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ABSTRACT

We analyze results for the Boson Peak from the neutron time of flight spectroscopy data

on Ge-As-Se, and Raman spectra data on m-TCP and OTP, using a recent mode coupling

model that takes into account the coupling of density fluctuations with vibrational modes

in presence of defects in the supercooled state. From the experimental results for different

materials we observe that for more fragile systems characterized by increasing fragility

parameter m, a slower relaxation of the defect-density correlation is needed to give rise

to the observed peak in the spectra.
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The extra intensity observed in undercooled liquids in the neutron scattering [1, 2] as

well as in Raman scattering [3, 4] at low frequencies, distinct from the quasi-elastic peak

is usually referred to as the Boson peak in the literature. This characteristics feature of

the supercooled liquid has been ascribed to the coupling between the relaxational and

vibrational motions in the supercooled liquid in a recent work [5] with self consistent

mode-coupling [6, 7] model. The mode coupling theory has a better agreement with

dynamics in fragile glassy systems. The classification [8] used for glassy systems as

strong and fragile depends on the ease with which structural degradation occur in those

systems. A convenient measure for the fragility of the system [9] is computation of the

slope m of the relaxation time τ curve against temperature T scaled with respect to the

corresponding glass transition temperature Tg,

m =
dlog < τ >

d(Tg/T)
|T=Tg

(1)

In Ref. [5] we have described an extension of the simple mode coupling formalism to

include the distinct vibrational modes that develop at low temperatures in the amor-

phous state for understanding the extra intensity appearing for the structure factor. The

model follows from the equations of Nonlinear Fluctuating Hydrodynamics [5] extended

to include the defect density in an amorphous solid like system which also sustains trans-

verse sound modes. Here we have applied the model [5] to extensive data comparison

to understand the underlying relationship between the fragility of the system and the

Boson Peak formation. We fit the model with respect to the data of Russina et. al.

from neutron time-of-flight-spectroscopy for Ge0.033 As0.033 Se0.934 glass, as well as

the data for m-tricresyl phosphate (m-TCP) by Sokolov et. al. from Raman scattering.

The present analysis demonstrates that the criteria for the appearance of the peak is

crucially related to the dynamics of defect densities in the disordered system.

In studying the feedback effects on dynamics due to slowly decaying density fluctua-
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tions at supercooled states, the memory function H [φ(t)] is obtained as a functional of

the hydrodynamic correlation functions, in the following q independent form,

H(t) = c1F [φL(t), φT (t)]ψ(t) + c2ψ
2(t) (2)

where c1 and c2 are dimensionless constants determined in terms of the wave vector

integrals due to the mode coupling vertex functions. φL and φT are the correlation

functions for the longitudinal and transverse sound modes. The function F (t) is expressed

as [5],

F [φ(t)] = e−δt + f(σ)φT (t) (3)

where δ represents the time scale of very slowly decaying defect density and f(σ) =

(12 − 14σ)/9(1 − 2σ) with σ = (3λ − 2µ)/[2(3λ + µ)] is the Poisson’s ratio. For more

details we refer to Ref. [5]. Following the procedure described there we have used this

model to fit the data of Russina et. al. [10, 11] for Ge-As-Se. The central quasi-elastic

peak is fitted a Lorentizian of width δ, and is equivalent to taking the time scales of

relaxation of the defects to be same [12, 13] as that of the final time scale of relaxation of

the density fluctuations. We show in Fig. 1a the dynamic structure factor as a function

of frequency. The time scale for the decay of the defect density denoted by δ plays a

central role in appearance of the peak on the shoulder of the quasi-elastic peak. This

intermediate peak disappear in the shoulder of the quasi elastic peak as δ become large.

This is shown by the fit of the data of Russina et. al. for a higher temperature in

Figure 1b. We analyze the data for temperatures, T = 252, 334, 359, 402, 440 and 502

degree Kelvin, with suitable values of c1 and c2 in the expression (2) for the memory

function. The parameter δ which gives the time scale of relaxation of defects is used

here as the only adjustable parameter. It is considered in inverse units of the time τ0

in terms of which the MCT equations are expressed in the dimension less form. τo can
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be obtained in terms of the microscopic frequencies of the liquid state. To study the

behavior of δ with the fragility parameter we have considered data on another material

m-TCP with a different m, used by Sokolov et. al. [4] and done a similar fitting to the

Boson peak at temperatures T = 205, 235, 262 and 287 degree Kelvin. In Fig. 2 the

fit to the Boson Peak data [4] for m-TCP is shown. Variation of log(δ) with the inverse

temperature Tg/T is shown in Fig. 3, where Tg is the glass transition temperature of the

corresponding material. The data points for m-TCP are shown by stars (∗) and for OTP

[14] by filled circles (•). Variation of log(δ) with temperature for Ge-As-Se alloy is shown

in the inset by squares (2). Solid lines show the straight line fit to the data points. For

lower temperatures the quantity δ is small indicating that the defect densities are long

lived and the Boson Peak appears to be more pronounced. The more fragile the system

is, sharper is the fall of δ which represents the time scale of defect correlation. In all three

cases δ shows an Arrhenius fall with temperature and a corresponding activation energy

can be computed from the slope of the curve. In figure 4 we show the plot of activation

energy A (in units of temperature T) for different systems with the corresponding fragility

index m. With the systems of increasing fragility, more long lived defects are needed to

give rise to the observed peak in the spectra.

We have approximated here through δ relaxation of the defect density by single ex-

ponential mode. The full wave vector dependence has to be considered to account the

coupling of the structural relaxation to the vibrational modes. The explicit temperature

dependence of the peak is not captured in the present model. This can be computed

through proper input for the static or thermodynamic properties that appear in the

mode coupling integrals. Figure 3, demonstrates the key result of this paper that for

more fragile systems δ, inverse of which relates to the defect density correlation, shows a

sharper fall with temperature. Also we like to point out here that the temperature range
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covered for the materials in this paper actually correspond to the part where the fragile

glasses starts showing a sharp increase of viscosity on the Angell plot[8] - more fragile

the liquid is, more dramatic is the increase giving a higher value for the fragility index

m [9, 15].
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Figure Captions

Figure 1

The neutron scattering data ( in arb. units) of Ref. [10, 11] normalized with respect to

the Bose factor ω[n(ω) + 1] ( open circles) at (a) T = 252o K and (b) T = 440o K, Vs.

the frequency in Mev. The solid line presents the result obtained from the present model

for the normalized correlation function ψ.

Figure 2

The Raman Spectra data ( in arb. units) for TCP normalized with respect to the Bose

factor ω[n(ω) + 1] ( open circles) at T = 205o K, vs. the frequency in GHz. The solid

line presents the result obtained from the present model for the normalized correlation

function ψ.

Figure 3

log(δ) as a function of temperature (Tg/T ) for OTP (•) and for m-TCP(∗). Inset: For

Ge-As-Se alloy (2). The solid lines represent the straight line fit to the data points.

Figure 4

Slope for the δ-1/T curve, A ( in unit of oK ) Vs the fragility parameter [9] m.
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