Having fixed y, we can find from (2) integers n_{1}, \ldots, n_{5} (not all zero) such that

$$
\begin{equation*}
y<c_{1} n_{1}^{2}+\ldots+c_{5} n_{5}^{2} \leqslant y+\epsilon \tag{4}
\end{equation*}
$$

From (3) and (4),

$$
\left|\sum_{s=1}^{r} c_{s} n_{s}^{2}\right| \leqslant \epsilon,
$$

where the n 's are not all zero; this proves the theorem.

A THEOREM IN ARITHMETIC

S. Chowla*.

Hypothesis. Let $\theta_{1}, \ldots, \theta_{5}$ be positive numbers and such that at least one of the ratios $\theta_{s} / \theta_{1}(s=2,3,4,5)$ is irrational. Let [y] denote the greatest integer contained in y.

Theorem. Every $n \geqslant n_{0}\left(\theta_{1}, \ldots, \theta_{5}\right)$ satisfies

$$
n=\left[\theta_{1} n_{1}{ }^{2}\right]+\ldots+\left[\theta_{5} n_{5}{ }^{2}\right]+c,
$$

where c may be $0,1,2,3$, or 4 , and the n 's are integers.
Remarks. Two points about this theorem are:
(i) It is not a consequence of Schnirelmann's recent generalization \dagger of Waring's problem.
(ii) It is not capable, as proved here, of generalization to higher powers.

Proof. It follows from (1) of the preceding paper that the number of solutions of

$$
x<\theta_{1} n_{1}^{2}+\ldots+\theta_{5} n_{5}^{2} \leqslant x+\frac{1}{2}
$$

is asymptotically $B x^{2}$ for all $x \geqslant x_{0}\left(\theta_{1}, \ldots, \theta_{5}\right)$, where $B>0$. Hence

$$
\left[\theta_{1} n_{1}^{2}\right]+\ldots+\left[\theta_{5} n_{5}{ }^{2}\right]
$$

is equal to one of $x, x-1, x-2, x-3, x-4$, where x is a sufficiently large integer. This proves the theorem.

[^0]
[^0]: * Received 27 January, 1934 ; read 15 March, 1934.
 \dagger "Über additive Eigenschaften von Zahlen", Math. Annalen, 107 (1933), 649-691 (682, § 3).

