mβ

+∞
∑

n=−∞

[ 1

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 − iωcνn

+
1

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 + iωcνn

]

e(iνnτ)

=
~

m2π

∫ +∞

−∞

dωγ̃(ω)ω
[ 1

(ω2 − ω2
0 − ωωc)2 + γ̃2(ω)ω2

m2

+
1

(ω2 − ω2
0 + ωωc)2 + γ̃2(ω)ω2

m2

] e(−ωτ)

1 − e(−~βω)
. (26)

We may now pass to real time by the replacement τ → it to obtain the real time correlation function

C(t) =
~

πm2

∫ +∞

−∞

dω
[ γ̃(ω)ω

(ω2 − ω2
0 − ωωc)2 + γ̃2(ω)ω2

m2

+
γ̃(ω)ω

(ω2 − ω2
0 + ωωc)2 + γ̃2(ω)ω2

m2

] e(−iωt)

1 − e(−~βω)
. (27)

It is easy to show from Eq. (27) that

C̃(ω) =
2~

1 − exp(−β~ω)
χ′′

xx(ω). (28)

Eq. (28) represents the fluctuation-dissipation theorem
in the context of dissipative Landau diamagnetism. The
position autocorrelation function describes the sponta-
neous fluctuations of the system while the imaginary
part of the dynamic susceptibility χ′′

xx determines the
energy dissipation in the system due to work done by an
external weak force.

V. COHERENCE - DECOHERENCE

TRANSITION

In this Section our discussion is focused on the destruc-
tion of quantum coherence by environment-induced dis-
sipation in the context of dissipative diamagnetism. Two
questions are relevant: (i) Can we quantify the criterion
for crossover from coherent to decoherent dynamics? (ii)
Is this criterion universal? As far as some model systems
are concerned, the answer to (i) is in the affirmative [30].
Regarding the question (ii), there seems to be no uni-
versality in the criterion of crossover. As a matter of
fact, the value of the crossover parameter depends on
the particular quantity under consideration and its ini-
tial preparation. Thus, quantum memory effects play a
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crucial role as the system makes a transition from the
coherent to the decoherent regime. To clarify this issue
we focus on dissipative diamagnetism and we consider its
T = 0 behavior, wherein quantum coherence is the most
prominent. Here we follow the discussion of Egger et al
[30].
We start with the QLE for dissipative Landau diamag-
netism subject to Ohmic damping. The motion in the
x-y plane can be expressed in the compact form:

Z̈ + γ̄Ż + ω2
0Z =

θ(t)

m
, (29)

where Z = x + iy, γ̄ = γ + iωc, and θ = Fx + iFy.
Thus, the time-dependence of the corresponding classical
quantity (a la Ehrenfest) is governed by the following
equation:

< Z̈ > +γ̄ < Ż > +ω2
0 < Z >=

θ(t)

m
, (30)

where the angular brackets represent statistical averages
over the ground state properties (T = 0), i.e. the ex-
pectation values. As discussed earlier the response to an
external force is characterized by the generalized suscep-
tibility χosc(t) [25]:

< Z(t) >=
1

mω0

∫ t

−∞

dt′χosc(t − t′)θ(t′). (31)

From Eqs. (24) and (25), we obtain the Fourier trans-
form of χosc(t) as

χosc(ω) =
ω0

ω2
0 − ω2 − iγ̄ω

. (32)

On the other hand, using the fluctuation-dissipation the-
orem [25], χosc(ω) can be related to the spectral function
Sosc(ω), which in turn determines the equilibrium cor-
relation function Cosc(ω). The functional relationship
which holds at T = 0 is as follows:

ℑχosc(ω) = ωSosc(ω) =
ω

|ω|Cosc(ω), (33)

where Cosc(t) = ℜ < Z(t)Z(0) >. Using Eqs. (32) and
(33), we obtain the spectral function

Sosc(ω) =
γω0

(ω2
0 − ω2 + ωωc)2 + γ2ω2

. (34)

The quantity Sosc(ω) can be used as a signature for the
transition from coherence to decoherence: Sosc(ω) has

two inelastic peaks at ωm = ω0

2

[

− κ2 ±
√

4 − κ2
1 + κ2

2

]

for weak damping, where κ1 and κ2 are dimensionless
parameters defined by κ1 = γ

ω0
and κ2 = ωc

ω0
. These two

quantities are employed as the crossover parameters to
quantify the coherence to decoherence transition. Defin-
ing κ̄2 = κ2

1+κ2
2, we can say that below the critical coher-

ent criterium (defined below, c.f. Eq. (37)) i.e. κ̄2 < κ̄2
c ,

the function Sosc(ω) exhibits two inelastic peaks which
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FIG. 4: (color online) Spectral function Sosc(ω) vs. ω with
Ohmic dissipation for dissipative Landau diamagnetism for
different parameter values.

are evident from Fig. (4) in which we plot Sosc(ω) vs.
ω for different κ1 and κ2. At the critical coherent cri-
terium (c.f. Eq. (37)) the two peaks merge into a single
quasielastic peak. The latter persists for κ̄2 > κ̄2

c . Since
the quasielastic peak is centered near ω ≃ 0, we can make
a small-ω expansion of Sosc(ω):

Sosc(ω) ≃ κ1χ
2
0

[

1−κ2χ0ω +(2−κ2
1−κ2

2)χ
2
0ω

2 +O(ω3)
]

,

(35)
where χ0 = 1

ω0
. The critical line is determined by in-

specting the sign of the curvature of Sosc(ω). The latter

is positive (implying coherence) if d2Sosc(ω)
dω2 > 0, or

κ̄2 = κ2
1 + κ2

2 < 2. (36)

But the curvature changes sign at the critical line:

κ̄2
c = κ2

1 + κ2
2 = 2, (37)

and hence the system goes to the decoherent region when

κ̄2 = κ2
1 + κ2

2 > 2. (38)

It is illustrative to compare this behavior with that of
the damped harmonic oscillator which was discussed by
Egger et al [30].

Comparing Figs. (4) and (5) one notes that for the
damped oscillator case Sosc(ω) has two inelastic peaks of
equal height for weak damping. As the one-parameter
damping strength increases these two peaks approach
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FIG. 5: (color online) Spectral function Sosc(ω) vs. ω with
Ohmic dissipation for a damped harmonic oscilltor for differ-
ent parameter values.

each other and at the critical damping strength (αc) the
two peaks merge into a single quasielastic peak at ω = 0
which persists for α > αc. On the other hand, for dissi-
pative diamagnetism, the coherent-decoherent transition
is to be examined in a two-parameter plane, defined by
κ1 and κ2. One obtains two inelastic peaks which are not
of equal height for low values of κ1 and κ2 because the
peaks are not symmetric in either side of ω = 0. As one
increases κ1 and κ2 the peak height of the small peak
decreases and at the critical line the small peak vanishes
and we obtain a single peak which is not at ω = 0, but
near ω = 0. Above the critical line the single quasielastic

peak persists.
We turn next to a different criterion for quantifying the
transition from coherence to decoherence, which is based
on the quantity Posc(t), defined as follows:

Posc(t) =
< Z(t) >

Z0
. (39)

We are interested in the relaxation of the expectation
value < Z(t) > starting from a nonequilibrium initial
state. Applying the force F (t) = mω2

0Z0 for t < 0, the
initial condition < Z(0) >= Z0 is prepared and the cor-
responding dynamical quantity Posc(t) is computed, af-
ter switching off the force F (t), at t = 0. Following the
damped quantum harmonic oscillator case [30] we may
now write

Posc(t) = ℜ
[cos(Ω̄t − φ̄) exp(− γ̄t

2 )

cos(φ̄)

]

, (40)

where

Ω̄ =

√

ω2
0 − γ̄2

4
= Ω′ + iΩ′′

φ̄ = ℜ[tan−1(
γ̄

2Ω̄
]. (41)

Defining a = (ω2
0 +

ω2
c

4 − γ2

4 ) and b = γωc

2 ,

Ω′ =
1√
2

√

a +
√

a2 + b2,

Ω′′ =
1√
2

√

√

a2 + b2 − a,

φ̄ = tan−1(X),

X =
γΩ′ + Ω′′ωc

2(Ω′2 + Ω′′ωc)
, (42)

Posc(t) =
[cos(Ω′t − φ̄) cos(Ω′′t) cos(ωct

2 ) − sin(Ω′t − φ̄) sin(Ω′′t) sin(ωct
2 )

cos(φ̄)

]

exp(−γt

2
). (43)

The signature of coherence is now damped-oscillatory be-
havior if b2 > 0 and a2 + b2 > 0. Thus the important
inequality condition for the system to be coherent is:

(1 − κ2
1 + κ2

2)
2 +

(κ1κ2)
2

4
> 0. (44)

The system crosses over to relaxational (decoherent) be-
havior at the critical line

(1 − κ2
1

4
+

κ2
2

4
)2 +

(κ1κ2)
2

4
= 0, (45)

which is clearly different from the criterium mentioned
above (cf. Eq. (37)). Thus the criterion for crossover

from coherence to decoherence depends on the specific
physical quantity considered. This conclusion is similar
to the cases of damped quantum harmonic oscillator as
well as the spin-Boson model [30].

VI. SUMMARY AND CONCLUSION

We have analyzed here an exact treatment of the
Feynmann-Vernon model of a charged Brownian particle
in a magnetic field in the quantum dissipative regime.
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Starting from the QLE we have derived the generalised
susceptibility tensor, and have discussed its real and
imaginary parts for the particular case when the mag-

netic field ~B is along the z axis. Following the Gibbs
ensemble approach, we have calculated the position
autocorrelation function that measures the spontaneous
fluctuations of the system degrees of freedom due to
coupling with the environment. The latter has been
shown to be related to the imaginary part of the sus-
ceptibility that measures the energy dissipation of the
system due to irreversible energy transfer between the
system and the environment. The aforesaid treatment
then exemplifies the fluctuation-dissipation theorem
in the context of dissipative diamagnetism as well as
proves the equivalence of the Einstein and the Gibbs ap-
proaches to Statistical Mechanics. Environment-induced
decoherence is an important issue in mesoscopic systems
and quantum information processes. We have discussed
this in the context of dissipative diamagnetism and

have argued that the transition from the Landau to the
Bohr-Van Leeuwen regime can indeed be viewed as a
coherence to decoherence transition. Further it has been
demonstrated that the initial preparation of a dissipative
quantum system leads to abrupt changes regarding the
criterion for coherent to decoherent transition. As in
glassy systems characterized by hysteretic behavior,
quantum systems also exhibit memory of their initial
state of preparation. In conclusion, we have presented a
unified treatment of threefold response, i.e. fluctuation,
dissipation and decoherence of a system due to its
coupling with environment in the context of the con-
temporarily important topic of dissipative diamagnetism.
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