Angewandte
 Eine Zeitschrijt der Gesellschaft Deutscher Chemiker Chemie

Supporting Information

for
Angew. Chem. Int. Ed. Z53908
© Wiley-VCH 2004
69451 Weinheim, Germany

A "Peelable Banana-shaped" Mesogen: A First Low Molar Mass Monodispersive Bent-Rod Dimer Exhibiting the Biaxial Nematic and Smectic A Phases**

C. V. Yelamaggad, S. Krishna Prasad *, Geetha G. Nair, I. Shashikala, D. S. Shankar Rao, Chetan V. Lobo and S. Chandrasekhar

General

Thin layer chromatography (TLC) was performed on aluminium sheets pre-coated with silica gel (Merck, Kieselge 60, F_{254}). IR spectra were recorded using a Perkin-Elmer 1000 FTIR spectrometer. ${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR spectra were recorded using a Bruker AMX-400 (400 MHz) or Bruker Aveance series DPX-200 (200 MHz) spectrometers. For ${ }^{1} \mathrm{H}$ NMR spectra, the chemical shifts are reported in ppm relative to tetramethylsilane as an internal standard. Mass spectra were recorded on a Jeol-JMS -600 H spectromter in FAB^{+}mode using 3-nitrobenzylalcohol as a liquid matrix. Elemental analyses were carried out using a Eurovector EA 3000 series CHNOS analyzer. The compounds were investigated for liquid crystalline behaviour using a polarizing optical microscope (Leitz DMRXP) in conjunction with a programmable hot stage (Mettler FP90), and by differential scanning calorimetry (Perkin Elmer DSC7). X-ray diffraction studies were carried out using an Image Plate Detector (MAC Science, Japan) equipped with double mirror focusing optics, with the sample contained in a Lindemann capillary tube.

Molecular structural characterization data for bent-rod dimers

1a: A yellow solid; IR (KBr Pellet): $v_{\max }$ in cm^{-1} 2921, 2852, 2223, 1731, 1603 and 1511; ${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 13.32(\mathrm{~s}, 1 \mathrm{H}, 1 \times-\mathrm{OH}), 8.66(\mathrm{~s}, 1 \mathrm{H}, 1 \times-\mathrm{CH}=\mathrm{N}), 8.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 8.15 ($\mathrm{t}, J=7.9,4 \mathrm{H}, \mathrm{Ar}$), 7.66 (AA'BB' quartet, $4 \mathrm{H}, \Delta \mathrm{v}=18.46, J=8.32,4 \mathrm{H}, \mathrm{Ar}), 7.54-7.37$ (m, 6H, Ar), 7.22-7.16 (m, 3H, Ar), 7.00-6.97 (m, 6H, Ar), 6.90 (d, $J=1.72,1 \mathrm{H}, \mathrm{Ar}), 6.84$ (dd, $J=1.98,8.4,1 \mathrm{H}$, Ar), 4.11-4.04 (m, $6 \mathrm{H}, 3 \times-\mathrm{OCH}_{2}-$), 1.94-1.71 (m, $6 \mathrm{H}, 3 \times-\mathrm{CH}_{2}-$), 1.54-1.28 (m, $16 \mathrm{H}, 8 \times-\mathrm{CH}_{2}-$), and
$0.89\left(\mathrm{t}, J=6.4,3 \mathrm{H}, 1 \times-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 164.38,164.33,164.27,163.93,163.62$, $162.68,159.75,155.61,155.20,151.81,149.70,145.28,133.43,132,60,132.45,131.88,131.51,130.27$, $128.39,127.12,126.71,122.19,121.47,121.02,120.14,119.16,119.09,117.02,115.17,114.51$, $114.43,113.24,110.69,110.20,68.47,68.13,67.93,31.92,29.58,29.39,29.34,29.13,29.00,28.89$, 26.02, 22.77, 22.70 and 14.12; FAB mass: $993.3[M]^{+}$calcd for $\mathrm{C}_{62} \mathrm{H}_{60} \mathrm{O}_{10} \mathrm{~N}_{2}$; Elemental analysis: Calcd (Found): C 74.98 (74.91); H 6.08 (5.90); N 2.82 (2.87)

1b: An yellow solid; IR (KBr Pellet): $v_{\text {max }}$ in cm^{-1} 2923, 2853, 2222, 1731, 1603 and $1578 ;{ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 13.35(\mathrm{~s}, 1 \mathrm{H}, 1 \times-\mathrm{OH}), 8.65(\mathrm{~s}, 1 \mathrm{H}, 1 \times-\mathrm{CH}=\mathrm{N}), 8.29(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, $8.14(\mathrm{t}, J=8.7,4 \mathrm{H}, \mathrm{Ar}), 7.65$ (AA'BB' quartet, $4 \mathrm{H}, \Delta \mathrm{v}=17.7, J=9.3,4 \mathrm{H}, \mathrm{Ar}), 7.51-7.37(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar})$, 7.21-7.16 (m, 3H, Ar), 7.00-6.96 (m, 6H, Ar), 6.90 (d, $J=2.08,1 \mathrm{H}, \mathrm{Ar}), 6.84$ (dd, $J=2.16,8.4,1 \mathrm{H}$, Ar), 4.09-4.02 (m, $\left.6 \mathrm{H}, 3 \times-\mathrm{OCH}_{2}\right), 1.87-1.79\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times-\mathrm{CH}_{2}\right), 1.59-1.28\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times-\mathrm{CH}_{2}-\right)$, and $0.89\left(\mathrm{t}, J=6.7,3 \mathrm{H}, 1 \times-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \quad\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 164.35,164.30,164.25,163.93,163.94$, $162.69,159.82,155.63,155.24,151.84,149.73,145.30,133.39,132,58,132.44,131.85,131.47$, $130.24,128.36,127.11,126.73,122.17,121.46,121.07,120.11,119.13,119.05,117.05,115.18$, $114.52,114.43,113.22,110.68,110.22,68.48,68.21,68.03,31.91,29.56,29.37,29.32,29.19,29.13$, 29.07, 29.01, 25.84, 22.68 and 14.08; FAB mass: $1007.8[M]^{+1}$ calcd for $\mathrm{C}_{63} \mathrm{H}_{62} \mathrm{O}_{10} \mathrm{~N}_{2}$; Elemental analysis: Calcd. (Found): C 75.13 (75.25); H 6.20 (6.07); N 2.78 (3.22)

Differential scanning calorimetric thermograms obtained in the heating (upper profile) and cooling (lower profile) modes for the bent-rod dimer $\mathbf{1 b}$ at a rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$. The regions in the vicinity of the $\mathrm{I}-\mathrm{N}_{\mathrm{b}}$ and $\mathrm{N}_{\mathrm{b}}-\mathrm{SmA}_{\mathrm{b}}$ transitions are shown as insets.

Texture observed in a free-standing film in (a) $\mathrm{SmA}_{\mathrm{b}}$ and (b) N_{b} phases. Notice the exclusive presence of 2-brush disclinations

"1d-cut" of the Xray diffraction pattern in the $\mathrm{SmA}_{\mathrm{b}}$ and N_{b} phases in the (a) low-angle and (b) wideangle regions.

Photomicrograph of the alternate dark and bright stripe pattern seen in the $\mathrm{SmA}_{\mathrm{b}}$ phase. The width of the stripe is $\sim 50 \mu \mathrm{~m}$.

