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Having fixed y, we can find from (2) integers nv..., ns (not all zero) such that

'(4)

Prom (3) and (4),

where the n's are not all zero; this proves the theorem.

A THEOREM IN ARITHMETIC

S. CHOWLA*.

HYPOTHESIS. Let dv .."., #5 be positive numbers and such that at least
one of the ratios dsj91 (s = 2, 3, 4, 5) is irrational. Let [y] denote the
greatest integer contained in y.

THEOREM. Every n ~^no(dv ..., 9&) satisfies

wh/tre c may be 0, 1, 2, 3, or 4, and the n's are integers.

Remarks. Two points about this theorem are:

(i) It is not a consequence of Schnirelmann's recent generaliza-
tion f of Waring's problem.

(ii) It is not capable, as proved here, of generalization to higher
powers.

Proof. I t follows from (1) of the preceding paper that the number of
solutions of

is asymptotically Bx§ for all x ^xo(6v ..., 05), where B > 0. Hence

is equal to one of x, x—1, x—2, x—3, x—4, where a; is a sufficiently large
integer. This proves the theorem.

* Received 27 January, 1934 ; read 15 March, 1934.
t "Uber additive Eigenschaften von Zahlen", Math. Annalen, 107 (1933), 649-691

(682, § 3).
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