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Abstract-Assuming a model based on dispersion and repulsion interac- 
tions, it  is shown that the orientational potential energy of a molecule in  8 

nematic liquid crystal is expressible 

ui = - (u, +- u2 COSZ oi + u4 cos4 O, + U* C O S ~  ei + - . *), 
u0 = woo + woe C O S ~  o + wOl cos4 o + . . . 
u2 = wp0 + wZ1 C O S ~  e + wZ4 cos4 o + . - , 

~ ___ 
where 

- ~ 

etc., w,, = w,,, and 0 is the angle which the long axis of the molecule 
makes with the uniaxial direction of the medium. Using a slightly simplified 
form of this function, a statistical theory of long range orientational order 
in the nematic state is developed. The thermodynamic properties of the 
ordered system are evaluated relative to those of the completely disordered 
one, and the conditions of equlibrium are discussed. The constants of the 
potential function are determined for pazoxyanisole that lead to a 
theoretical curve for the degree of orientational order and a volume change 
at  the nematic-isotropic transition point in good agreement with observa- 
tions. However, the predicted latent heat of the nematic-isotropic 
transition is significantly higher than the experimental value suggesting 
that a certain degree of short range order persists in the liquid phase. The 
calculated latent heat of transition as well as the specific heat and the 
compressibility of the liquid crystal fit the experimental data when a 
correction factor is included in the theory to allow for the effect of short 
range order. The magnetic birefringence of the liquid phase gives an 
independent estimate of the short range order which confirms the previous 
calculations. 

1. Introduction 
The properties of nematic liquid crystals indicate a high degree 
of orientational order of the molecules but no translational order. 
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152 M O L E C U L A E  CRYSTALS A N D  L I Q U I D  C R Y S T A L S  

The degree of orientational order has been investigated experi- 
mentally by a number of techniques in recent years. The measure- 
ments yield a long range order parameter, first introduced by 
Zwetkoff,' viz., 

9 = 4(3 cos2 e - 1)  

where 0 is the angle which the long axis of the molecule makes 
with the uniaxial direction of the liquid crystal. According to 
this definition, the limits of s are 1 for the perfectly ordered 
crystalline arrangement and 0 for the completely disordered 
isotropic liquid. Experiments reveal that 8 in the liquid crystal- 
line phase has an intermediate value which falls gradually as the 
temperature rises up to the nematic-isotropic transition point To . 
A t  T, , a first-order transition takes place and s drops abruptly to 0. 

A theory of the orientational order of the molecules in nematic 
liquid crystals was developed by Maier and SaupeB--B assuming 
an orientational potential energy function based on dispersion 
forces. The theory leads to a universal curve for s as a function 
of TV2/T, V?, where T and V are the temperature and molar 
volume in the nematic phase, T, and V ,  the corresponding values 
at the nematic-isotropic transition point. Although the predicted 
variation of s agrees with the experimental data for some com- 
pounds, significant deviations from the common curve have been 
observed in many cases.6 Chen, James and Luckhurst' measured 
the degree of order of a paramagnetic probe, vanadyl acetyl- 
acetate, in eight nematic liquid crystals using the electron 
resonance technique and found that the potential function of the 
form suggested by Maier and Saupe, when applied to describe 
the solvent-solvent and solvent-solute interactions, fails to 
account for the data satisfactorily. Similar conclusions have been 
drawn by the present writers8 from precise determinations of s in 
p-azoxyanisole and p-azoxyphenetole from optical data. A new 
and simple formula proposed by Vukss for the polarization field 
associated with strongly anisotropic molecules was applied to 
the refractive index measurements of Chatelain and GermainlO 
and found to yield accurate and internally consistent results. 
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THEORY O F  ORIENTATIONAL ORD-ER 153 

Contrary to the prediction of the theory, separate curves were 
obtained for the two compounds, s being considerably lower for 
p-azoxyanisole than for p-azoxyphenetole throughout the nematic 
range. It is clear therefore that the theory in its present form 
does not allow a satisfactory quantitative description of the 
nematic state, a conclusion that had in fact been arrived a t  
earlier by Saupe.6 

The part played by permanent electric dipoles in determining 
liquid crystalline behaviour has been the subject of many 
detailed studies. The early experiments to detect free charges 
on the surface of the liquid crysta1,llJz carried out with a view 
to testing Born's dipole theory13J* (see also Ref. 22), yielded 
negative results. The existence of the hysteresis loop and of 
polarized domains have been reported re~ently,'~-ls but the 
question of ferroelectricity in nematic liquid crystals has not yet 
been settled unequivocally. Whether polarized domains do 
exist or not, evidence appears to be fairly conclusive that dipole- 
dipole interactions do not contribute much to the orientational 
potential energy. In particular, the extensive studies of Gray20.21 
on mesomorphic behaviour and chemical constitution have 
established that substituents of widely varying polarities produce 
only minor changes in the thermodynamic properties of the 
nematic phase. 

I n  a recent paper2z an expression was derived for the inter- 
molecular potential energy arising from dispersion, dipole- 
dipole, induction and repulsion forces and a theory was developed 
of the birefringence of the nematic medium in terms of the 
Boltzmann distribution of the oriented molecules. The theory 
explains the observed result that the temperature coefficient of 
the extraordinary index is large and negative whereas that of the 
ordinary index is comparatively small and positive. Analysis 
of the experimental data on p-azoxyanisole and p-azoxyphenetole 
indicated that dispersion and repulsion forces play a predominant 
role in determining orientational order. This result is in con- 
formity with the observations of Gray, referred to earlier, regarding 
the relative contribution of the polar groups to nematic stability. 
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154 MOLECULAR CRYSTALS A N D  L I Q U I D  CRYSTALS 

In  the light of this evidence, we shall assume in this paper that 
permanent dipole-dipole and induction effects are negligible and 
derive the expression for the orientational potential energy in a 
form that can be conveniently used for working out a statistical 
theory of long range orientational order in the nematic state. 
We shall then apply the theory in detail to evaluate the properties 
of p-azoxyanisole. 

2. Orientational Potential Energy in the Nematic State 

It was shown in a previous papera2 that the dipole-dipole con- 
tribution to the average dispersion energy of interaction per 
pair of molecules making angles Bi , Or with the uniaxial direction 
of the nematic medium is 

where ur i j ,  JQrij ,  y F i j  are the direction cosines of the inter- 
molecular radius vector rij with respect to the space fixed co- 
ordinate system, the Z axis being the optic axis of the medium; 
g is a molecular parameter involving the electronic charge and 
mass, the oscillator strength and the polarizability. The molecular 
distribution function is assumed to be cylindrically symmetric, 
as has been confirmed by X-ray ~ t u d i e s . ~ ~ . a ~  To evaluate the 
repulsive potential energy between a pair of identical linear mole- 
cules as a function of their relative orientations, each molecule was 
replaced by three centres of repulsion, two near its ends and one 
at  its centre. The average repulsion energy per pair of molecules 
was shown to be expressible asz2 
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T H E O R Y  O F  O R I E N T A T I O N A L  ORDER 155 

uy  = (R, + R:, COSZ ei + R; coS4 ei + . . . ) + cos2 e, 
x (R, + Ri C O S ~  Oi + * 

+ c0s4 6j(R, + R; C O S ~  ei + * * ) + 
* ) 

* - 
= ROi + R,; cos2 di + R4i C O S ~  6, + . - a .  (2) 

The energy is symmetrical in Bi and B j  so that RL = R, , R; = R, , 
etc. We shall assume that t,he repulsion terms vary as V-4. 

From (1) and (2) the energy of interaction per pair of molecules 
due to dispersion and repulsion forces is 

- RZi cos2 Bj + Rki c0s4 gi + . - 1 
= - (Zi + mi cos2 Bi + ni C O S ~  8, + * * - ), 

say, where li , m i ,  ni , etc. each consist of a sum of terms involving 
even powers of cos Bi. Hence the total interaation energy of a 
molecule i with all it,s neighbours j is 

ZJi  = - C ( Z i  + mi C O S ~  Bi + ni C O S ~  6, + . . ). (3) 
j 

We shall make the approximation that U ,  has an average 
volume dependence of 1 7 - 3 ,  and that the summations are expres- 
sible in terms of the mean values cos2 8, 0084 8, etc., so that ( 3  ) 
may be written in the form 

_ _ ~  

- -- - 
I J j  = - J'- [ Li + M i  C O S ~ ~  + Ni ~ 0 ~ 4 8  + a * - ] .  (4) 

Clearly, (4) may also be expressed as 
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156 M O L E C U L A R  C R Y S T A L S  A N D  LIQUID C R Y S T A L S  

u i  = - ~ ~ , + u , c o s ~ ~ ~ + ~ , ~ ~ ~ ~ ~ ~ + ~ ~ ~ ~ ,  ( 5 )  - 
where uo = woo + wo2 cos2 19 + wo4 c0s4 6 + - - - 

U., = Wz0 + wz2 C0S2 6 + W24 C0s4  % + - * 

up = WP0 -t- W42 C0S2 % + wp4 COS4 8 + * - ' *  

etc., where wO2 = 'wz0, ~ 0 4  = ~ 4 0 ,  etc., or in general w,, = w nm. 

For the convenience of developing a statistical theory of the 
nematic state we shall write the orientation-dependent part of 
the potential energy function ( 5 )  in the form 

5 C0S4 0 - 1 5 C0S4 8, - 1 
) + c (  4 + 4  -3 

)I 

3 cos2 e, - 1 
2 

3 cos2 e - 1 5 C0S4 ei - 1 

5 C0S4 e - 1) + ( 7 2 0 s ; ~  - i 

3 cos2 ei - 1 

7 cos6 ei - 1 

+ __-___ 
+D( 2 4 2 

' 6  
* _  

4 

neglecting higher terms. We shall suppose that A ,  B,  * - , E are 
independent of volume and temperature and thus disregard 
effects due to variations in the molecular distribution function. 
To this approximation, A ,  B, -.. , E may be taken to have the 
Rame values in the liquid crystalline and liquid phases. In  the 
isotropic liquid 

___ 
3 8 - 1 5 cos4 0 - 1 7 cos6 e - 1 

- =  0. - =  - - 
4 6 0 

Y 

Therefore, in order that Ui given by (6) may vanish in the liquid 
phase, we shall take A = C = E = 0. The potential energy 
may then be written as 
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T H E O R Y  O F  ORIENTATIONAL O R D E R  157 

where x = cos 9, 

xi = cos B d ,  
- 

3x2 - 1 
s1 = ~ 

2 ’  
- 

5x4 - 1 s, = ___ 
4 ’  

a’ = 2 Ds,, 

b’ = $ (Bs, + Ds,) 
and 

The new order parameter s, that we have introduced, like sl ,  
varies from 1 to 0 over the range from perfect ordering to com- 
plete disorder. The experimental methods used so far lead to 
an estimate of s, only and not of sg. 

c’ = - +[2Bs, + B(s, + 2 4 1 .  

3. Thermodynamic Properties of the Ordered System 
We shall now derive expressions for the thermodynamic 

properties of the ordered system relative to those of the com- 
pletely disordered one on the basis of (7).  

3.1. ENTROPY AND FREE ENERGY 
The average values of x: and x% are 

= f i x ;  exp (ax: + bx:) dx, exp (ax; + bxf) ax i ,  (8) is: 
and 24 = xf exp (azf + bx:) dx, exp (axf + 6x5) a x i ,  (9) 

- s: / s: 
where a = a‘/kTV3, b = b’/kTV3 and c = c’/lcTV3; c cancels 
out in the numerator and denominator of (8) and (9). 
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158 MOLECULAR C R Y S T A L S  A N D  L I Q U I D  CRYSTALS 

Since ( 7 )  represents the mutual energy of interaction of a 
molecule with its neighbours, the internal energy per mole due 
to orientational order is evidently 

where N is the Avogadro number. The partition function for 
a single molecule 

fi = ['exp (ax; + bx; + c )  dx i ,  

so that the contribution of the orientational order to the entropy 
is given by 

0 

axif + bzf + c )  exp (axif + bz;) axi S, = - N k  

1 - log f; exp (ax: + bxe + c) dx, 

= - N k [ ( a q  + b?) - log f; exp (uz: + bzf) dxJ .  (11)  

The component of the Helmholtz free energy due to order 

F, = Us - TS, 

+(a$ + b z  - c )  - log exp (ax: + bzf) dxi] , (12) s: 
3.2 THE EQUILIBRIUM CONDITIONS 

ordered phase is 
The thermodynamic condition for the equilibrium of the 
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Clearly (13) vanishes when 

and 

Similarly, i t  can be proved that (aFs/as,)V,T vanishes under the 
same circumstances. Therefore, (14) and (15) represent the two 
conditions of equilibrium of the ordered system. Hereafter the 
suffix i in x4, xi", etc. will be omitted. 

3.3 VOLUME CHANGE AND LATENT HEAT OF TRANSITION 

- -  

The Gibbs free energy of the nematic phase at  Tc may be 
written as 

G ,  = P , ( V , , T , ) + F , ( V , , T , ) + P c V V , ,  

where F, is the component of the Helmholtz free energy due to 
the isotropic liquid (or the completely disordered system) and 

F 
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160 MOLECULAR CRYSTALS A N D  LIQUID C R Y S T A L S  

F ,  the component due to order, and V1 the molar volume of 
the liquid crystal at T,. For the isotropic liquid we have 
similarly 

c f l  = YZ(V2, Te) + P, V 2 ,  

where V ,  is the molar volume of the liquid at T,. Therefore, 

Q n  - G ,  =J ' t (V , ,Te )  - F t ( v z , T c )  +Fs(J ' , ,Tc )  - P c d V ,  (16) 

where dV = V 2  - Vl is the change of volume at T,. Further 

Noting that the pressure of the liquid at  ( T c ,  V,) is P,, we may 
Put 

P,(V, T,) = P, + ($) (V  - Vz). 
TC 

Since (aP,/aV)rrC N - l /PV, ,  where 8 is the isothermal com- 
pressibility of the liquid a t  T, , 

= P,dV - & l P * d V ,  

where d P  = P, - P,(V1, T,), 
But we know that for the nematic phase 

Pc = Pl( V1, Tc) + P,Vl> TC), (18) 

where P, is the contribution of the orientational order to the 
pressure, so that from (16), (1 7)  and (1 8), 
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THEORY O F  ORIENTATIONAL ORDER 161 

Since the Gibbs free energy does not change at the transition, 

G ,  - G ,  = 0 and A V  = -2P,/(aP,/av)~,,. (19) 

where s stands for the orientational order. As we have seen 
earlier, the equilibrium of the phase requires that 

Hence, from (12) 

But, it is easily shown from (1 1) that 

Therefore, from (10) 
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162 MOLECULAR CRYSTALS A N D  L I Q U I D  CRYSTALS 

where u is the coefficient of thermal expansion and ,!I the iso- 
thermal compressibility of the liquid a t  T,  . Therefore 

1 - h'3(Vl, T,) 

assuming that alp is sensibly constant over the range A V .  Both 
a and /2 are known to exhibit a very slight increase with increase 
of volume (see, for example, Bridgmana5) but as we are con- 
cerned here with volume changes of the order of a fraction of a 
per cent, we may justifiably neglect the variation of alp. 

3.4 SPECIFIC HEAT AND COMPRESSIBILITY 

be written a3 
The specific heat at  constant volume of the nematic phase may 

Cv,(T)  = Ce,(T)  + C , p )  

where C,(T) is the contribution due to order and C,, that  due to 
the completely disordered system. 

from (10). The specific heat at  constant pressure of the nematic 
phase is 

where p is the isothermal compressibility. Using a similar 
expression for the liquid phase 

In  order to evaluate /I theoretically, we assume that the 
pressures due to  order and disorder are additive, so that to a 
good approximation 
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Since 

we obtain from (go), 

($) S = 3 N k T [ + b { ( $ ) T  - ?} + av - ?)I, (26) 

Differentiating (8) and (9) with respect to  volume it  can be 
shown that 

(28) 3 
V 

These equations can be solved for (&,/a V ) T  and ( a s , / a V ) ~ .  
By differentiating (8) and (9) with respect to temperature, we 
get a similar pair of equations from which (as,/aT)v and 
(as,/aT)v can be evaluated. Substituting these quantities in (23)' 
(26) and using (24) and (25) the specific heat a t  constant pressure 
and the isothermal compressibility of the nematic phase can 
be evaluated theoretically provided the contributions due to dis- 
order are known. 

- -1 - - - - [,{G - (a)z> + b(x" - 2 4  * XZ) . 

4. Application of the Theory to p-azoxyanisole 
Para-azoxyanisole is undoubtedly the most extensively studied 

of the nematic compounds. Its molecular orientation parameter 
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s1 has been determined over a wide temperature range by several 
methods : from birefringence,@.a nuclear magnetic re~onance,~ 
electron spin resonance,Z@ infrared,a' ultravioletzs and diamagnetic 
anisotropy*Q.5 studies. Measurements have also been made of 
its latent heat30-33 and volume change4 at the nematic isotropic 
transition point, and of its d e n ~ i t y , ~  specific heat30v3' and ultra- 
sonic velocity34-36 in the liquid crystalline and liquid phases. 
We shall now apply the theory in detail to  this compound, 
evaluate its thermodynamic properties and compare them with 
the experimental data. 

The following integrals were necessary for the theoretical 
calculations : 

j:z.. exp (a24 + bz2) dz, n = 0,1,2,3,4. 

Applying Simpson's method, the five integrals were evaluated 
numerically with the aid of a computer for ranges of values of a 
and b in steps of 0.1. A suitable interpolation procedure was 
employed for intermediate values when required. The appro- 
priate values of a and b were chosen that gave the correct 
magnitude for d V / V  according to (21) and also led to a satis- 
factory curve for s1 as a function of temperature. Precise density 
determinations at different temperatures in the liquid crystalline 
and liquid phases of p-azoxyanisole have been made by Maier 
and S a ~ p e , ~  who have also reported a value of A V / V  = 0.0035. 
Using the density measurements (and the empirical formula for 
the density as a function of temperature proposed in a previous 
paperz2 for interpolation and extrapolation wherever necessary) 
the theoretical curve for s, was calculated using the equilibrium 
conditions (14) and (15). The constants of the potential function 
for p-azoxyanisole which give a value of A V / V  = 0.0035 and a 
good fit for the s1 curve were found to be 

B = 4.5448 x lo-@ erg cms, 
erg cme. D = - 1.0460 x 

The theoretical curve for s1 along with recent experimental 
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0 2  

0.0 

values is shown in Fig. 1 and it can be seen that the fit is satis- 
factory. The broken curve represents the variation predicted 
by the theory of Maier and Saupe. 

To evaluate the heat of transition from (22) we require the 
coefficient of thermal expansion cc of the liquid, which has been 
measured by Maier and Saupe,4 and the isothermal compressi- 
bility /3 which has been evaluated by Kapustin and B y k o ~ a ~ ~  
from their ultrasonic velocity measurements. Both ct and /3 

I 
I 
I 
I - I 
I 

1. I 
I 
I 
I 
I 
I 

I I I I I 

Figure 1. The long range orientational order parameter s1 as a function of 
teniperatnre in p-azoxyanisole. ---- present theory ; - - - - -- theory 
of Maier and Saupe; 0 experimental data of Glarum and Marshall2G 
(from ESR measurements) ; data of Saupe" (from optical mea,sure- 
ments) ; 0 data of Chandrasekhar and Madhusudanae (from optical 
measurements). 

exhibit anomalous behaviour in the liquid phase just above the 
transition point. The values decrease rapidly a t  first as the 
temperature rises, and then gradually become linear functions 
of temperature as in normal liquids. A reasonable extrapolation 
of these quantities to lower temperatures from the linear 
region is possible. .The extrapolated values correspond to the 
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contributions of the completely disordered system in our theory. 
Using the extrapolated values of u = 7.52 x 10-4  per degree and 
/3 = 65.7 x 10-12 cm2/dyne at T, and substitution in (22) gives 
H = 1230 joules/mol. The experimental values reported by the 
different authors for the latent heat required to convert the 
liquid crystal into the normal liquid are set out below : 

Arnold3O 690 joules/mol. 
Barrall et aZ.31 740 joules/mol. 
Sakevich32 780 joules/mol. 
Chow and Martire33 760 joules/mol. 

Although the different determinations do not agree well, it is 
clear that the theoretical value is significantly higher. 

The specifio heat at constant pressure and the isothermal 
compressibility of the liquid crystal have been evaluated for 
one temperature from (as), (24), (25) and (26). The contribution 
of C, due to disorder was obtained by extrapolating Arnold’s 
linear relation for the normal liquid, At T, - 1, the calculated 
C, and /3 are 574.1 joules/mol deg and 135.3 x cm2/dyne as 
compared with the experimental values of 606.2 joules/mol deg18 
and 88.2 x 10-12 cm2/dynez4 respectively. The specific heat is in 
fair agreement, but the compressibility is considerably higher 
than the observed data. 

The reason for the discrepancy between theory and experiment 
is readily understood. We have worked out the orientational 
potential energy of a single molecule in the field due to its surround- 
ing medium disregarding entirely the correlations between neigh- 
bouring molecules, which undoubtedly exist not only in the liquid 
crystal but also in the liquid. As far as the “ excess ” properties 
associated with long-range order are concerned, a simple though 
not rigorous method of taking into account the influence of 
local ordering is to reduce the effective number of independent 
molecular entities, i.e., to replace the Avogadro number N by 
N/n,  where n is a correction factor. It is seen from (8), (14), 
(15) and (21) that this does not affect the calculations of s1 and 
d V / V ,  but it does alter the latent heat of transition, specific 
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heat and compressibility given by (22), (23) and (26) respectively. 
The results for H are set out below: 

Theoretical Experimental 
n = l  n = 2  n = 3  n = 4  

H 1230 798 655 583 690, 740, 780, 760 joules/mol. 

The agreement is much better for n = 2 and 3 than for n = 1 
and 4. The theoretical curves for the specific heat and the com- 
pressibility are shown in Figs. 2 and 3 for n = 2 and 3. The 
dashed lines are the contributions due to disorder obtained by 
extrapolating t'he values for the normal liquid. H and /? are 
rather sensitive to n, but not C, . This is because an increase of n 
decreases C, as well as /?, so that C, changes only slightly. 
Owing to the scatter in the experimental data it is not possible 
to estimate n precisely, but a value slightly less than 3 appears 

T-Tc 

Figure 2. Specific heat at constant pressure of p-azoxyanisole in nematic 
phase as a function of temperature. ~- theoretical variation ; 
- - - - - - - contribution due to disorder extrapolat,ed from the data for 
normal liquid; 0 experimental values of 
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-20 -10 0 10 

T- T, 

Figure 3. Isothermal compressibility of p-azoxyanisolo in the nematic 
phase &s a function of temperature. theoreticd variation ; 
- - - - - - - contribution due to disorder extrapolated from the data for 
the normal liquid; 0 experimental data of Gabrielli and Verdinis4; 

data of Hoyer and NolleJ5; 0 data of Kapustin and Bykova.s6 

to give the best over-all fit. The observed variation of with 
temperature is somewhat faster than given by theory. Recalling 
that /3 involves the second differential of the energy with respect 
to volume, the slight difference in the rate of variation is at 
least partly due to the approximation made that the potential 
energy has an average V+ dependence. 

5. The Magnetic Birefringence in the Liquid Phase 
The factor n may be interpreted crudely as the effective number 

of perfectly aligned molecules in a cluster. The magnetic bire- 
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fringence in the liquid phase provides a means of estimating n 
approximately. If xI, and xL are the principal diamagnetic 
susceptibilities of the molecule and u and tcL its principal optical 
polarizabilities, the corresponding values for the duster may be 
taken to be nXI ,  , nXL and nu,, , nuL. Applying the standard 
theory (see, for example, Beams3'), i t  is readily shown that the 
Cotton-Mouton constant 

where v is the number of molecules/cc and p the refractive 
index of the liquid in the absence of the magnetic field. 

The magnetic birefringence of p-azoxyanisole in the liquid 
phase has been measured at  different temperatures relative to 
that of nitrobenzene by Zadoc-Kahn.38 At the highest tem- 
perature (T,  + 52"), where the magnetic behaviour is that  of a 
normal liquid, C is 2.7 times the value for nitrobenzene for X5780. 
The principal diamagnetic susceptibilities of the crystal, which 
have been determined by Foex,29 give (x ,I - xl) = 10.4 x 1 0-30 cc. 
(The degree of orientational order in p-azoxyanisole in the nematic 
phase derived from Foex's data is about 10% higher than that 
obtained by other methods,S suggesting that his value of the 
diamagnetic anisotropy may be a little low. The value of n 
calculated below may thus be a slight over-estimate). Substi- 
tuting C for nitrobenzene = 235 x 
(see reference 8), p = 1.620 and the density p = 1.102 (p and p 
being obtained by extrapolating the values a t  lower tempera- 
tures), n turns out to  be 4.0. 

It is gratifying to note that n is of the same order as that 
estimated from the thermodynamic theory. 

To summarize : starting from an intermolecular potential 
function of the form 

ull - aL = 35.4 x 

) 
3 c0s2 e - 1 3 cos2 ei - I 

2 
U, = - V-3 B [( 2 

3 ms2e - 1 5 cOs4ei - 1 5 ~ 0 8 4  8 - 1 3 c0s2ei - 1 
2 -t. 4 
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based on dispersion and repulsion forces, a theory is developed of 
the nematic liquid crystalline phase. Putting B = 4.5448 x 10-6, 
D = - 1.0460 x 10-8 and n - 3, where n is a numerical factor to 
allow for the effect of short-range order, the following physical 
properties have been derived theoretically for p-azoxyanisole 
which are in good quantitative agreement with the experimental 
data : 

ti) 

(ii) 

the long-range orientational order parameter s1 = 

4(3 cos2 8 - 1) and its variation with temperature; 
the volume change a t  the nematic-liquid transition point ; 

(iii) the latent heat of transition to the liquid phase ; 
(iv) the specific heat at constant pressure and its variation 

(v) the isothermal compressibility and its variation with 

~ 

with temperature ; 

temperature. 

The magnetic birefringence of p-azoxyanisole in the liquid phase 
confirms the existence of short-range order. 
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