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Abstract. We study the ergodic properties of the additive Euclidean algo-
rithm f defined in R2

+. A natural extension of f is obtained using the action
of SL(2,Z) on a subset of SL(2,R). We prove that even though f is ergodic
and has an infinite invariant measure equivalent to the Lebesgue measure,
such a measure is not unique; (in fact there is a continuous family of such
measures). While it is folklore that this could happen for a map which is not
conservative, as is the case with f , there seems to be no recorded example
in the literature to that effect, and f provides a natural example for which
it is the case.

1. Introduction.

Let R2
+ = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0}. The Euclidean algorithm is the map

defined by

f : (x1, x2) ∈ R2
+ 7−→

{
(x1 − x2, x2), if x1 ≥ x2

(x1, x2 − x1), otherwise.
(1.1)

When x1 and x2 are natural numbers the action of successive powers of f
on (x1, x2) corresponds to the application of the Euclidean algorithm for
finding the greatest common divisor (g.c.d.), say d, of x1 and x2, and there
exists a k ∈ N such that fk(x1, x2) = (d, 0) or (0, d). That is the source of
the name for the transformation as above.

Let E1 =
(

1 1
0 1

)
and E2 =

(
1 0
1 1

)
, the two 2×2 elementary matri-

ces. They generate the group SL(2,Z) consisting of all integral unimodular
2× 2 matrices. The map f as above is then given by

x =
(
x1

x2

)
∈ R2

+ 7−→
{
E−1

1 x, if x1 ≥ x2

E−1
2 x, otherwise,

where the matrices act on x as linear operators.
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Let l denote the Lebesgue measure on R2
+. It is easy to see that f is a

noninvertible map which is nonsingular with respect to l; that is, if l(E) = 0
then l(f−1(E)) = 0. By [N], f has the following property.

Theorem 1.1. For all x ∈ R2
+, the orbit of x under f equals the orbit of x

under the linear action of SL(2,Z) graphed in R2
+, that is,

∪∞n=0 ∪∞k=0 f
−k({fn(x)}) = R2

+ ∩ SL(2,Z)x.

By a well-known result of Hedlund the linear action of SL(2,Z) on R2 is
ergodic; (see [BM] for instance). Theorem 1.1 therefore implies the following.

Corollary 1.2. The map f is ergodic relative to the Lebesgue measure l.

This note was inspired by the question whether f admits an invariant
measure absolutely continuous with respect to l, and if it exists, such a
measure is unique up to scalar multiples; we note that f is not conservative
and therefore, even though f is ergodic, existence of an invariant density
does not ensure it being unique. We prove the following.

Theorem 1.3 There exists a family {νt}t∈R of measures on R2
+ such that

each νt is f -invariant and absolutely continuous with respect to l, and for
s, t ∈ R, νs and νt are not scalar multiples of each other, unless s = t.

Though it is generally recognised that an ergodic nonsingular transfor-
mation which is not conservative may have more than one invariant measure
in the given measure class, there seems to be no recorded example of this
in the literature. It may be noted that in the light of Theorem 1.3 the Eu-
clidean algorithm transformation as above furnishes a natural example for
which this happens.

2. An invariant measure of f .

Consider the map F of R2
+ × R2

+ defined by

F : (x, y) ∈ R2
+ × R2

+ 7−→
{

(f(x), E2y) = (E−1
1 , E2y), if x1 ≥ x2,

(f(x), E1y) = (E−1
2 , E1y), otherwise.

(2.1)

We see in particular that the Lebesgue measure on R2
+×R2

+ (viewed canon-
ically as R4

+) is invariant under the action of F . Using this we first describe
a simple construction of an f -invariant measure absolutely continuous with
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respect to l. Let π : R2
+×R2

+ → R2
+ be the canonical projection π(x, y) = x.

Then π(F (x, y)) = f(π(x, y)) for all (x, y). The recipe to obtain an f -
invariant measure is to consider a suitable subset of R2

+ × R2
+ invariant

under F , and to integrate it along the fibers of π, (with respect to the other
variable y); the set needs to be chosen so that the integrals along the fibers
are finite.

For (x, y) ∈ R2 × R2, with x = (x1, x2) and y = (y1, y2), let < x, y >=
x1y1 + x2y2 be the canonical scalar product in R2. We have

φ(x, y) =< x, y >=< E−1x,Ety >= φ(F (x, y)),

where E is either E1 or E2 and Et is the transpose o E. Thus φ is a
nonconstant function invariant under F ; (in particular, F is not ergodic).
Let

Ω = {(x, y) ∈ R2
+ × R2

+ :< x, y > ≤ 1}. (2.2)

Then Ω is F -invariant. Let x = (x1, x2) ∈ R2
+. Then for y ∈ R2

+ we see that
(x, y) ∈ Ω if and only if y belongs to the set

Ω(x) = {z ∈ R2
+ :< x, z > ≤ 1}.

The latter is a right-angled triangle whose catets are 1/x1 and 1/x2. Inte-
grating the restriction of the Lebesgue measure to Ω along the fibers of π,
as indicated above, we conclude that.

Theorem 2.1. The measure dν =
1

2x1x2
dx1dx2 is invariant under f .

3. A natural extension of f .

Let F and Ω be as before; see (2.1) and (2.2). Let

Ω1 = {(x, y) ∈ R2
+ × R2

+ :< x, y >= 1}.

Then Ω1 is F -invariant. Let F1 be the restriction of F to Ω1. Let ρ : Ω → Ω1

be the map defined by (x, y) ∈ Ω −→ (x, y/< x, y >) ∈ Ω1. Then it is easy
to see that F1 ◦ ρ = ρ ◦ F . We define a measure µ on Ω1 by setting, for any
Borel subset B ⊂ Ω1,

µ(B) = λ(ρ−1(B)).

It can be seen that µ is a σ-finite measure on Ω1. Also the relation F1 ◦ ρ =
ρ ◦ F shows that µ is invariant under F1.

Clearly F1 is an extension of f , with the projection π1 from (x, y) ∈ Ω1

to the first coordinate x as the extension map. We note that it is in fact
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a natural extension (see Aaronson [A], p.90 ff), in the sense that it is a
minimal invertible extension.

Theorem 3.1. The map F1 is a natural extension of f .

Proof. Since F1 is an extension, with an infinite invariant measure µ
as above, to prove the theorem it suffices to show that the partition of
Ω1 into equivalence classes of the relation defined by (x, y) ∼ (x′, y′), for
(x, y), (x′, y′) ∈ Ω1, if π1(F−i

1 ((x, y))) = π1(F−i
1 ((x′, y′))) for all i ≥ 0, is the

trivial partition mod µ. Let (x, y), (x′, y′) ∈ Ω1 and let F−i
1 ((x, y)) = (xi, yi)

and F−i
1 ((x′, y′)) = (xi, y

′
i) for all i ≥ 0. Then f(xi) = xi−1 for all i ≥ 1. By

the definition of f there exist Ai ∈ {E−1
1 , E−1

2 } such that f(xi) = Aixi =
xi−1 for all i ≥ 1. Then F1((xi, yi)) = (Aixi, A

t
i
−1
yi) for all i ≥ 1. Hence

yi = At
iyi−1 for all i ≥ 1. Similarly y′i = At

iy
′
i−1 for all i ≥ 1. But there

exists a unique number y such that the sequence defined by y0 = y and
yi = At

iyi−1 for all i ≥ 1 consists only of nonnegative numbers. This shows
that y′ = y, and therefore the partition as above is the trivial partition.

2

We now give another realisation of the natural extension. For this we
identify the subset Ω1 canonically with the subset of SL(2,R) given by

Ω(1) =
{(

x1 −y2

x2 y1

)
∈ SL(2,R) : x1, x2, y1, y2 ≥ 0

}
. (3.1)

The map F1 then corresponds to

F1 : g ∈ Ω(1) 7−→ E−1g ∈ Ω(1), (3.2)

where if g =
(
x1 −y2

x2 y1

)
then E = E1 if x1 ≥ x2, and E = E2 otherwise.

Using Theorem 1.1 and (3.1− 3.2), we deduce the following.

Theorem 3.2. Let g =
(
x1 −y2

x2 y1

)
∈ Ω(1). Then the orbit of g under F1

equals the orbit of g under the action of SL(2,Z) on SL(2,R) by translations
on the left, graphed in Ω(1), that is,

∪∞n=−∞F
n
1 ({g}) = Ω(1) ∩ SL(2,Z)g.

Proof. Let v =
(
x1

x2

)
. If x1/x2 is rational then the assertion follows easily

from the Euclidean algorithm for pairs of natural numbers. Now suppose
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that x1/x2 is irrational. Let A ∈ SL(2,Z) be such that Ag ∈ Ω(1). In
order to prove our claim it suffices to show that there exists k ∈ Z such
that Ag = F k

1 (g). As Ag ∈ Ω(1), Av ∈ R2
+. By Theorem 1.1, there exist

m,n ≥ 1 such that fm(Av) = fn(v). By the definition of f , there exist
γ, γ′ in the semigroup generated by E−1

1 and E−1
2 , such that fn(v) = γv

and fm(Av) = γ′Av. Thus we get γ′Av = γv, which means that γ−1γ′A
fixes v. Since x1/x2 is irrational this implies that γ−1γ′A is the identity
matrix, and so γ′A = γ. Since fn(v) = γv and fm(Av) = γ′Av, comparing
the definitions of F1 and f we see that Fm

1 (Ag) = γ′Ag = γg = Fn
1 (g).

Therefore Ag = Fn−m
1 (g). This proves our claim. 2

4. Invariant densities for f .

Using the model for the natural extension as described in the last section
we now provide a construction of a large class of measures on R2

+ which
are absolutely continuous with respect to the Lebesgue measure l, and f -
invariant.

For simplicity of notation let G = SL(2,R) and Γ = SL(2,Z). The
quotient space Γ\G can be realised canonically as the space of unimodular
lattices in R2, associating to each (right) coset Γg, g ∈ G, the lattice in R2

generated by the rows of g (it being independent of the representative g in
Γg). The space Γ\G carries a unique probability measure, say m, invariant
under the action of G on Γ\G on the right (see [BM]).

For each s ∈ R let gs =
(
es 0
0 e−s

)
and for every t ∈ R let ht =(

1 t
0 1

)
. Then {gs} and {ht} are one-parameter subgroups of G. Their

actions on Γ\G induced by the G-action correspond, respectively, to the
geodesic and horocycle flows associated with the modular surface, and these
are both ergodic with respect to the measure m.

Let L∞(Γ\G)+ denote the space of all nonnegative bounded measurable
functions on Γ\G. We now associate to each ϕ ∈ L∞(Γ\G)+ a f -invariant
absolutely continuous measure on R2

+. Let λ denote the Haar measure on
G. For any ϕ ∈ L∞(Γ\G)+ let µϕ be the measure on Ω(1) defined by

µϕ(A) =
∫

A
ϕ(Γg)dλ(g),

for all Borel subsets A of Ω(1). We claim that µϕ is a F1-invariant measure on
Ω(1). In view of Theorem 3.1 every Borel subset A of Ω(1) can be decomposed
as a countable disjoint union A = ∪Ai such that on each Ai the action of
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F1 coincides with the action of an element γi of Γ. Therefore to prove the
claim it suffices to see that µϕ(γA) = µϕ(A) for all Borel subsets A of Ω(1)

and γ ∈ Γ such that γA is contained in Ω(1); this is clear from the definition
of µϕ, and proves the claim.

Let e1 =
(

1
0

)
∈ R2

+. The action of G = SL(2,R) on R2 − (0) is

transitive, and thus R2− (0) may be realised as a homogeneous space G/U ,
with U = {ht : t ∈ R}, the stabiliser of e1. By the Fubini theorem for
homogeneous spaces, for any ψ ∈ L∞(Γ\G) we have∫

ψ(g)dλ(g) =
∫

R2−(0)

(∫
R
ψ(ght)dt

)
dl,

where l is the Lebesgue measure on R2, and the expression in parenthesis is
viewed as a function on R2 with

∫
U ψ(ght)dt as the value at the point ge1,

namely at
(
x1

x2

)
if g =

(
x1 y1

x2 y2

)
. Hence for any bounded measurable

function ψ vanishing outside Ω(1) we have∫
ψ(g)dµϕ(g) =

∫
ψ(g)ϕ(Γg)dλ(g) =

∫
R2−(0)

(∫
R
ϕ(Γght)ψ(ght)dt

)
dl,

where the parenthetical integral is the value of the outer integrand at the
point ge1. This implies that the image of µϕ on R2

+ is a σ-finite measure,
say νϕ, which is absolutely continuous with respect to the Lebesgue measure
l, and dνϕ = ϕ̄(x1, x2)dx1dx2, with

ϕ̄(x1, x2) =
∫

R
ϕ(Γght)χ(ght)dt, (4.1)

where χ denotes the characteristic function of Ω(1) in G, and g ∈ G is any

element such that ge1 =
(
x1

x2

)
.

Thus we have for each ϕ ∈ L∞(Γ\G)+ a measure νϕ on R2
+ which is

absolutely continuous with respect to l. Also, since µϕ is F1-invariant it
follows that νϕ is f -invariant.

Now let (x1, x2) ∈ R2
+ and choose g =

(
x1 −x−1

2

x2 0

)
. Then ght =(

x1 x1t− x−1
2

x2 x2t

)
∈ Ω(1) if and only if x1t − x−1

2 < 0 and x2t > 0, or

equivalently if and only if 0 < t < 1/x1x2. Therefore we get that

ϕ̄(x1, x2) =
∫ 1/x1x2

0
ϕ(Γ

(
x1 −x−1

2

x2 0

)
ht)dt
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=
∫ 1/x1x2

0
ϕ(Γ

(
x1 x1t− x−1

2

x2 x2t

)
)dt. (4.2)

We note that when ϕ is chosen to be the constant function 1 the measure

ν1 = νϕ is
1

x1x2
dx1dx2, the invariant measure as in Theorem 2.1. It may

also be noted that for any ϕ ∈ L∞(Γ\G)+ the measure νϕ is absolutely
continuous with respect to ν1 and the Radon-Nikodym derivative dνϕ

dν1
is

bounded by the essential supremum of ϕ.

Proposition 4.1 Let ϕ be the characteristic function of a nonempty open
subset Θ of Γ\G. Then dνϕ

dν1
takes the value 1 on a set of positive Lebesgue

measure.

Proof. We note that ΓΩ(1) = G; this may be deduced by observing that
every lattice of row vectors has a basis of the form {(a,−b), (c, d)}, with
a, b, c, d > 0. Let Ψ be a compact subset of Ω(1) with nonempty interior,
such that Γ\ΓΨ is contained in Θ and Ψe1 = {ge1 : g ∈ Ψ} is contained in
{(x1, x2) ∈ R : x1, x2 > 0}. Then there exists a δ > 0 such that Γght ∈ Θ for
all g ∈ Ψ and t ∈ (−δ, δ). Also there exists a C > 0 such that if g ∈ Ψ and

ge1 =
(
x1

x2

)
∈ R2, then 1

x1x2
≤ C. Now consider any element g′ = ggs,

with g ∈ Ψ and s > log 1
2(C/δ), such that Γg′ ∈ ΓΨ. Then we have, for all

t ∈ R,

ϕ(Γg′ht)χ(g′ht) = ϕ(Γg′ht)χ(ggsht) = ϕ(Γg′ht)χ(ggshtg−s),

where (as before) χ is the characteristic function of Ω(1), and the last equal-
ity holds since Ω(1) is invariant under the right translations by {gs}. As
gshtg−s = he2st, and | e2st |> C if | t |≥ δ, it follows that χ(ggshtg−s) = 0
for all t such that | t |≥ δ. On the other hand for t ∈ (−δ, δ), ϕ(Γg′ht) = 1,
since Γg′ ∈ ΓΨ ⊂ Θ. Thus we see that ϕ(Γg′ht)χ(g′ht) = χ(g′ht) for all
t ∈ R. By (4.1) this shows that dνϕ

dν1
(g′e1) = 1.

Since the flow induced by {gs}, namely the geodesic flow, is ergodic, the
set of elements g′ in Ω(1) for which the condition as above is satisfied is a set
of positive (Haar) measure, and hence its image in R2

+ is a set of positive
Lebesgue measure. This proves the proposition. 2

Proof of Theorem 1.3. Let S be a smooth open surface in Γ\G, transver-
sal to the horocycle flow, namely the action of {ht} on the right, such that
(σ, t) 7→ σht is a diffeomorphism of S × (−1, 1) onto an open subset, say B,
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of Γ\G. For each r ∈ (−1, 1) let Br be the image of S×(−r, r) in Γ\G. Then
each Br is an open subset of Γ\G; let ϕr be the characteristic function of
Br. To prove the theorem it suffices to show that no two of the f -invariant
measures {νϕr}r∈(−1,1) are scalar multiples of each other. Since by Proposi-
tion 4.1 their essential suprema are 1, they can be scalar multiples of each
other only if they are equal. We shall show that they are in fact distinct.

Now let a, b ∈ (−1, 1), say −1 < a < b < 1, and consider νϕa and νϕb
.

Let g ∈ Ω(1) be arbitrary. Then the set, say T , of t in R for which ght ∈ Ω(1)

is an interval of length 1/x1x2, where x1, x2 are such that ge1 =
(
x1

x2

)
.

Let T1 = {t ∈ T : Γght ∈ B}, Ta = {t ∈ T : Γght ∈ Ba} and Tb = {t ∈
T : Γght ∈ Bb}. We note that T1 is a string of disjoint intervals, say k
of them, and the lengths of all except possibly the first and the last one
are 2. Suppose k ≥ 3. Then each of the middle intervals intersects Ta and
Tb in intervals of lengths 2a and 2b respectively; the end intervals could be
smaller, but the length of the intersection with Tb is at least as much as the
length of the intersection with Ta. Thus the Lebesgue measures of Ta and
Tb are 2(k − 2)a + c and 2(k − 2)b + d respectively, where c and d are the
total lengths of the segments in the first and the last intervals, and we have
0 ≤ c ≤ d ≤ 4. Hence
dνϕa

dν1
(ge1) =

∫
R
ϕa(Γght)χ(ght)dt <

∫
R
ϕb(Γght)χ(ght)dt =

dνϕb

dν1
(ge1),

provided k as above is at least 3.
To complete the proof it suffices therefore to show that the set of g in

Ω(1) for which k = k(g) as above is at least 3 has positive measure. We shall
show that for any given k0 ∈ N the set of g in Ω(1) for which k(g) ≥ k0 is a
set of positive measure.

Let k0 ∈ N be given. Let ϕ be the characteristic function of B, and let
θ be the function on Γ\G defined by θ(Γg) =

∫ 1
0 ϕ(Γght)dt. The action of

h := h1 on Γ\G is ergodic (see [BM]), and hence

1
n

Σn−1
i=0 θ(Γgh

i) −→
∫

Γ\G
θdm = m(B), a.e..

Hence there exist n ≥ 4k0/m(B) and a Borel subset E of Γ\G such that
m(E) > 0 and

1
n

Σn−1
i=0 θ(Γgh

i) ≥ m(B)/2

for all g in G such that Γg ∈ E. Then for any g with Γg ∈ E we have∫ n

0
ϕ(Γght)dt = Σn−1

i=0 θ(Γgh
i) ≥ n

2
m(B) ≥ 2k0.
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Now let Ψ be a compact subset of Ω(1) with nonempty interior, contained
in the interior of Ω(1), and such that Γ\ΓΨ is contained in B. Then there
exists a δ > 0 such that Ψht is contained in Ω(1) for all t ∈ (−δ, δ). Since
the geodesic flow is ergodic there exists s > 1

2 log n/δ such that m(E ∩
(Γ\ΓΨg−s)) > 0. Now consider any g in G such that Γg ∈ E and g =
g′g−s for some g′ ∈ Ψ. We note that ght = g′g−sht ∈ Ω(1) if and only if
g′he−2st = g′g−shtgs ∈ Ω(1), and since g′ ∈ Ψ the set of t for which this holds
contains the interval (−δe2s, δe2s), which in turn contains (0, n). Also, since
Γg ∈ E, we have

∫ n
0 χB(Γght)dt ≥ 2k0. Thus for such a g the set T as in the

preceding argument contains the interval (0, n), and the subset T1 ∩ (0, n)
has Lebesgue measure at least k0. Since T1 is a union of intervals of length
at most 2, we get that T1 contains at least k0 intervals. This completes the
argument and the proof of the theorem. 2

5. Interval exchange transformations.

We conclude with some remarks setting Theorem 1.3 in a broader context.
Let λ1, λ2 > 0. Set I = [0, λ1 + λ2), I1 = [0, λ1) and I2 = [λ1, λ1 + λ2).
The map T : I → I defined by Tx = x + λ2, if x ∈ I1, and Tx = x − λ1,
if x ∈ I2, is an interval exchange of the intervals I1 and I2. The map f as
in (1.1) corresponds to the of Rauzy induction defined for interval exchange
transformations (see [V1]) in the special case with two intervals. In the light
of our proof of Theorem 1.3 and the natural extension U defined by Veech
(see [V1], p. 219), it may be seen that a result analogous to Theorem 1.3
would hold for the Rauzy induction I (see [V2], p. 1390).
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