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ON A TRIGONOMETRIC SUM

By S. CEHOWLA and A. WaLFIsz.
[Received 18 May, 1931.—Read 18 June, 1931.]

Introduction.

Let d(n) denote the number of divisors of the positive integer n. The
trigonometric sum*
D(z)= Z d(n)e*,

n<T

where 8 is real, has recently been considered by us}. In particular,
Walfisz has proved that, for almost all § (that is, for all # with the
exception of a set of Lebesgue measure zero),

D(z) = O(a* log**z),
(1) D(z) = Q(x* logdz loglog z).

In proving (1) use was made of the following deep result due to
T. Estermanni:

I. Let
h and k be integers, k>0, (h, k)=1;

R(y) >0, kly|<8v{N®)};

z =20y f(s) = % d(rysr for |s|<1;
1

r=

* When thé lower limit of summation is not explicitly stated it is always 1.

+ See S. D. Chowla, ‘‘ Some problems of diophantine approximation (I)’', Math. Zeit-
schrift, 83 (1931), 544-563, and A. Walfisz, ¢ Uber einige trigonometrische Summen '’, Math.
Zeitschrift, 33 (1931), 564-601.

t T. Estermann, ** On the representations of a number as the sum of three products’’,
Proc. London Math. Soc. (2), 29 (1929), 458-478, Lemma 11.
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then, logy denoting the principal branch, we have*

1 B|y|klog2k
fe) = 5 (y—logy—2 log ) LU 08 2E,

where y s Euler’s constant.

We are now able, with the simplest apparatus, to prove the following
result, which is indeed weaker than I, but is sufficient to prove (1).

II. Let
2) h and k be integers, k> 1, (h, k)=1;
(3) y=o-+t,cand treal, 0<o<<1/k%, |t|<o;
) 2=, f(s)= T d(r)s for |s|<L.

r=1
Then we have
1

(5) fle)= 3 (y—logy—2 log )+ B(o™-+F logh).

With the help of II we shall prove the following results whichYgo
beyond (1): for almost all 6,

(6) N {D(x)} = Qg{z* logiz(log log z)};
(1 - I{D(z)} = Qr {z? logtz(log log x)3}.

Our method, which leads to II, can be applied to related questions;
these applications will be given elsewhere.

1. Proof of II.
Let z > 3 throughout. We putt

(8) S@)= T dm)e (”Lkh) T@)= = S(n).
m<z nET
‘We shall show that, under the conditions (2), (3), and (4),

(9)  T(e)=g; a* loga— 7 (log k—y-+§) 22+ B(@i+ak log b+ ).

(5) will then be deduced without difficulty from (9).

* We denote by A4 positive absolute constants, by B complex numbers for which
| B| < 4, by ¢ positive constants whick may depend only on 6, by (u, v) the greatest common
divisor of % and v; a|b means that a divides b, a-|-b that a does not divide b.

t We write, for brevity, e(u) in place of ?=i.
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From (8) we obtain

Sor= 2 () <2z 5 ()= 3 ()

ab<w k as<vz as<b<zla k a<VE k

(10) -2 3% % <abh)+B\/

asvz as<hb<z/a

Let [z] denote the greatest integer contained in z. For a=£0 (modk)

we have 2
(&) — % ([F )= (F)
ah

a<b<ala ( k e(_}}—)_l

4 i D)) (52

2k
o de )l
et () en (),
From (10) and (11) it follows that

12 S@=—i T cotBTe(R[L])+i T ctBTe(S2)

ak<‘ Ve as < Vz k k

+2 = Z 14By/x

as<vz a<b<z/a
kla

(13) = —8,(x)+¢8,(x)+28,(z)+ By/2.

We split S, (x) into the two sums §,,(x) and S,,(x), where
(14) eh=r (modk), 1<r<ik in 8;,(x),
(15) ah=r (modk), 3}k<r<k—1 in 8;,().

From the equations (12) to (15) it follows that
(16) 8, (2) = 8y () + Sya(),

u Suw= ety 2 e(p[5])
ah=r(mod k)
s S, 2 ey 2 (7 [T])
ah=r(mod k)

2D 2
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For real u, and u, we have

(19) |e(uy)—e(ug)| = l o 'ij

From (19) we obtain

GE)~ (D)5

Applied to (17) this gives

le(u)du‘ < 2m| uy—u,|.

(]
Ug

(20) Sy@)= T cotT 3 e(%—i—)—l—B % oeotlZ T L

r<ik as<vz r<ik k as vV k
ah=r (mod k) ah=r (mod k)
In the latter sum
2 etll T =B S Leosecl T 1
r<ak k as Ve k r <k k k as< VT
ak=r(mod k) ah=r (mod k)
(21) =B X T 1=B I 1=Byx
r<ik asvz as vz
ah=r(mod k)
From (20) and (21) we obtain
(22) Sjue)= Z cot =X T e (—T- ﬁ) + B4/x.
r<ik k as vz k a
ah =r(mod k)

Writing k£—» for 7 in the sum (18) we obtain

Su@)=— 3 cot™ T e(——’ [—”])
12( ) r<ik k @ a<2/z a5 k a
= —r (mo v,

From this, with the help of (19) and an equation similar to (20),
we obtain

(23) Sp(x)=— X cot 22 z e (—— - ﬁ) +B+/2.
r<ik k a<Vz E a
ah = —r (mod k)

We now make an evaluation of the sum

(24) Tyu@)= T 8pu(n).
n<z
From (22) and (24) it follows that

T
COt—I? > X e(
k n<e asvn
akh=r(modk)

==

(25) Ty(x)= = ﬁ) + Bz,
r< a

3
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and here we have

r n r n
z z e (— —) == Z T e (— —~>
n<e agvn k a ag Ve a?<n<e k a
ah=r (mod k) ah=7r (mod k)

rw ka

=B X cosec ;— =B z —

asvx ka as vz r

ah =7 (mod k) eh=r (mod k)

B k

(26) =— X a@e=Byr— X 1

r ag vz r ag vz
ah=r (mod %) eh=r (mod k)

From (25) and (26) we obtain

T, @)=Bvz £ Lot T 14Ba

r<sk 7 k a<va
ah=r (mod k)
(27) —Byzk S L S 14+Bat

2
r<i T a< vz
ah=r (mod %

In the inner sum in (27) we have

a=p (modk), 1<<p<<k—1.

Hence
z 1= %X 1= X 1 = z 1
as<vz eV mk+p < Vz o< m < (Wa—p)k
ah=7 (mod k) a=p (mod k)
(28) = [—.—‘/x_P]_;_l <\ﬂ+1.
k k
(27) and (28) give
1 /y/z s
— 2 — (ME 2
(29) Tu(w)=Byakt 2 5 ( i +1) + Bz
= B(ak-++/zk?-2t).
Similarly, starting from (23), we find exactly as above that, if
(30) To(x) = nézsm(n):
then
(31) T1o(x) = B(xk+/xk?+a3).
We now put
(32) T() =n§z 8, (n).

From (32), (16), (24), (30), (29), and (31) it follows that
(33) T,(x) = B(xt+akt-x? k2).
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We consider now the sum

ahm (a®h

4 = ahm (8

(34) Sy (x) aké?VzCOt A e( k)
+a

If a takes the values 1, 2, ..., k—1 (mod k), we have

Zcota}lre<——

a2h> kSl ahw (a2h>
. k k

= % cot X o(2 2
o O A\

It now follows from (34) that there is a positive integer m < k—1 such
that

Sy(x)= Z cot@ (a;ch)’

asm k
whence
S;(x)=B Z |cosec gm ‘ =B I cosec =
a<k-1 k a<ik k
=Bk 3 - = Bllogk
asik @
and so
(35) Ty(x)= X Sy(n)= Bxklogk.

It remains to evaluate the sum S,(z) [given by (12) and (13)] and the
iterated sum

(36) Ty(x) = ﬂ%z Sy(n).
We have
Sz)= X T 1= I T 1
a’ﬁ;/z ag<b<zla a<vz[k ka<b<zlka
= Z — —ki B = X ———Ic z
< vzl < a’\+ \/x k a<valk a a<vValk a+B Vx

S e N
=2 (log Y249+ ) —He YEVE LB ot Bl

(37) = gpzloga— (ogh—y-+})z+B(vath).
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From (36) and (37) it follows that

Zn logn—-k—(logk—y—l—l) 2 n+ B(zi4-zk)
<z

n<e

— (ogk—y+}) T ntBlai+ak)

(2logk—y+1) ¥ n+ B(xt+zk)

11
1m k nLw

— o7(2 log k—y-+ 1) [w][&-+ L]+ B(zi+-ak)

1 n
kmszmmsném 2k

— 5 (2 logh—y+1)a*+ B(zi+ o)

_i 2 i —_ 2 3
=35 % mixm 2km2<zm k(2loglc y+1) 224 B(zit-zk)

x2(logx+y)——2lk %2— 57 (2 logk—y+1) 224 B(xi4-xk)

(38) = o 7% logz— - (logk—y+§) 2+ B(zh+-ak).

In order to prove (9) we have only to combine (8), (13), (32), (33), (35),
(36) and (38).

We shall now obtain (5) from (9), making frequent use of (2), (3), and
(4). TFor brevity we write

(39) p=2logk—2y+3, q=2logk—y+3, r=ot+klogk.
From (8), (9), and (39) we obtain

F(2) = (1—ev) §18(n) e = (1—e V)2 3 T(n) e
ne =1

n

(40) = 2ilc (1—ev)2 § nt(logn—p)e ™

n=1

1+ Bo? 3 (ni4-nk log b+nd k?) e,
ne=l
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The error term here is, by (39),
Bo*(0~i+-07%k logk+0-k?) = B(o-3+k logk+o?k?) = Br.

n
If we substitute X 7;— —y for logn in (40), we obtain an error

m=1
Bozni n2 —7171— e~ — B,
Hence
flz)= %c (1—ev)? EJI n2<m§:=1 ;nl-_. ) ~nv{ By
(41) = ﬁllé (1—6"”)2( 5 1 5 ~—q 3 nze—"”> + Br
m=1 M p=m
We write for brevity
(42) eV =u.
Since
B e = G

we obtain from (41), noting (42) and (39),

1 0 umt ) ym+l

J@)=gp(i—ur; = 75 +2z( )2+m=1m(1—u)2

@0 um+2 U 3 3
+2 X (1—u)3_q( Tz u\2+( u)3>}+Br

me=1 M 1—u

U 1
=2k(1_“)2<(1— R I= u)3+(1 u)3+( )logl e

2u2

1
+(l—u)3 log]__ > & ql—u+Br

1 / 3u? w2 1 1 u3
=T27c(1—u+“1021 +1 uogl u> R e
11

‘ 1/ 3 1 2 1
) =g (e iy e )~ St B

n (43) we have, from (42),

1 1 1 _ 1
___.=7+B, log _u=—logy+Bo_Blog pt

1—u 1
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Making these substitutions and noting (39), we obtain

1 /3 1 2 1 1 1
f(z)=§c'(?-l-BlOg?-—?/—logy—l-Blog—a-)—?q?_;_Br

= k—ly (3—logy—q)+ B(o~+k logk)

(5) - k_ly(y_bg y—2 logk)+ B(o-+k log k).
Thus II is proved.

2. Proof of (6) and (7).

Under the hypotheses of II we have o3 <{1/(ko). Hence it follows
from (5) that

1 /1
fle) = g (y—logy—2logk)+ B (Tc; +k log k)
o—1i o 1
=9k {r—log|y|—iJ(logy)—2 log k}+B(E +% log k)
—ti 1 1
=———Z|y(2 log ———k'2|y!+B(E+lc logk>,

(44) {0} = g 1o garg + B (5 +% log ),

(45) {f(e)} = —ﬁq’g log Fhw(gﬁklogk).

We shall now make use of the following theorem, due to Khintchine*:

Let F(u) be positive and continuous for w > 1 and let wF(u) be steadily
decreasing. When the integral

(46) jj F(w)du

* A. Khintchine, ‘‘Einige Sitze {iber Kettenbriiche, mit Anwendungen auf die Theorie
der Diophantischen Approximationen '’, Math. Annalen, 92 (1924), 115-125. Khintchine only
considers the inequality |6—(k/k)| < F(k)/k. His proof leads, however, without further
trouble to the theorem attributed to him in the text when we remember that (after Bernstein)
each of the inequalities

Azn > s @sy >

N 1
G(2n—1) G (2n)
(for the elements in the simple continued fraction for 6) has infinitely many solutions, for

almost all 8, whenever G(n) is a positive, steadily decreasing function and 3 G(n) diverges.

nal



410 S. CrowrA and A. WALFISZ [June 18,
converges, each of the inequalities

(47) 0<+(0-7) <

0—£> F,(ck)

has only a finite number of integral solutions for almost all 8. If, however,
the integral (46) is divergent, then, for almost all 8, each of the inequalities
(47) has infinitely many solutions with k> 0, (h, k) = 1.

With the help of this result we shall deduce the following relations* from
(44) and (45), for almost all 6:

(49) S{ flerrerti} = Qf { (% 1%—) (11 p ) (111 %—)é} (p>0, p—>0).

(1 —;-)ﬁ} (p>0, p>0).

(48) R =0 (% 1%)’ (n
3

1\#%
p

1 3
To obtain (6) from (48) and (7) from (49) we make use of an artifice

which has been used by Hardy and Littlewoodt in a similar connection.
We apply Khintchine’s theorem with

Fu)= (2ru 120 130 M 27u)! (43> 1),

so that the integral (46) is divergent. Hence, corresponding to almost
every 8, there is an infinite sequence of positive integers k,, k,, ks, ... such
that

(50) 3V L ky < hy <y < ...

and an infinite sequence of integers Ay, ky, kg, ... such that, for all positive
integral values of =,

(51) (bys k) =1,
hy, h, _
(52) (=1)» (B_E) ={o—k—n < (2mk,2 1k, Nk, 1l k,).
We put
o, = (Icn2lknllknl]lkn)—1’ t'n= — 27 (0—%), Yn = n—*—tni’
(53) n

2, = eChTilk) V.

* For the sake of brevity we now write 1, 11, 111 for log, log log, log log log.

t+ G. H. Hardy and J. E, Littlewood, *“Some problems of Diophantine approximation, II:
The trigonometrical series associated with the elliptic d-functions’’, Acta Math., 37 (1914),
193-239 (228).
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and we can apply (44) and (45) with
(54) h=h,, k=k, oc=o0, t=t,, Y=Y, 2=2,

since it follows from the equations (50) to (54) that the conditions (2),
(3), (4) are satisfied. We notice, further, that, in consequence of (50),

(65) : 1k, > 27, Wk,>3, WWk,>1.
It follows now that

1
= 1%
69 Rl =g 2|yn|+B< “hu k),
(57) S{f(ea)} = — 2 +B< +k lk).
" k Iynl2 k 2lynl kno, =TT
We have here, on account of (53) and (55),
1 1 .
T 2th2>2 5 =4 (k.2 1k, Uk, UlK,)?,
1
(58) PAPAE > 3k,3(1k, Uk, 1E,)2
(59) knzTynl =11k, Wk, Wk, >1k,
1

(60) o= k, 1k, Wk, Mk,

From (56), (58), (53), (59), and (60) we obtain*
R{f(z,)} = $k,2(1k, Nk, M K,)% (K, 21k, UK, Wk, 1E,
— Ak, 1k, 0k, Nk,
= 3k, 1k, Uk, )2 Nk, — Ak, 1k, Uk, K,
whence
(61) N{f(z,)} = 3k, 1k, (1K,)2 11k, for n> 4.

We now need a lower limit for |¢, | and to this end we apply Khintchine’s

theorem with
) ={ul12ull3u (M 27u)} (u>1).

The integral (46) converges and hence, for almost all 8, (47) can have
only a finite number of integrai solutions. We may suppose here that the
set of values of 6 specified is exactly the same as that for which (57) was

* See foot-note *, p. 402,
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proved (for the common part of two sets of < almost all ’ 0 is a set of almost
all 6, as is seen immediately by considering the complementary sets).
Hence, on account of (52) and (53), we have*

(62) (=1t =|t,| > c{k,2 1k, Dk, Ul k&,)}2
From (57), (58), (62), (59), and (60) it follows that
S f(zn)} =k, 2Lk, Nk, WE,)2{k 21k, Nk, (NE,)21E,

— Ak, Yk, Uk, WEk,,
so that
(63) (— 1 F{f(z,)} =ck, 1k, (k)2 E,)? for n>c.
We now put
(64) k2 1k, Wk, Wk, = —.
Pan

We then have the following asymptotic relations as n— co:

1kn~%1pi, Nk, ~1L, W, ~111—

n n
1 1 1\"1 1\-?
kim2(ppl 20 mE)", k~v2(p 1 tnEm i)
" <P " pn Pa pn> v <'° Pn  Pn pn>
whence
1. 1\3/ 1\#/ 1)}
65 ko, 1, (L, )2 M &, ~o—z ( ESHUES (111-—),
(65) (L) \/2 P Pn) Pa P

66) &, 1k, (k) (W%, )%sz(tlff—n)g(ui)a(mif.

From (53) and (64) it follows that

2, = e~ P temli

Hence, from (61), (65), and (63), (66), we obtain

R { f( -p,,+2ﬂoz)x>(;;1p_n) (11 i)(mi) (n> A),

(— 1) {fe—put2mi)} > (_ 1 —\ (11 ——) (lll l—)l:)} (n>c¢).

Pn  Pns

Since p>0, p—>0, these two inequalities show the truth of (48)
and (49).

* See foot-note *, p. 402.
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Let us suppose that
(67) R{DM)} <cnln)i(lln)} (n>27).
It would then follow that, for p > 0, p—>0,

RN{f(e—r+2r¥i)} = § d(n) cos 2nmf e~
n=1

(1—e) 5 R{D(n)}e™ L c+cp 5 (nIn) (U n)ieme
n=1 n=27
1 /1, 1\#/ 1\3 1, 1\t/. 1\%
Sedep—(—1— (11— <ce(~11 (11—).
P \p P> p> <p P> p

Since this contradicts (48), (67) cannot be true for any value of c. This
proves (6).
If we now suppose that either of the inequalities

+JD()} <crlnplln)l  (n>27)

is true, we are led, by exactly similar reasoning, to a contradiction of (49),
and thus (7) is proved.



