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1. Introduction

The observation that the low energy dynamics of D-branes in the presence of constant

NSNS B fields is noncommutative Yang-Mills theory [1] has opened up the possibility of

exploring string theory in a new limit. In this limit the string tension is scaled to infinity,

and at the same time the closed string metric is scaled to zero, keeping the dimensionful

NSNS B field fixed [2]. This is different from the usual low energy limit where the closed

string metric and the dimensionless NSNS B-field are kept fixed as the tension scales to

infinity. As a result, the lowest order effective action on the brane contains an infinite

number of terms with all powers of the field strength when written in terms of ordinary

gauge fields and conventional gauge symmetry. However, as shown in [2], in terms of

noncommutative gauge fields, one has a simple lagrangian. The fact that an infinite number

of terms may be neatly summarized in terms of a different geometric structure raises hopes

that one may be able to perform concrete calculations in this new corner of string theory.

Various aspects of noncommutative gauge theory and its relationship with string theory

have been studied in [3].

Over the past two years it has become clear that large-N supersymmetric Yang-Mills

theories are holographic descriptions of string theories in suitable backgrounds, [4] one of

the best understood example being the duality between large-N N = 4 Yang-Mills theory

in four space-time dimensions and IIB string theory on AdS5 × S5. When the ’t Hooft

coupling of the Yang-Mills theory is strong the dual string theory reduces to supergravity.

The Yang-Mills theory in question is the low energy theory of N three branes and the

AdS5 × S5 background of the supergravity is the near-horizon limit of the three-brane

background. It is natural to expect that in the presence of a B field, one would have

a similar correspondence between noncomuutative Yang-Mills theory and supergravity

backgrounds in the presence of suitable B fields. Indeed in [5] and [6] dual supergravity

backgrounds for noncommutative boundary theories were proposed and certain aspects of

holography were investigated in [6] and [7]. Other examples of such backgrounds have

recently appeared in [8].

In this paper we will continue the study of the supergravity background dual to 3 + 1

dimensional noncommutative SU(N) Yang Mills theory. There are two motivations for

this study. First, as in the ordinary case, one might hope to learn something about

noncommutative Yang Mills theory at large ’tHooft coupling in this way. Second, and

perhaps more interestingly, one might hope to learn about holography in contexts other

than those of AdS space.
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In particular we will focus on the case where the two form B fields are self dual.

In this case as was discussed in [2] the instanton moduli space in the noncommutative

Yang Mills theory is the same as that of ordinary Yang Mills theory and in particular,

the size of the instanton is one of the moduli. Correspondingly, the D-instanton is a BPS

state state in the theory and one expects to be able to localize it anywhere in the bulk

supergravity geometry. The situation is therefore similar to that of D-instantons in AdS

space [9] where the location of the D-instanton explicitly maps to the scale size of the

Yang Mills instanton and one point functions in the D-instanton background accurately

reproduce the Yang Mills instanton profile [10]. The hope is that in the non-commutative

case as well the study of instantons for the self dual case would be revealing in the study

of the IR/UV relation and more generally holography4.

Another, and perhaps deeper, reason for being interested in the supergravity back-

ground for the case B− = 0 comes from attempts to understand holography in flat space.

As we will see below, the Einstein frame metric for self dual B field configurations, in

the scaling limit which corresponds to noncommutative Yang Mills theory, is the full three

brane geometry in the absence of a B field. This remarkable fact has several implications.

The most noteworthy being that the geometry with a self dual B field is in fact asymp-

totically flat. We should add that other fields in particular the dilaton and axion are not

constant. Even so, this fact suggests that ultraviolet noncommutative Yang Mills theory

should help in understanding holography in flat 10-dim. space. It has been suggested in

[12] that in the case without B fields the full D3 brane geometry corresponds to keeping

the Born-Infeld action in the Yang Mills theory and not truncating to the lowest dimension

operator. Here we see that the effect of exciting the other fields in supergravity- dilaton-

axion and two forms- corresponds in the Yang Mills theory to a different choice of higher

dimension operators -those which can be organised into the noncommutative Yang Mills

Lagrangian.

This paper is structured as follows. In section 2, we review the supergravity solution

for a self dual B field and in particular show that its near horizon limit gives rise to the full

three brane geometry without a B field turned on. In section 3, we then construct the D-

instanton solution. Because of the remarks above, this is also a solution for a D-instanton

4 Of course instantons in the general case when B
− 6= 0 are also interesting, perhaps even

more so, since in that case the moduli space is different from the ordinary Yang Mills case and in

particular the small instanton singularity is absent [11] . However, since these are not threshold

bound states the supergravity solutions are harder to find.
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in the full D3 brane geometry without a B field. Section 4, discusses the supersymmetries

of the solution, and finally section 5, some aspects of holography.

2. Supergravity Solutions with self dual B fields

2.1 The backgound geometry

We will find euclidean solutions to the IIB supergravity equations of motion which

are listed in Appendix I. In our notation, the NS fields will be real while the RR fields will

be purely imaginary. Start with the following ansatz, for the dilaton φ, RR scalar χ, and

NS and RR two form potentials Bµν and B̃µν .

χ+ i γ e−φ = ic (2.1)

H̃µνα = icHµνα

B01 = −γB23 B̃01 = −γB̃23

(2.2)

where c is a real constant. Here H and H̃ denote the field strengths for B and B̃. This

ansatz is motivated by supersymmetry in the following section.

With this ansatz, the energy momentum tensors of φ and χ cancel each other and so

does those of B and B̃ so that Einstein equations (7.1) become

Rµν − 1

2
gµνR = TF

µν , (2.3)

where TF
µν denotes the stress energy of the five form field strength. The five form in turn

is determined by Gauss’ law
1√
g
∂µ(

√
gFµλαβγ) = 0. (2.4)

Finally, the dilaton and the axion equations ((7.2) and (7.3) respectively) both reduce to

the following equation

∇2(eφ) +
1

6
HµναH

µνα = 0 (2.5)

while the B and the B̃ equations ((7.4) and (7.5) respectively) both become

1√
g
∂µ(

√
gHµνλ) − 2

3
i F νλαβγHαβγ = 0. (2.6)

The important point is that with the ansatz, (2.2) (2.1) the equations for the metric

(2.3) and the 5-form, (2.4) form a closed set independent of the two-forms and the dilaton
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and axion fields. Thus if a solution consistent with the ansatz (2.2) exists it give rise to

a metric and 5-form identical to the case of the D3 brane solution without any two-form

fields turned on.

One of the supergravity backgrounds presented in [6] is in fact a solution of the

equations of motion with the ansatz (2.2). The metric (in the Einstein frame) is given 5

by

ds2E =
1√
gs

[

[1+
4πgsN(α′)2

r4
](−1/2)(dx2

0+· · ·+dx2
3) + [1+

4πgsN(α′)2

r4
](1/2)(dr2+r2dΩ2

5)
]

(2.7)

The five form is

F0123r = (
4i

gs
)

[ (4πgsN)2(α
′

)2

(1 + 4πgsN(α′ )2

r4 )2

] 1

r5
, (2.8)

and the dilaton, axion and two -forms are

e−φ0 =
cos2 θ

gs
− i χ0 =

1

gs h(r)

B̃01 = B̃23 = − i cos2 θ

gs
B01 = − i cos2 θ

gs
B23 = − i

gs
sin θ cos θ

h(r)

f(r)

(2.9)

where

f(r) = 1 +
α′2R4

r4

h−1(r) = sin2 θf−1(r) + cos2 θ

(2.10)

The parameter θ is related to the B-fields at r = ∞, gs is the asymptotic value of the

string coupling and

R4 =
4πgsN

cos2 θ
. (2.11)

This is a solution of the equations of motion with the ansatz (2.2) with c = − cos2 θ
gs

and

γ = −1. A similar solution can be of course written down with γ = 1. In particular we

note that the metric and five-form are independent of θ and equal to their values for a D3

brane geometry without any B fields turned on.

Now one can take a scaling limit which corresponds to the low-energy limit of [2] that

gives rise to noncommutative Yang Mills theory. This is given by [6]:

α′ → 0 θ → π

2
(2.12)

5 The solution below differs from that given in [6] by a relative negative sign between the RR

and the NS-NS 2-form fields. We have checked explicitly that the following solves the equations

of motion.
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with

b̃ = α′ tan θ, g̃ =
gs

(α′)2
and r/α′ (2.13)

held fixed.

The reader will notice that the harmonic function appearing in the metric cannot be

not truncated to its near horizon value 6. Instead, as was mentioned in the introduction,

the full D3 brane metric survives in this limit.

The full solution in this limit can be written in terms of the variable

u = r/(α′R2) (2.14)

used in [6]. After the rescaling coordinates xi along the brane as:

xi → x̃i =
b̃

α′
xi i = 0, 1, 2, 3 (2.15)

the solution becomes

ds2 =
α′R2

√
ĝ

[(f(u))−1/2(dx̃2
0 + · · ·+ dx̃2

3) + (f(u))1/2(du2 + u2dΩ2
5)]

e−φ0 =
1

ĝ
− i χ0 =

1

ĝ
u4f(u)

B̃01 = B̃23 = − i

ĝ
B01 = − i

ĝ
B23 = − iα

′a2R2

ĝ
(f(u))−1

F0123u =
4i(α′)2R4

ĝu5
(f(u))−2

(2.16)

where

f(u) =
1

u4
+ a4, (2.17)

and

a2 = b̃R2. (2.18)

The coupling has been also redefined

ĝ = b̃2g̃ (2.19)

while R4, defined in (2.11) can be expressed as

R4 = 4πĝN, (2.20)

6 This is because the string coupling is also being scaled to zero.
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Note that the coupling ĝ is precisely the open string coupling which appears in non-

commutative Yang-Mills theory in the low energy limit defined in [2].

The metric (2.16) becomes AdS5×S5 near the horizon, u = 0 and ĝ is the value of the

string coupling in the IR. The B fields vanish at u = 0 and asymptote to α′/b̃ as u→ ∞.

It is important to note that the scaling limit considered above is not the near-horizon

limit of the full geometry. This is the supergravity reflection of a corresponding feature of

the low energy limit of the D3 brane theory considered in [2], viz. the fact that arbitrarily

high powers of the (ordinary) field strengths survive.

In the rest of the paper we will work with the variables of (2.16)and rename x̃→ x.

2.2 D-instanton Solution

We now turn to determining the D-instanton solution in the background (2.7). We

have already emphasized that (2.3)and (2.4) are independent of the two-forms and the

dilaton-axion fields. In addition, the equation (2.6) for the three-form field strength does

not involve the dilaton or axion fields either. Denoting the dilaton and axion fields appear-

ing in (2.7) as φ0, χ0 it then follows that a solution different from (2.9) can be obtained with

the same Einstein metric, two form fields and five form field strength but with different

dilaton and axion values φ and χ

eφ = eφ0 + eφ̄ χ = χ0 + χ̄ (2.21)

so that

iχ+ e−φ =
1

ĝ
(2.22)

and

∇2(eφ̄) = 0 (2.23)

We are now ready to write down the equation satisfied by the fields due to a D-

instanton. The metric, B-fields and the five form field strength are exactly the same as in

(2.9). Since the D-instanton couples to the dilaton and axion, the equation satsified by φ̄

is modified from (2.23) at the location of the instanton.

The D-instanton action is given by,

SI = 2π

∫

[e−φ + iχ]δ10(x− x̄)d10x. (2.24)

Here x̄ = (x̄0 · · · x̄3, ū, θ̄i) is the location of the D-instanton (with θi denote the angles

parametrizing the S5). Thus the equation for the dilaton field is given by

eφ(x,x̄) = eφ0(u) + eφ̄(x,x̄) (2.25)
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where

∇2
x(eφ̄(x,x̄)) = −4πκ2

10

δ10(x− x̄)√
g

. (2.26)

In other words we have to solve for the scalar Green’s function in the metric given in (2.9).

This establishes the existence of the D-instanton solution in the presence of D3 branes

and a nonzero B field. In the following section we will find explicit solutions to (2.26) in

the decoupling limit, i.e in the background given by (2.16).

Before doing so let us make one comment regarding the instanton action (2.24). We

started by an ansatz for solutions to supergravity equations. This ansatz can be in fact

be motivated by the action (2.24). As was mentioned in the introduction, we expect in

the self dual case that the three brane geometry should allow for a D instanton localised

anywhere in the bulk. This means that the D-instanton action must be a constant. From

(2.24) we see that this implies the condition (2.1). A similar argument then also shows

that the full instanton and background solution satisfies (2.22). In the more general case

where B− 6= 0, and the instanton moduli space is deformed from the ordinary case, (2.24)

will yield the potential generated in moduli space in the large ’tHooft coupling limit 7.

3. The smeared D-instanton solution

We will now find the solution of (2.26) in the decoupling limit which is smeared over

the S5. In other words we look for solutions of the equation which do not depend on the

angles θi. This would give us the field due to a D-instanton which is smeared over the

five sphere - the field would be then independent of θi. Furthermore, using translation

invariance along the brane directions x0 · · ·x3 this solution may be written as

eφ̄ =
4κ2

10ĝ
2

π2(α′R2)4

∫

d4k
1

(2π)4
e−ik·(x−x̄) Gk(u, ū), (3.1)

where Gk(u, ū) now solves

∂u(u5∂uGk) − u(1 + a4u4) k2 Gk = −δ(u− ū) (3.2)

Note that we are looking for euclidean solutions so that k2 > 0. Also Gk should be regular

as u → 0, and Gk → 0 when u → ∞. The normalisation in (3.1) is obtained from (2.26)

by integrating over the S5 and noting that the volume of the unit five sphere is π3.

7 We thank D. Tong for a conversation on this point.
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The Green’s function can be expressed in terms of solutions to the homogeneous

equation,

∂u(u5∂uGk) − u(1 + a4u4) k2 ψk = 0, (3.3)

by standard Strum-Liouville theory techniques. (3.3) was studied in [13] and subsequently

also encountered in [6], for computing the two point function of a particular supergravity

mode. Solutions to (3.3) can be written as

ψk(ν, u) =
1

u2
φk(ν, u), (3.4)

where φk(ν, w) solves the Mathieu equation,

[∂2
w + 2q cosh 2w − 4]φk(ν, w) = 0 (3.5)

with

u =
1

a
e−w, (3.6)

and,

q = −(ka)2. (3.7)

The parameter ν which enters the solution is determined by recursion relations and may

be expressed as a power series in (ka) as [13]

ν = 2 − i
√

5

3
(

√
q

2
)4 +

7i

108
√

5
(

√
q

2
)8 + · · · (3.8)

In order to implement the boundary conditions on the Greens function we need two

solutions to (3.3) one being regular at u → 0 and the second going to zero as u → ∞.

In the asymptotic region, |w| ≫ 1, solutions to the Mathieu equation can be expressed in

terms of modified Bessel functions. The two required solutions can then be written down

as :

ψ
(1)
k (ν, u) =

iπ

2u2
e

iπν

2 H(1)(ν, w)

ψ
(2)
k (ν, u) =

iπ

2u2
e

iπν

2 H(1)(ν,−w)

. (3.9)

Here, we are using the notation of [13] and H(1)(ν, w) denotes a solution which asymptot-

ically is related to the modified Bessel function, Kν , i.e.,

iπ

2
e

iπν

2 H(1)(ν, w) = Kν(ka ew) →
√

π

2kaew
e−(kaew) w ≫ 1 (3.10)
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. Thus we see that ψ
(1)
k (ν, u) is well behaved at u = 0 while ψ

(2)
k (ν, u) → 0 at u = ∞, as

required.

Now using Strum Liouville theory the Greens function is given by:

Gk(u, ū) = A2(k, a) ψ
(1)
k (ν, ū) ψ

(2)
k (ν, u) ū < u

Gk(u, ū) = A2(k, a) ψ
(1)
k (ν, u) ψ

(2)
k (ν, ū) ū > u

(3.11)

The normalization A2(k, a) has to be determined by requiring that

u5W (ψ
(1)
k , ψ

(2)
k )A2(k, a) = −1, (3.12)

where W (ψ
(1)
k , ψ

(2)
k ) denotes the Wronskian of the two solutions. More detailed forms of

the asymptotic behavior of these functions and the calculation of the Wronskian is given

in Appendix II.

The result for the Wronskian fixes the normalization appearing in (3.11) to be

A2(ka) =
2 sinπν

π
(ηζ − 1

ηζ
)−1 (3.13)

where ζ is defined in Appendix II.

We now have an expression for the solution to (2.26)

eφ̄ =
4κ2

10ĝ
2

π2(α′R2)4

∫

[d4k]
1

(2π)4
e−ik(x−x̄) A2(ka) ψ

(1)
k (ν, ū) ψ

(2)
k (ν, u) u > ū (3.14)

The parameter ν and the function φ(ν) (introduced in Appendix II) are explicitly defined

in terms of the parameters in the Mathieu equation. However we will be able to extract

some of the physics by knowing asymptotic forms. In Appendix II we derive the small ka

behavior of the various functions which appear in the solution to Mathieu’s equation. In

particular it is shown that

A2(ka) ∼ (ka)4 (ka) << 1 (3.15)

Of particular interest is the small (ka), fixed (au) behavior of the solutions. We

reproduce the results from Appendix II

ψ
(1)
k (ν, u) → 1

u2
K2(k/u)

ψ
(2)
k (ν, u) → 1

u2
K2(ka

2u)

(3.16)
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This, together with (3.15) shows that the zero momentum Green’s function is

Gk(u, ū)|k=0 ∼ 1

u4
u > ū

Gk(u, ū)|k=0 ∼ 1

ū4
u < ū

(3.17)

This is what is expected from the differential equation definining Gk ,equation (3.3) and is

in fact the zero momentum Green’s function in AdS5 as well. Corrections to this extreme

limit may be worked out systematically.

This shows that it is useful to recast (3.14) in a somewhat different form. The zero

momentum component of ψ
(2)
k=0(ν, u) decays for large u not exponentially but as a power

law. It is useful for various purposes to show this dependence explicitly. Thus we can

write:

eφ̄ =
4κ2

10ĝ
2

π2(α′R2)4
[ 1

4L4u4
+

∫

[d4k]
1

(2π)4
e−ik(x−x̄) A2(k, a) ψ

(1)
k (ν, ū) ψ

(2)
k (ν, u)

]

u > ū

(3.18)

where the first term is the zero momentum piece, with L4 being the volume along the four

directions parallel to the 3 branes. The integral in (3.18) is understood to be over the

non-zero momentum modes.

It may be checked that the solution (3.18) reproduces known limits. When both u

and ū are small and at small momenta we should recover the D-instanton in AdS5 ×S5 of

[9]. Similarly when both u and ū are large we should recover the D-instanton in flat space.

This may be checked from the asymptotic expansions.

In the next section, we will discuss aspects of holography in this space-time. The

boundary will be taken at u = ∞. The final results should reproduce the AdS results in the

ka << 1 limit. It is easy to see that in the limit (ka) << 1 with y = k/u fixed the solutions

reduce to the solutions for the AdS5 problem. However the holographic correspondence

we are interested in involves taking u = ∞ first, before taking the (ka) << 1 limit. This

latter limit is nontrivial.

One comment is worth making at this point. We saw in section 2 that the D-instanton

solution is given by the Greens function for (2.26). The metric which appears in (2.26) is

the full three brane metric. Thus (3.18) also provides the solution for the D-instanton in

the full D3 brane geometry (with no two -form fields turned on). Although we will not

do so here, using (2.14) (3.18) can be expressed in terms of the radial coordinate r in a

straightforward manner.
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4. Supersymmetry of the solution

The type IIB theory has thirty two supersymmetries. In this section we will consider

a solution of the kind (2.1) (2.2) and show that it preserves sixteen of the thirty two

supersymmetries. For definiteness we will consider the case where γ = 1 which is the

choice made in this paper. The supersymmetry variations of the dilatino and the gravitino

are given by

δλ =
−1

2τ2
(
τ∗ − i

τ + i
)Γµ ∂µτ(η1 − iη2) −

i

24
ΓMNP (η1 + iη2)GMNP (4.1)

δψµ = ∂µ(η1 + iη2) +
1

4
ωab

µ ΓaΓb(η1 + iη2) +
i

8τ2
[(
τ − i

τ∗ − i
)∂µτ

∗ + c.c.](η1 + iη2)

+
i

480
Γµ1···µ5ΓµFµ1···µ5

(η1 + iη2)

− i
1

96
(ΓNPQ

µ GNPQ − 9ΓNPGMNP )(η2 + iη1)

(4.2)

where

τ = τ1 + iτ2 = τ1 + ie−φ (4.3)

GMNP = i
√
τ2 (

|1 − iτ |
τ2(1 − iτ)

) (HRR − τH)MNP . (4.4)

τ1 and HRR are related to the fields used in this paper by the relations:

τ1 = −iχ (4.5)

HRR = −iH̃. (4.6)

Thus, from (2.1) and (γ = 1) we have

τ2 − τ1 = c (4.7)

and

HRR − (τ2 − τ1)H = 0. (4.8)

(4.1) and (4.2) are supersymmetry transformations in Minkowski space. In going

over to Euclidean space we follow [14] and replace the usual algebra of complex numbers

generated over real numbers by (1, i) with ”hyperbolic” complex numbers generated over

real numbers by (1, e) with e2 = 1. Thus (τ1 + iτ2) → (τ1 + eτ2), η = η1 + iη2 → η1 + eη2

11



etc. Then using the fact that e2 = 1, (4.7) and (4.8) it is easy to verify that the dilatino

variation is zero if η1 and η2 satisfies the relation

η1 = η2. (4.9)

As far as the gravitino variation is concerned we find from (4.7) (4.8) and (4.9) that

the third term involving the derivative of τ and its complex conjugate vanish. Also the

last term involving GMNP vanishes. Thus the gravitino variation becames:

δψµ = ∂µ(η1 + eη2) +
1

4
ωab

µ ΓaΓb(η1 + eη2) +
e

480
Γµ1···µ5ΓµFµ1···µ5

(η1 + eη2) (4.10)

We argued in section 2 that for the ansatz (2.1) (2.2) the metric and five form field

strengths are independent of the two form fields and take the same form that they have in

the D3 brane solution without any two-form expectation values. With this in mind we see

that the (4.10) is exactly the same as for D3 branes without any additional two-form fields

turned on. It follows then that the solution (2.1) (2.2) preserve sixteen supersymmetries.

It also follows that the spinors η1, η2 which satisfy (4.10) and (4.9) are the same as in the

case of D3 branes without the two-form.

5. Holography

D- instantons in AdS5 were studied in [9] and shown to correspond to instantons in

the Yang Mills theory. One expects the relationship to be more general and in partic-

ular to hold in the non-commutative Yang Mills theory as well. In this section we will

study the correspondence further by calculating the action and correlation functions in

the background of the D-instanton solution determined above and relating them to the

corresponding quantities for an instanton in the Yang Mills theory. Our calculations will

be different from the case of AdS5 space in one important way. For the geometry un-

der consideration here, the Einstein metric eq. (2.16) (to which the dilaton couples for

example) asymptotically becames flat 10 dimensional spacetime. Thus in relating the D

instanton to the Yang Mills instanton we will neccessarily have to deal with some of the

difficulties of holography in flat space.

Below, we denote the supergravity solution described in Maldacena and Russo (with

a antiself dual B field turned on ) as the background geometry.

12



The D instanton solution in this background is given by:

eφ̄ = C1

∫

[d4k] e−ik(x−x̄) A2(k, a) ψ
(1)
k (ν, ū) ψ

(2)
k (ν, u) u > ū (5.1)

The axion is related to the dilaton through the condition

e−φ + iχ =
1

ĝ
, (5.2)

and the metric and other three-form fields are the same as in the background solution.

To begin calculating in the supergravity theory we start with the supergravity action

which is :

S =
1

4κ2
10

∫

d10x
√
g[(∇φ)2 + e2φ(∇χ)2] + SB + · · · (5.3)

The bulk action is well known. SB above denotes a boundary term which is a little subtle

to determine but important since it plays a crucial role in holography. For flat space the

boundary term was determined in [15] , by working in terms of a eight form gauge potential

dual to the axion, to be:

SB = − 1

2κ2
10

∫

dSne2φχ∂nχ. (5.4)

[15] showed that (5.4) gave the correct action for a D-instanton. One can also show that

(5.4) gives the correct action for a D-instanton in AdS space. Carrying out a duality

transformation to the eight form is not straightforward in the present context since the

three form field strenghts etc. are turned on as well. Even so we will that the boundary

term (5.4) is unchanged here as well 8. As we will see below, this choice yields sensible

answers at least for small perturbations about the background geometry.

5.2 The instanton action

One can now calculate the action for the instanton solution, (3.18). From (5.3) and

(5.2) we see that the contribution from the bulk action vanishes. As was discussed in [15]

since the D-instanton is a singular solution we need to consider two boundaries. One,

as expected, is at large u, where the Einstein metric is asymptotically flat; the other is

an infinitesimal surface surrounding the location of the D-instanton. Consider first the

boundary at infinity. Since the background geometry is translationally invariant along

the branes, only the zero momentum piece of the instanton solution (3.18) contributes

to the boundary action. We denote the background as (φ0, χ0) and write the dilaton

8 Intutively one would expect this boundary term because asymptotically the three form gauge

potentials go to zero and one can at least in that region dualise the axion field.

13



as eφ = eφ0 + eφ̄ and χ = χ0 + χI . Then using the fact that the full solution and the

background satisfy (5.2) the leading dependence on the D-instanton in the boundary action

(i.e. after subtracting an infinite contribution from the background) is :

∆SB =
−i

2κ2
10

∫

dSn (χ0∂ne
φ̄ + χI∂ne

φ0) (5.5)

Using the zero momentum piece from (3.18)and the condition (5.2) one finds that this

vanishes. That leaves finally the second boundary: an infinitesimal surface around the

location of the D-instanton. In this case one gets that the relevant term which contributes

is :

∆SB =
−i

2κ2
10

∫

dSnχ∂ne
φ̄. (5.6)

Since eφ̄ satisfies the (2.26) it diverges at the location of the D-instanton. Thus from (5.2)

we see that iχ→ 1
ĝ . Substituting in (5.6) and using the equation satisfied by eφ̄ (equation

(2.26)), we finally get the action of the D-instanton to be

S =
2π

ĝ
(5.7)

This result agrees with the action of an instanton in the noncommutative Yang Mills

theory. Note that, in the decoupling limit of [2] ĝ is the open string coupling. This is

related to the Yang Mills coupling by

4πĝ = g2
Y M (5.8)

(this can be shown for example from the Born Infeld action). Thus (5.7) yields,

S = 8π2/g2
Y M . (5.9)

This is in fact the classical action of an instanton in the non-commutative Yang Mills theory,

as shown e.g. in [16] Further, since the instanton is a BPS state we expect its action to

not get any quantum corrections and is therefore expected to agree with a supergravity

computation.

It is worth pausing to emphasise that the calculation above in type II closed string

theory yielded an answer in terms of the open string coupling constant ĝ. In fact ĝ is related

to the closed string coupling gs by the relation (2.19) involving the non-commutativity

parameter explicitly. By way of contrast we note that had we not taken the scaling limit

of the solution (2.9) an analysis along the above lines ( with the same boundary term

14



) shows that the action of the D-instanton is S = 2π/gs. The agreement between the

D-instanton action (5.7) and the Yang Mills instanton obtained above provides additional

evidence that the scaling limit (2.16) accurately implements the decoupling limit described

in [2].

5.3 One Point Functions

As mentioned above, we would like to use the D instanton solution to calculate expec-

tation values for operators in the instanton background of the Yang Mills theory. Three

steps are involved determining the expecation values of operators in the Yang Mills theory

from a supergravity solution. First, one determines the normal modes for small fluctua-

tions about the background solution. Next, one computes the change in action to linear

order in the small fluctuations. Finally, one determines the operator in the Yang Mills

theory which corresponds to the supergravity normal mode and relates the change in the

action to the one point function of the corresponding operator in the Yang Mills theory.

Here we will focus on one normal mode which satisfies the condition

δχ+ ie−φδφ = 0. (5.10)

The discussion leading to the instanton solution in section 2 shows that a perturbation

(5.10) satisfies the equations of motion if

∇2(eφδφ) = 0. (5.11)

Solutions to this equation behave asymptotically, for large u, like

eφδφ ≃
∫

d4k

(2π)4
C(~k)u−5/2[eka2u +B(ka)e−ka2u] (5.12)

In computing the one point function we first compute the change in the action for

a perturbation about the background to second order. For this purpose it is useful to

remember that when (5.10) is met, the full solution, consisting of background and pertur-

bation, satisfies (5.2). Thus the bulk contribution vanishes and the change in the action

arises entierly from the boundary term (5.4). Expanding this to second order gives 9 a

surface term of the form:

S =
1

2κ2
10

∫

dSn e−2φ0 (eφ∆φ) ∂n(eφ∆φ). (5.13)

9 The one point function of this peturbation vanishes and this can be shown in exact analogy

with the discussion of the instanton action above.
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The surface integral is at fixed value of u = u0. Now we substitute

∆φ = δφ+ φI , (5.14)

where φI denotes the instanton background,

eφ0 + eφ̄ = eφ0+φI (5.15)

and δφ is given by (5.12). This yields:

S = (
5π

u0
)e−2φ0

∫

d4k

(2π)4
C(~k)A2(k, a)

1√
ka2

ψ
(1)
k (ν, ū) (5.16)

and a one-point function

< O(~k) >=
∂S

∂C(~k)
= (

5π

u0
)e−2φ0

A2(k, a)

(2π)4
1√
ka2

ψ
(1)
k (ν, ū) (5.17)

In order to relate this result to the gauge theory we need to decide what is the normal-

isation of the operator in the Yang Mills theory which couples to the perturbation. Unlike

AdS space, here there is considerable ambiguity in this matter. This issue was explored

in [6] for a massless scalar field where it was found that a momentum dependent wave

function renormalisation needed to be done to extract sensible answers. A similar renor-

malisation is required here as well 10. We have not been able to implement a satisfactory

renormalisation scheme at the moment. The one which is most natural in the present con-

text corresponds to a momentum dependent wave function renormalisation and therefore

does not correpond to a choice of local counter terms. Below we will choose a renormalised

operator whose one point function agrees at low momenta, and for a large instanton, with

expectations from the ordinary gauge theory. The perturbation (5.10) should couple to

the operator TrF 2 + TrF F̃ at low momenta. Now the function A2(k, a) behaves for low

momentum as:

A2(k, a) = c1(ka)
4 + · · · (5.18)

Then consider the renormalised operator given by:

OR(~k) =
u0ĝ

5c1

e2φ0

(ka2)3/2
O(~k) (5.19)

10 This is clear if we consider a two point function of the perturbation above the background

geometry.
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It’s expectation value from (5.17) is

< OR(~k) >=
π

ĝ
k2ψ

(1)
k (ν, ū) (5.20)

When aū << 1 the function ψ
(1)
k (ν, ū) → 1

ū2Kν(k/ū), and for (ka) << 1 we can replace

ν ∼ 2. Then (5.20) reduces to exactly the answer for the one point function in the presence

of a D-instanton in AdS5 × S5 11. This is the Fourier transformation of

1

4g2
Y M

< TrF 2(x) + TrF F̃ (x) >=
48

g2
Y M

( 1
ū )4

[( 1
ū )2 + |~x− ~x′ |]4 , (5.21)

which is the profile of an instanton in ordinary Yang-Mills theory.

Thus when the D-instanton is located deep in the bulk and we look at the long wave-

length modes of the solution, the parameter 1/ū in (5.20) plays the role of the instanton

scale size as expected. It would be interesting to examine the departures from this low mo-

mentum behavior, as well as the predictions for the noncommutative Yang-Mills instantons

of small size.

5.4 Operators in the Gauge Theory

In the usual AdS − CFT correspondence, the dilaton φ couples to the operator as
∫

e−φTr(FijF
ij) (5.22)

while the axion couples as
∫

χTr(FijF̃
ij) (5.23)

where F̃ stands for the dual in the four dimensional sense. One might think that to get

the operators for noncommutative Yang-Mills theory one simply needs to replace ordinary

gauge fields F by nonocommutative gauge fields F̂ and odrinary products by star products

in the above relations. However this cannot be correct. Unlike in ordinary Yang -Mills the-

ory, objects like TrF̂ ∗ F̂ are not gauge invariant though their integrals are 12. As a result,

while the operator TrF̂ij ∗ F̂kl can be coupled to supergravity fields which are constant

along the brane (as for example in the form of the action for noncommutative Yang-Mills),

one cannot couple them to nonconstant supergravity fields. However nontrivial effects of

noncommutativity appear when there is momentum along the brane directions.

11 This may be verified by writing the D-instanton solution as a momentum space integral using

the techniques of this paper and repeating the above calculation in that case.
12 S.T. acknowledges a discussion with A. Hashimoto on this issue.
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It is possible to write down gauge invariant operators order by order in the noncom-

mutavity parameter and couple supergravity fields, but one suspects that there must be a

more natural and simpler principle here. In a sense noncommutative gauge theories have

a “nonabelian” nature when fields are regarded to have their momenta as group indices.

Thus the natural invariant objects are in fact integrals over the brane rather than local

quantities.

In any case, we believe that our supergravity results should act as a guide to the

correct coupling of noncommutative gauge field with closed string fields.
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7. Appendix I : Supergravity equations.

The equations of motion for the bosonic fields in IIB supergravity in ten dimensions

are, in terms of the einstein metric

Rµν − 1

2
gµνR = Tφ

µν + e−φTB
µν + eφT B̃

µν + e2φTχ
µν + TF

µν (7.1)

1√
g
∂µ(

√
ggµν∂νφ) +

1

12
[e−φH2 − eφ(H̃ − χH)2] − e2φgµν∂µχ∂νχ = 0 (7.2)

1√
g
∂µ(

√
ggµνe2φ∂νχ) +

1

6
(H̃µνλ − χHµνλ)Hµνλ = 0 (7.3)

1√
g
∂µ(

√
ge−φHµνλ) − 1√

g
∂µ(

√
geφχ(H̃µνλ − χHµνλ)) +

2

3
F νλαβγH̃αβγ = 0 (7.4)

1√
g
∂µ(

√
ge−φ(H̃µνλ − χHµνλ)) − 2

3
F νλαβγHαβγ = 0 (7.5)

1√
g
∂µ(

√
gFµλαβγ) = 0 (7.6)
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The fields are as following. φ, χ denote the dilaton and the axion. B, B̃ denote the NS and

RR 2-form fields and H, H̃ are the corresponding field strengths which are defined as

Hµνα = ∂µBνα + ∂νBαµ + ∂αBµν (7.7)

and similarly for H̃ in terms of B̃. F νλαβγ is the self dual 5-form field strength. The

energy momentum tensors appearing in (7.1) are given by

Tφ
µν =

1

2
[∂µφ∂νφ− 1

2
gµν(∂φ)2]

Tχ
µν =

1

2
[∂µχ∂νχ− 1

2
gµν(∂χ)2]

TB
µν =

1

12
[3HµαβH

αβ
ν − 1

2
gµνH

2]

T B̃
µν =

1

12
[3(H̃ − χH)µαβ(H̃ − χH)αβ

ν − 1

2
gµν(H̃ − χH)2]

TF
µν =

1

480
[5Fµα1α2α3α4

Fα1α2α3α4

ν − 1

2
gµνF

2]

(7.8)

8. Appendix II: Asymptotic forms and the Wronskian

In this appendix we give the necessary asymptotic forms of the solutions and various

quantities related to these solutions and compute the Wronskian necessary for normaliza-

tion of the Green’s function.

8.1. Asymptotic forms

The asymptotics of ψ
(i)
k may be figured out by using the relation [13],

H(1)(ν, w) =
1

2i sinπν
[(ζ − 1

ζ
)H(1)(ν,−w) + (ζ − e−2πiν

ζ
)H(1)(ν,−w)] (8.1)

where we have defined

ζ =
φ(−ν/2)

φ(ν/2)
(8.2)

We will also define

η = eiπν (8.3)

φ(ν) is the function of ν which appears in the Floquet form of the solution to Mathieu

equation. The relation (8.1) yields the following asymptotics for w → −∞(u→ ∞)

ψ
(1)
k (ν, u) → 1

u2
[
ie−iπν

ζ
Kν(ka2u) +

π

2π sinπν
(ζeiπν − e−iπν

ζ
)Iν(ka2u)]

ψ
(2)
k (ν, u) → 1

u2
Kν(ka2u)

(8.4)
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and similarly for w → ∞(u→ 0)

ψ
(1)
k (ν, u) → 1

u2
Kν(

k

u
)

ψ(2)(ν, u) → 1

u2
[
ie−iπν

ζ
Kν(

k

u
) +

π

2π sinπν
(ζeiπν − e−iπν

ζ
)Iν(

k

u
)]

(8.5)

8.2. The Wronskian

It follows from standard Strum-Liouville theory that W (ψ
(1)
k , ψ

(2)
k )u5 is a constant

independent of u, so we can evaluate it for any u. In particular we may evaluate this for

w → −∞.

The Wronskian can be now easily evaluated, giving

W (ψ
(1)
k , ψ

(2)
k ) =

1

u5
[

π

2 sinπν
(ηζ − 1

ηζ
)] (8.6)

This fixes the function A2(ka) defined in the text to be

A2(ka) =
2 sinπν

π
(ηζ − 1

ηζ
)−1 (8.7)

8.3. Power series expansions of various quantities

The results of [13] may be used to obtain expressions for the various quantities defined

above. First note that in our case, the expansion for ν ensures that η is real. Then, as

shown in [13], the quantity ζ has to have unit modulus. Let us denote

η = eβ ζ = eiα (α, β real) (8.8)

The quantity β can be read off from the definition of ν.

Define the quantities

E = ζ − 1

ζ
= 2 sinα

F = ζη − 1

ζη
= 2(cosα sinh β + i sinα cosh β)

G = η − 1

η
= 2 sinhβ

(8.9)

The unitarity relation of the quantum mechanical problem corresponding to our basic

differential equation

|F |2 = |E|2 + |G|2 (8.10)
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is now automatically satisfied.

In terms of the quantity

P = |G
F
|2 (8.11)

it is straightforward to show that

sin2 α = sinh2 β(
1

P
− 1) (8.12)

We can now obtain expressions for E, F,G in terms of β and P . β has been already

given in the expansion for ν above,

β =

√
5

3
(
ka

2
)4 − 7

108
√

5
(
ka

2
)8 + · · · (8.13)

while P has been expressed as a power series in [13]. In our notation this is

P = π2(
ka

2
)8

∞
∑

n=0

bn,k(ka)4n(log(ka))k (8.14)

where bn,k are some real coefficients tabulated in [13].

Of particular interest is the small ka behavior of these quantities. These are

E = e1 +O((ka)4)

F = if1 +O((ka)4)

G = ga(ka)4 +O((ka)8)

(8.15)

where e1, f1, g1 are real numerical coefficients of order one.

A2(ka) =
1

iπ

G

F
∼ (ka)4 (8.16)

We will use these results to examine the low momentum components of the instanton

solution.

8.4. Low energy limit of solutions

In the limit (ka) << 1 at fixed (au) the solutions ψk go over to Bessel functions as

well. This may be seen from the relation, valid for any w

H(1)(ν, w) =

∞
∑

n=−∞

φ(n+ nu
2

)

φ( ν
2 )

Jn(ika e−w) H
(1)
n+ν(ika ew) (8.17)

For (ka) << 1 with fixed w only the n = 0 term in the sum contributes, and we can also

set ν = 2 in the leading order. We finally have, in this limit

ψ
(1)
k (ν, u) → 1

u2
K2(k/u)

ψ
(2)
k (ν, u) → 1

u2
K2(ka

2u)

(8.18)
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