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A delay differential equation model on harmful algal blooms
in the presence of toxic substances
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The periodic nature of blooms is the main characteristic in marine plankton ecology.
Release of toxic substances by phytoplankton species or toxic phytoplankton reduce the
growth of zooplankton by decreasing grazing pressure and have an important role in
planktonic blooms. A simple mathematical model of phytoplankton–zooplankton systems
with such characteristics is proposed and analysed. As the process of liberation of toxic
substances by phytoplankton species is still not clear, we try to describe a suitable
mechanism to explain the cyclic nature of bloom dynamics by using different forms of
toxin liberation process. To substantiate our analytical findings numerical simulations are
performed and these adequately resemble the results obtained in our field study.
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1. Introduction

Plankton are the basis of all aquatic food chains and phytoplankton in particular occupy
the first trophic level. Phytoplankton do huge services for our earth: they provide food
for marine life, oxygen for human life and also absorb half of the carbon dioxide which
may be contributing to global warming (Duinker & Wefer, 1994). The dynamics of rapid
(massive) increase or almost equally decrease of phytoplankton populations is a common
feature in marine plankton ecology and known as bloom. This phenomenon can occur in a
matter of days and can disappear just as rapidly. In recent years there has been considerable
scientific attention towards harmful algal blooms (HABs) (e.g. Blaxter & Southward, 1997;
Stoermer & Smol, 1999). Several authors have argued that there has been a global increase
in harmful phytoplankton blooms in recent decades (e.g. Andersonet al., 1990; Smayda,
1990; Hallegraeff, 1993). In a broad sense planktonic blooms may be categorized into
two types, ‘spring blooms’ and ‘red tides’. Spring blooms occur seasonally as a result of
changes in temperature or nutrient availability which are connected with seasonal changes
in thermocline depth and strength, and consequent mixing. Red tides are the result of
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localized outbreaks associated with water temperature (see Truscott & Brindley, 1994).
They are also associated with greater stability of the water column and higher growth rates.

Blooms of blue-green algae have been linked to health problems ranging from skin
irritation to liver damage depending on time and duration of exposure. The livelihood
of many fish and shellfish have also been endangered due to toxin. Blooms of red tide
produce chemical toxins, a type of paralytic poison which can be harmful to zooplankton,
finfish, shellfish, fish, birds, marine mammals and humans also. Only a few dozen of the
many thousands of species of microscopic or macroscopic algae are repeatedly associated
with toxic or harmful blooms. Some species, such as the dinoflagellateAlexandrium
tamarenseand the diatomPseudo-nitzschia australis(Work et al., 1993) produce potent
toxins which are liberated into the water before they are eaten and they may well affect
zooplankton when they are in water. It is now well established that a significant number of
phytoplankton species produce toxin, such asPseudo-nitzschia sp, Gambierdiscus toxicus,
Prorocentrum sp, Ostrepsis sp, Coolia monotis, Thecadinium sp, Amphidinium carterae,
Dinophysis sp, Gymnodinium breve, Alexandrium sp, Gymodinium catenatum, Pyrodinium
bahamense, Pfiesteria piscicida, Chrysochromulina polylepis, Prymnesium patelliferum,
P.parvum(see Steidingeret al., 1996; Nielsenet al., 1990; Aure & Rey, 1992; Hallegraeff,
1993).

Reduction of grazing pressure of zooplankton due to release of toxic substances by
phytoplankton is one of the most vital parameters in this context (see Keating, 1976;
Lefevreet al., 1952; Kirk & Gilbert, 1992; Fay, 1983). There is also some evidence that
herbivore (zooplankton, see Odum, 1971) grazing plays a crucial role in the initial stages
of a red tide outbreak (Wyatt & Horwood, 1973; Levin & Segel, 1976; Uye, 1986). Areas
rich in some phytoplankton organisms, e.g.Phaeocystis, Coscinodiscus, Rhizosolenia, are
unaccepted/avoided by zooplankton due to dense concentration of phytoplankton or the
production of toxic as well as unpleasant factors by them and this phenomena can be
well explained by the ‘exclusion’ principle (see Odum, 1971; Boney, 1976). Buskey &
Stockwell (1993) have demonstrated in their field studies that micro and meso zooplankton
populations are reduced during the blooms of a chrysophyteAureococcus anophagefferens
off the southern Texas coast. Toxicity may be a strong mediator of zooplankton feeding
rate, as shown in both field studies (Estepet al., 1990; Nielsenet al., 1990; Hansen, 1995)
and laboratory studies (Huntleyet al., 1986; Ives, 1987; Buskey & Hyatt, 1995; Nejstgaard
& Solberg, 1996). These observations indicate that the toxic substance as well as toxic
phytoplankton plays an important role in the growth of the zooplankton population and has
agreat impact on phytoplankton–zooplankton interactions.

The process of production of toxic substances by phytoplankton species is still not
clear. Modelling on plankton communities in HABs is very rare in the literature. Franks
(1997) reviewed different models which describe the phenomenon of red tide outbreak. To
our knowledge, in describing bloom phenomena HAB models do not take into account the
effect of toxin which causes the grazing pressure of zooplankton to decrease. The release
of toxic substances by phytoplankton may terminate the planktonic blooms—something
which is not yet well recognized but cannot be ignored; naturally, interdisciplinary
involvement of experimental ecologists and mathematical ecologists is necessary. This
study is devoted to establishing the role of toxin in the reduction of grazing pressure of
zooplankton with the help of both field study and mathematical modelling. We believe
that it is the first model in this direction. Monitoring of plankton population was carried
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out throughout the year 2000 off the north west coast of the Bay of Bengal. As we are
interested to report the effect of toxic phytoplankton on zooplankton, we choseNoctiluca
scintillans (phytoplankton) andParacalanus(zooplankton) for this study. Motivated by
our field observations, a mathematical model of the phytoplankton–zooplankton system in
which the grazing pressure of zooplankton decreases due to toxic phytoplankton species
is proposed and analysed. As the process of toxin liberation is still not clear, we shall try
to explain the bloom dynamics by assuming various forms of toxin liberation process and
also by the cyclic nature of the system through periodicity.

2. Formulation of the model

2.1 Observational background

In this study we concentrate our observations on the effects of harmful phytoplankton on
planktonic blooms, and on what follows. The study area extends from Talsari (Orissa,
India) to Digha Mohana (West Bengal, India) on the north west coast of the Bay of Bengal
(geographically the area is situated between 21◦37′ Northern Latitude, 87◦25′ Eastern
Longitude and 21◦42′ Northern Latitude, 87◦31′ Eastern Longitude, see Fig. 1). The study
was carried out during the period Jan–Dec 2000. Samplings were done aboard a 10 m
fishing vessel hired from the Talsari fish landing centre. Frequency of sampling was every
fortnight except for the months of September and October when, because of the roughness
of the sea, the sampling programme had to be suspended. Plankton samples were collected
both from the surface and subsurface water (1–2 m depth) by a horizontal plankton tow
with a 20µm mesh net 0.3 m in diameter. The collected samples were preserved in 3%
formaldehyde in seawater. Counting of phytoplankton was done under microscope using
a Sedgewick–Rafter counting cell and counts are expressed in no/litre. Identification of
the plankton community was done following Davis (1955); Newell & Newell (1979)
and Tomas (1997). There were altogether 16 sampling days in the year 2000. Numbers
of samples (surface collection) analysed were 112. The study reveals the presence of
altogether 115 phytoplanktonic species of which 65 are from the diatoms followed by 19 of
green algae (Chlorophyceae), 9 of blue-greens (Cyanophyceae) and 22 of Dinoflagellates
from the surface waters. In each group there were some unidentified species. Out of the
total 22 species of Dinoflagellates identified both from surface and subsurface water,
only three species (Dinophysis acuta, Noctiluca scintillansandProrocentrum sp.) were
noted as harmful (Richardson, 1997). Six species of the diatoms examined in both the
surface and subsurface water (Chaetoceros spp., Skeletonema costatum, Cerataulina spp.
Leptocylindricus spp., Nitzschia spp.andPhaeocystis spp.) are believed to be harmful alga
(Sourina, 1995).

Our tested phytoplankton species isNoctiluca scintillansbelonging to the group
Dinoflagellates, which is also capable of producing toxin that are released into the seawater.
Among zooplankton species we choseParacalanusbelonging to the group Copepoda
which dominates the zooplankton in community in all the world oceans, and is the
major herbivore which determines the form of the phytoplankton curve. The blooms of
Noctiluca scintillansoccur in January and December.Paracalanusbloom also coexists
with Noctiluca scintillans. Figure 2 shows that after the bloom of both the species
(see the high peak obtained on the sampling date 20/01/2000),Noctiluca scintillans
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FIG. 1. Map of coastal region of West Bengal and part of Orissa, India. (Source: CIFRI, Barrackpore, India.)

decreases and simultaneously theParacalanusalso decreases. The population ofNoctiluca
scintillansthen remains very low up to the sampling date 29/11/2000 and during this period
the Paracalanusdoes not show any large change in population. On the sampling date
13/12/2000 we again observe that both species attain another high peak and then slowly
decrease. This observation indicates thatNoctiluca scintillansattaining the first peak in
January (withParacalanusalso present in high abundance) starts to release toxic substance,
and as a result it controls the bloom ofParacalanuspopulation and also its own bloom. This
phenomenon persists for a long time (probably due to the effect of toxin concentration)
until there is again a low concentration of toxin, both populations again bloom and the
process continues. Our experimental result is similar to the observation at Vasilev Bay,
where Paracalanus sp.decreased drastically after 1987 due to increase in biomass of
Noctiluca scintillans(see Kideyset al., 2001). Although the chemical toxin released by
phytoplankton is not yet tested, the results of our field observations as well as what is
already known motivaties us to formulate a mathematical model on the phytoplankton–
zooplankton system in which the grazing pressure of zooplankton decreases due to release
of toxic substances by the phytoplankton species. It may be noted that the reduction of
grazing pressure of zooplankton due to release of toxic substances will have an important
role in the termination of planktonic bloom—our analysis bears out this fact very nicely.

2.2 Mathematical model

In the formulation of the model we assume that the growth of phytoplankton population
follows the logistic law (see Murray, 1989; Odum, 1971) with intrinsic growth rater and
environmental carrying capacityK . It is already confirmed by our field observation and
the literature that toxic substances released by phytoplankton reduce the grazing pressure
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FIG. 2. Field observation during the year 2000.

of its predator, zooplankton. As the fractional changes in the phytoplankton population
per unit time effectively illustrates the impact of predation on the population at any
particular time, it is interesting to examine the specific predation rate for the system as
the outbreak advances (see Truscott & Brindley, 1994). It is well known that at certain
times, conditions (adequate temperature, proper light intensity, warmer water and minimal
predation pressure) are adequate for planktonic growth. The phytoplankton will continue
to bloom until one or more of the key factors prompting phytoplankton growth is no longer
available. Keeping the above-mentioned facts of phytoplankton–zooplankton population in
mind, we assume two predational forms for describing the dynamics. When phytoplakton
populations do not produce toxin, we assume that the predation rate will follow the simple
law of mass action. But as liberation of toxin reduces the growth of zooplankton, it causes
substantial mortality of zooplankton and in this period phytoplankton population is not
easily accessible, hence a more common and intuitively obvious choice is of the Holling
type II functional form to describe the grazing phenomenon. Moreover, saturation of
grazing function allows the phytoplankton population to escape from the grazing pressure
of the zooplankton and form a tide. This suppression of grazing is usually associated
with active hunting behaviour on the part of the predator, as opposed to passively waiting
to encounter food, and there is a maximum rate of consumption per individual however
large the phytoplankton population becomes. Holling type II or type III predational form
(Ludwig et al., 1978) is an obvious choice to represent the hunting behaviour of predator.
In reality, the raptorial behaviour of Copepods is highly complex and exhibits a hunting
behaviour (Uye, 1986), and hence type II or type III is an appropriate choice.



142 J. CHATTOPADHYAY ET AL.

From the above assumptions we can write down the following differential equations:


dP

dt
= r P

(
1 − P

K

)
− αP Z

dZ

dt
= β P Z − µZ − θ P

γ + P
Z.

(1)

Here P and Z represent the density of phytoplankton and zooplankton population
respectively,α(> 0) is the specific predation rate andβ(> 0) represents the ratio of
biomass consumed per zooplankton for the production of new zooplankton.µ(> 0) is
the mortality rate of zooplankton.θ(> 0) is the rate of toxin production per phytoplankton
species andγ (> 0) is the half saturation constant.

System (1) has to be analysed with the following initial conditions:

P(0) > 0, Z(0) > 0. (2)

System (1) has the following non-negative equilibria: namely, a trivial equilibrium
E0(0, 0), an axial equilibriumE1(K , 0) and the interior equilibriumE∗(P∗, Z∗), where

P∗ = −(βγ − µ − θ) + √
(βγ − µ − θ)2 + 4βγµ

2β
(3)

Z∗ = r

α

(
1 − P∗

K

)
. (4)

A simple algebraic calculation shows that a necessary and sufficient condition for the
existence of positive equilibriumE∗ is

θ < (βK + βγ − µ) − γµ

K
. (5)

Wefirst observe that the right-hand side of system (1) is a smooth function of the variables
(P, Z) and the parameters, as long as these quantities are non-negative, so local existence
and uniqueness properties hold in the positive quadrant.

From the first equation of system (1), it follows thatP = 0 is an invariant subset, that
is P = 0 if and only if P(t) = 0 for somet . Thus, P(t) > 0 for all t if P(0) > 0. A
similar argument follows forZ = 0 from the second equation of system (1).

Now, we consider the boundedness of solutions of system (1).

LEMMA 2.1 All the solutions which initiate in{R2+\0} are uniformly bounded.

Proof. Wedefine a function

W = β P + αZ. (6)

The time derivative of (6) along the solutions of (1) is

dW

dt
= rβ P

(
1 − P

K

)
− αµZ − βθ P

γ + P
Z (7)

� rβ P

(
1 − P

K

)
− αµZ (8)

= [rβ P

(
1 − P

K

)
+ µβ P] − µW. (9)
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The term[rβ P(1− P
K ) + µβ P] has a maximum value, so the above expression reduces to

dW

dt
+ µW � C (10)

whereC = βK (µ + γ )2

4r
. (11)

Applying the theorem of differential inequality (Birkhoff & Rota, 1982), we obtain

0 < W(P, Z) � C
µ
(1 − e−µt ) + W(P(0), Z(0))e−µt

and fort → ∞, we have

0 < W �
[βKµ(1 + γ

µ
)2/4]

r
·

Hence all the solutions of (1) that initiate in{R+2\0} are confined in the region

B =
{
(P, Z) ∈ R+2 : W = C

µ
+ ε

}
,

for anyε > 0 and fort large enough. �

Note. The upper bound ofW implies that the linear combination of phytoplankton–
zooplankton population is less than a finite quantity which is determined by the ratio of
the effective growth rate of zooplankton to the net growth rate of phytoplankton.

Before analysing the model system, we would like to mention the meaning of the
periodic nature of blooms. It is well established that the occurrence of more than one
bloom in a season suggests that the features influencing a red tide event are cyclic (e.g.
see Satora & Laws, 1989). The periodic nature of blooms, in the sense of the rapid onset
and disappearance of oscillations under supposedly favourable environmental condition,
is one of the main characteristics in plankton ecosystems. This may happen in two ways:
namely multistability, in which the system tends to one of the coexisting stable equilibria,
and periodicity (Hopf bifurcation), in which the system oscillates around an unstable
equilibrium. At this point it may be mentioned that an external forcing agent in a proper
measure can also bring out the essential physicalities of the system under study. But we
feel that such an addition only suppresses a proper understanding of the system. This is
because, given the extent of the regulatory behaviour shown by the system, the external
forcing agent remains to a large extent arbitrary and needs very fine tuning for which there
may not be any adequate explanation.

Hence we are trying to explore a suitable mechanism for planktonic blooms which is
present within the system.

3. Stability analysis

Local stability analysis (LAS) of system (1) around the equilibria can be studied by
computing a variational matrix.



144 J. CHATTOPADHYAY ET AL.

It is easy to see that the trivial equilibriumE0 is an unstable saddle point. Existence of a
positive interior equilibrium implies that the axial equilibriumE1 is also an unstable saddle
in character. Violation of positive equilibrium ensures thatE1 is locally asymptotically
stable. The characteristic equation of system (1) around the positive interior equilibrium
E∗ is given by

λ2 − Mλ + N = 0 (12)

where

M = −r P∗

K
(< 0) (13)

N = αP∗Z∗

(γ + P∗)2
[β(γ + P∗)2 − θγ ]. (14)

It can be easily verified from the second equation of system (1) thatθ � β(γ+P∗)2

γ
can

never be a solution of the system, hence simple bifurcation is also not possible in this case.
Now sinceM < 0, the system (1) aroundE∗(P∗, Z∗) is locally asymptotically stable.

To investigate the global behaviour of system (1) we first prove that system (1)
aroundE∗ has no nontrivial periodic solutions. The proof is based on an application of
a divergence criterion (Hale, 1993).

Let h(P, Z) = 1
P Z . Obviously h(P, Z) > 0 if P > 0, Z > 0.

Wedefine

g1(P, Z) = r P

(
1 − P

K

)
− αP Z (15)

g2(P, Z) = β P Z − µZ − θ P Z

γ + P
(16)

∆(P, Z) = ∂

∂ P
(g1h) + ∂

∂ Z
(g2h), (17)

and find that

∆(P, Z) = − r

K Z
(18)

which is less than zero for allP > 0, Z > 0. Therefore by the Bendixon–Dulac criterion,
there will be no limit cycle in the first quadrant.

Now, we are in a position to prove the following theorem.

THEOREM 3.1 Existence of a positive interior equilibrium ensures that system (1) around
E∗(P∗, Z∗) is globally asymptotically stable.

Proof. The proof is based on the following arguments:

(a) System (1) is bounded and positively invariant in the first quadrant ifθ < (βK +
βγ − µ) − γµ

K .
(b) Trivial equilibriumE0 is always an unstable saddle point and existence of a positive

equilibrium confirms that the axial equilibriumE1 is also an unstable saddle point.
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(c) Positive equilibriumE∗ is LAS.
(d) System (1) aroundE∗ has no non-trivial periodic solutions.

From the above observations we find that there is no chance of exchange of stability.
Hence the cyclic nature of the bloom phenomenon which is very common in marine
phytoplankton–zooplankton systems cannot be explained by the above mechanism. At this
stage we wish to mention that various combinations of predational functional response
and toxin liberation process give rise to exchange of stability through Hopf bifurcation
or multistability of the positive equilibrium. But in this study we are mainly interested in
presenting a mechanism for planktonic blooms in which the liberation of toxic substance or
the effect of toxic phytoplankton is not an instantaneous process but is mediated by some
time lag.

4. Model with distributed delay

We assume that the liberation of toxic substances by phytoplankton species is not
an instantaneous process but is mediated by some time lag required for maturity of
the species. There are also several reports that the zooplankton mortality due to the
toxic phytoplankton bloom occurs after some time lapse (seehttp://www.mote.org,
http://www.mdsg.umd.edu). Our field observation also suggests that the abundance
of Paracalanus(zooplankton) population reduces after some time lapse of the bloom of
toxic phytoplanktonNoctiluca scintillans(see Fig. 2) and this allows us some considerable
freedom for considering the delay factor in the model construction.

It is not usually possible to know the past history of the release of toxic substances
by phytoplankton or the actual form of the delay kernel. So a particular member of the
family of kernels is at best an approximation. To search for excitability (and/or) a cyclic
nature of blooms in the system we now assume that the release of toxic substances by the
phytoplankton population follows a gamma distribution. This form of distributed delay
kernel has been widely used in biological modelling (see Cushing, 1997; MacDonald,
1978, and references therein) and seems to be the most useful family of reducible kernels
(i.e. delay kernels that allow a distributed delay model to be converted to an equivalent
system of ordinary differential equations). These kernels are not only mathematically
convenient, but also linear combinations of them represent a generic class of distributed
delay kernels (see Busenberg & Travis, 1982). In this case system (1) can be represented
as 


dP

dt
= r P(1 − P

K
) − αP Z

dZ

dt
= β P Z − µZ − θ

[∫ t

−∞
σ k+1 (t − s)k

k! e−σ(t−s) P(s)

γ + P(s)
ds

]
Z.

(19)

Here k, a non-negative integer, is the order of the delay kernel andσ , is real non-
negative. These are linked to the mean time lag byT = k+1

σ
. It is interesting to note that

when the value ofk increases then the phytoplankton consumed in the past by zooplankton
become more important compared to the case whenk is small. In particular, whenk = 1
we have a strong kernel and whenk = 0 we have aweak kernel in the memory function.
This system also possesses the same equilibria as in system (1).

http://www.mote.org
http://www.mdsg.umd.edu
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Stability analysis of each equilibrium can be performed by using a variational matrix.
The behaviour of this system aroundE0 and E1 is the same as we observed in the previous
case.

The characteristic equation of system (19) aroundE∗(P∗, Z∗) is

λ

(
λ + r P∗

K

)
− θαγ P∗Z∗

(γ + P∗)2
Gk(λ) + αβ P∗Z∗ = 0 (20)

where

Gk(λ) =
∫ t

−∞
σ k+1 (t − s)k

k! e−(σ+λ)(t−s) ds. (21)

Weshall study system (19) withk = 1.

In this caseG1(λ) =
(

σ
λ+σ

)2
and the characteristic equation becomes

λ

(
λ + r P∗

K

)
(λ + σ)2 − θαγ P∗Z∗

(γ + P∗)2
σ 2 + αβ P∗Z∗(λ + σ)2 = 0. (22)

Equation (22) can be written in the form

λ4 + f1(σ )λ3 + f2(σ )λ2 + f3(σ )λ + f4(σ ) = 0

where

f1(σ ) = 2σ + r P∗

K
(23)

f2(σ ) = σ 2 + 2σ r P∗

K
+ αβ P∗Z∗ (24)

f3(σ ) = σ 2r P∗

K
+ 2αβσ P∗Z∗ (25)

f4(σ ) = αβσ 2P∗Z∗ − θαγ σ 2P∗Z∗

(γ + P∗)2
. (26)

By using the Routh–Hurwitz criterion, we find that the real part of all roots are
negative. So in this case also there is no possibility for exchange of stability. Hence
the cyclic nature of blooms cannot be explained by this type of distribution of toxic
substance or toxic phytoplankton. The prediction based on the system involving distributed
delay illustrates that concentration of toxic substances or toxic phytoplankton eventually
approaches equilibrium concentration and hence no periodic solutions are possible. It is
also worth noting that if the order (k) of the delay kernel, goes to infinity while keeping
the mean delay,T = k+1

σ
fixed, then the distributed delay can be viewed as a discrete

delay (for details see Wolkowiczet al., 1997). Now, to explain the periodic nature of
bloom phenomena we shall assume the process of toxic liberation as a break-even point by
discrete delay.
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5. Model with discrete delay

We now assume that the process of toxic liberation follows a discrete time variation.
System (1) now takes the form

dP

dt
= r P

(
1 − P

K

)
− αP Z

dZ

dt
= β P Z − µZ − θ P(t − τ)

γ + P(t − τ)
Z


 (27)

whereτ is the discrete time delay.
As in the previous two cases system (27) has the same equilibria. System (27) around

E0 is an unstable saddle. Existence ofE∗ implies thatE1 is also an unstable saddle. Non-
existence ofE∗ implies thatE1 is stable in nature.

To investigate local asymptotic stability of system (27) aroundE∗ we perturb the
system (27) aroundE∗(P∗, Z∗) and obtain the following system of differential equations:

dx

dt
= Ax + By + a11xy + a20x2

dy

dt
= Cx + Ex(t − τ) + b11xy + b′

11
x(t − τ)y

γ + x(t − τ)
+ b′

12
x(t − τ)

γ + x(t − τ)
(28)

where

x = P − P∗, y = Z − Z∗, A = −r P∗

K
, B = −αP∗,

C = βZ∗, E = − θγ Z∗

(γ + P∗)2
,

a11 = −α, a20 = −r

K
, b11 = β,

b′
11 = θ, b′

12 = −θ Z∗. (29)

Retaining only the linear terms in (28), the linearized system becomes

dx

dt
= Ax + By

dy

dt
= Cx + Ex(t − τ). (30)

System (30) can be written as

d2x

dt2
− A

dx

dt
− BCx− BEx(t − τ) = 0. (31)

Weassume a solution of the formx(t) = eλt , and we have the corresponding characteristic
equation as

∆(λ, τ ) = λ2 − Aλ − BC − BEe−λτ = 0. (32)
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Now substitutingλ = α1+ iω in (32) and separating the real and imaginary parts we obtain
the system of transcendental equations

α1
2 − ω2 − Aα1 − BC − BEe−α1τ cosωτ = 0

2α1ω − Aω + BEe−α1τ sinωτ = 0. (33)

The stability or instability of the system is determined by the sign of thoseλ satisfying
(32) if λ is real or the sign ofα1 satisfying (33) ifλ is complex.

THEOREM 5.1 The following are necessary and sufficient conditions forE∗ to be
asymptotically stable for everyτ � 0:

(1) The real part of every root of∆(λ, 0) = 0 is negative.
(2) For all realω0 andτ � 0, ∆(iω0, τ ) �= 0.

THEOREM 5.2 As A < 0 andB < 0, then in the parametric region−E < C the interior
equilibrium E∗ of system (27) is locally asymptotically stable for 0< τ < π

ω0
.

Proof. From (32) it is clear thatE∗ is asymptotically stable forτ = 0 if −E < C.
Proving the second condition of Theorem 3.1 requires the Nyquist criterion and its

consequences. Consider (30) and the space of all real-valued continuous functions defined
on [−τ, ∞) satisfying the initial conditionx(t) = 0 for −τ � t < 0, x(0+) = P1 > 0
andẋ(0+) = P2 > 0. After taking the Laplace transform of (31) and simplifying, we have

L(x(s)) ≡ L(s) = P1s + P2 − AP1

s2 − As− BC − BEe−τs
. (34)

The inverse Laplace transform ofL(s) will have terms which increase exponentially
with t if L(s) has poles with positive real part. Thus it is clear that a condition for stability
of E∗ is that all poles ofL(s) have negative real parts. We apply the Nyquist criterion
(see Thingstad & Langeland, 1974) to conclude whetherL(s) has any pole in the right
half-plane. This criterion leads us to the conditions

Im ψ(iω0) > 0 (35)

Reψ(iω0) = 0 (36)

where

ψ(s) = s2 − As− BC − BEe−τs, (37)

with ω0 the smallest positive value ofω for which (36) holds. Now,

ψ(iω0) = −ω0
2 − i Aω0BC − BE(cosω0τ − i sinω0τ)· (38)

Im ψ(iω0) = −Aω0 + BE sinω0τ (39)

and

Reψ(iω0) = −ω0
2 − BC − BE cosω0τ . (40)
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Writing conditions (35) and (36) using the expressions (39) and (40) and taking account of
B < 0 andE < 0 weobtain A

BEτ
<

sinω0τ
ω0τ

andω0
2 = −BC − BE cosω0τ .

SinceA < 0, −(BE) < 0, condition (35) is satisfied for 0< τ < π
ω0

.
Further sinceB < 0, E < 0 we have

−BC − BE < −BC − BE cosω0τ < −BC + BE·
Hencez = ω0

2 andz = −BC − BE cosω0τ intersect on 0< ω0 < π
τ

. From (40) we
also have (in the parametric region−E < C)

0 < −BC − BE < ω0
2 < −BC + BE, for 0 < ω0 <

π

τ
(41)

so we have an upper boundω+ of ω0 given by

ω+ = √
BE − BC. (42)

Hence we can conclude that in our case the Nyquist criterion holds and the interior
equilibrium E∗ of the system (27) is locally asymptotically stable for all values ofτ

satisfying 0< τ < π
ω0

. �

6. Bifurcation of the solutions

In this section we state a condition under which the system goes through a point where a
Hopf bifurcation occurs. We show the existence of such aτ (= τ0) andω (= ω0).

LEMMA 6.1 If A2 + 2BC < 0 and 0� C < −E then there exists a unique pair (ω0, τ0)
with ω0, τ0 � 0, ω0τ0 < 2π such that∆(i ω0, τ0) = 0, whereω0 andτ0 are given by (46)
and (51), respectively.

Proof. From∆(iω0, τ0) = 0 and from (39) and (40) we have

−Aω0 + BE sinω0τ0 = 0 (43)

and

−ω0
2 − BC − BE cosω0τ0 = 0. (44)

Squaring and adding together (43) and (44) we arrive at

ω0
4 + (A2 + 2BC)ω0

2 + (B2C2 − B2E2) = 0. (45)

We see from (45) thatλ has a pair of purely imaginary roots of the form±iω0 provided
A2 + 2BC < 0 and 0� C � −E.

The corresponding roots of (45) in this case are

ω0
2 = 1

2
[−(A2 + 2BC) +

√
(A2 + 2BC)2 − 4(B2C2 − B2E2) ] (46)

Using (43) in (44), we obtain

−[ (BE)2(1 − cos2ω0τ0)

A2
] − BC − BE cosω0τ0 = 0
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or

(BE)2cos2ω0τ0 − BE A2 cosω0τ0 − BC A2 − (BE)2 = 0. (47)

Set

f (z) = (BE)2z2 − BE A2z − BC A2 − (BE)2 = 0. (48)

We have

f (1) = −BE2(C + E) < 0 (49)

and

f (−1) = −BE2(C − E) > 0. (50)

Hence f (z) has a real solution in (−1, 1) of the form cosω0τ0 = k, where|k| < 1. From
(43),

τ0 = 1

ω0
arcsin

(−Aω0

BE

)
+ 2nπ

ω0
, n = 0, 1, 2, . . . . (51)

In (46) we assumeA2 + 2BC < 0, so that there is only one imaginary solution
λ = iω0 (ω0 > 0) and therefore the only crossing of imaginary axis is from left to right
asτ increases and the stability of the trivial solution can only be lost and not regained.
Obviously in this casen = 0. �

LEMMA 6.2 LetA2+2BC < 0, 0 � C < −E. Then the real parts of the solutions of (32)
are negative forτ < τ0, whereτ0 > 0 is the smallest value for which there is a solution to
(32) with real part zero. Forτ > τ0, E∗ is unstable. Further asτ increases throughτ0, E∗
bifurcates into small amplitude of periodic solutions.

Proof. For τ = 0, it is obvious thatE∗ is stable. Hence by Butler’s lemma (see Freedman
& Rao, 1983),E∗ remains stable forτ < τ0. We have now to show thatdα1

dτ
|τ=τ0 > 0 where

ω = ω0 (for n = 0, 1, 2, . . . ). This will signify that there exists at least one eigenvalue
with positive real part forτ > τ0, and henceE∗ is unstable forτ > τ0. Moreover, the
conditions for Hopf bifurcation (see Hale, 1993) are then satisfied yielding the required
periodic solutions. Now differentiating (43) with respect toτ , we get

{2α1 − A + BEτe−α1τ cosωτ }dα1

dτ
+ {−2ω + BEτe−α1τ sinωτ }dω

dτ

= BEe−α1τ {−α1 cosωτ − ω sinωτ } (52)

and

{2ω − BEτe−α1τ sinωτ }dα1

dτ
+ {2α1 − A + BEτe−α1τ cosωτ }dω

dτ

= BEe−α1τ {α1 sinωτ − ω cosωτ }. (53)
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Therefore

[{2α1− A+BEτe−α1τ cosωτ }2−(2ω−BEτe−α1τ sinωτ){−2ω+BEτe−α1τ sinωτ }]dα1

dτ

= BEτe−α1τ [(−α1 cosωτ − ω sinωτ){2α1 − A + BEτe−α1τ cosωτ }
−(α1 sinωτ − ω cosωτ)(−2ω + BEτe−α1τ sinωτ)].

Now atα1 = 0, τ = τ0, ω = ω0, we have

[{−A + BEτ0 cosω0τ0}2 + {2ω0 − BEτ0 sinω0τ0}2]dα1

dτ
|(α1=0, τ=τ0, ω=ω0)

= BE[−ω0 sinω0τ0{−A + BEτ0 cosω0τ0} + ω0 cosω0τ0(−2ω0 + BEτ0 sinω0τ0)]
= BEω0[Asinω0τ0 − 2ω0 cosω0τ0]
= BEω0 p1 cos(ω0τ0 − θ1) > 0 (54)

wherep1
2 = A2 + 4ω0

2, tanθ1 = ( −A
2ω0

).

Hence dα1
dτ

|(α1=0, τ=τ0, ω=ω0) > 0. Therefore the transversality condition holds and
hence a Hopf bifurcation occurs atω = ω0, τ = τ0. �

The stability of the bifurcating branches is given in the appendix.

7. Discussion

The dynamics of planktonic bloom is very complex and the role of algal toxin in
the complex ecology of HABs is still not clear. Researchers are trying to find a
suitable mechanism for this. Apart from some noticeable poisoning by phytoplankton, the
ecological consequences of algal toxins are also not well elaborated. This allows us some
considerable freedom to formulate a mathematical model.

A simple mathematical model of phytoplankton–zooplankton (prey–predator) system
in which the grazing pressure of zooplankton reduce due to release of toxic chemical
by phytoplankton or due to toxic phytoplankton being eaten by zooplankton has been
proposed and analysed. In our study we have tried to establish the following three major
processes:

(i) the cyclic nature of the phytoplankton–zooplankton system around the positive
equilibrium,

(ii) that phytoplankton start to release toxic chemical or become toxic very quickly in the
presence of dense zooplankton population; as a result the grazing pressure decreases,
and

(iii) the toxic effect on zooplankton will help in the termination of blooms.

It was stated clearly in the introduction that toxic phytoplankton or toxic chemicals
reduce the growth of zooplankton populations and as the process of toxic liberation is
still not clear, we have investigated the model under three types of distribution of toxic
substances. We have observed that the cyclic nature of blooms which are a very common
feature in the planktonic world cannot be explained by our model formulation if the
distribution of toxic substances is of Holling type II or if it follows a gamma distribution,
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TABLE 1 Abbreviations, default values and ranges of the parameters. The ranges cover
values used by different authors in their different models as mentioned by Edwards &
Brindley (1999)

Parameters Symbols Default values Reported ranges
Maximum P growth rate r 0·2 (h−1) 0·07–0·28 (h−1)
Maximum Z grazing rate α 0·9 (l h−1) 0·6–1·4 (l h−1)
Z growth efficiency β 0·3 (l h−1) 0·2–0·5 (l h−1)
Natural death rate of Z µ 0·02 (h−1) 0·015–0·15 (h−1)
Z grazing half-saturation coefficient ν 0·06 (l−1) 0·02–0·1 (l−1)

whereas if the distribution of toxic substances is of discrete type, we have observed that
the system around the positive equilibrium enters a Hopf bifurcation and exhibits the cyclic
nature of blooms for a certain amount of time delay. To ascertain this local behaviour we
have performed the stability analysis of bifurcating periodic solutions (see the appendix)
and obtained the conditions for supercritical or subcritical bifurcation. In most situations,
the oscillation phenomena of ecological systems are generally described by distributed
delay models. The point is that reduction of grazing pressure on phytoplankton due to
release of toxin is not continuous but follows a discrete fashion. The research by JoAnn
Burkholder and others at North Carolina State University also reflects our observation.
They suggest thatPfiesteria piscicidaassumes more than 20 different forms during its
lifetime, including a difficult-to-detect cyst stage, an amoeboid stage and a toxic vegetative
stage, in which, propelled by its flagella, it can kill its predator (seehttp://www.mdsg.
umd.edu/MarineNotes/Jul-Aug97).

To substantiate the analytical findings we have used the parameter values which are
presented and discussed elaborately in Edwards & Brindley (1999). Abbreviations, default
values (which we have used) and the ranges of the parameter values are given in Table 1.
For these sets of values and forτ = 18 h,K = 400 l−1 andθ = 0·9 h−1, we haveobtained
the values ofβ1 = 0·0223115− 6·337212i, ν1 = −0·0007769111+ 0·07877564i, ν2 =
0·4992216+ 0·004632169i, g20 = 0·5868627+ 3·29125i, g02 = 2·349286+
3·496705i, g11 = −7·952592− 0·08011834i, g21 = 33·582− 13·22366i, ReC1(0) =
−13·89942, µ2 = 53499·1 andτ2 = 621·9235.

For these sets of parameter values we have obtainedµ2 > 0, the bifurcation is
supercritical and the system exhibits a stable limit cycle. Further, sinceτ2 > 0, the period
of the oscillations increases withτ . Numerical solutions of (27) were carried out using
the modified fourth-order Runge–Kutta method. The results indicate that the equilibrium
solution is stable (by decaying oscillations) for 0� τ < 18 and unstable (by growing
oscillations) forτ > 18 (see Figs 3 and 4). The system exhibits a stable limit cycle periodic
solution at the bifurcation valueτ0 = 18 h (see Fig. 5, which is quite reasonable for the life
span of phytoplankton). This observation indicates that there is a threshold limitτ , below
which the system shows no excitability and above which the system enters into excitable
range. These findings demonstrate the delayed effect of toxic phytoplankton and the cyclic
nature of blooms in this phytoplankton–zooplankton system. We would like to mention
here that in our field study we observed that the blooms reappear after 10 months whereas
our model simulation shows that the blooms reappear after 6 months. The above findings

http://www.mdsg
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FIG. 3. Numerical solution of equation (9) forτ < 18 h depicting stable situation (decaying oscillation).

FIG. 4. Numerical solution of equation (9) forτ > 18 h depicting unstable situation (growing oscillation).

show that the toxin producing planktons may act as biological control for the termination of
planktonic blooms. Although these results give only qualitative agreement (this may be due
to sampling process, environmental factors, etc.) this fact cannot be ignored. We believe
that biologists might be interested in this idea and will perform more explicit studies in the
laboratory in this direction.

We further observed that when the ratio of initial phytoplankton–zooplankton
population was 5: 1, the system around positive equilibrium exhibits a stable limit cycle
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FIG. 5. Numerical solution of equation (9) forτ = 18 h depicting periodic situation (stable limit cycle).

for τ = 18 h, but when there is a dense concentration of zooplankton (we chose initial
phytoplankton–zooplankton population ratio as 3: 1) the time lag decreases and the
periodicity (through the stable limit cycle) occurs atτ = 6 h(see Fig. 6). This result shows
the sensitivity of toxic phytoplankton in the presence of dense zooplankton populations.
Diminution of time lag also implies that toxin acts as a controlling agent in the presence
of dense zooplankton. The results obtained by our field observation also suggest that
toxic substances or toxic phytoplankton may serve as a key factor in the termination of
planktonic blooms. Thus, we may conclude that the above observations establish the role
of toxin in the reduction of grazing pressure of zooplankton. It may also be noted that
the experimental and mathematical observations of Chattopadhyayet al. (2002) and the
experimental research of Buskey & Stockwell (1993) support our conclusion.

Finally, we would like to mention that the dynamics of the planktonic community,
specifically the understanding of the role of HABs in the planktonic world, is still in a
state of infancy and hence interdisciplinary involvement is necessary. For example, the
life stage of an individual (larva, juvenile or adult) will also greatly affect the response
to a toxic substance. In general, larvae and juveniles are more vulnerable to injury or
death from exposure to these substances. Studies of the effects of toxic substances must
consider both the age and species of specimens to fully access the chemical toxicity. Also,
to study the dynamics under the presence of external force may be another interesting
problem in this context, as massive phytoplankton blooms were observed in Seto Inland
Sea, Japan (Prakash, 1987) and in Hong Kong Harbour (Lam & Ho, 1989) which were
due to artificial eutrophication, although we feel such an approach may be viewed as very
artificial and hence at present we have avoided it. So, all the possible mechanisms existing
in the planktonic world may not be captured in a single mathematical model. However, the
present simple model with its outcome may give some insight to researchers of this very
complex and important issue.



A DELAY DIFFERENTIAL EQUATION MODEL ON ALGAL BLOOMS 155

FIG. 6. Numerical solution of equation (9) forτ = 6 hdepicting periodic oscillations (stable limit cycle).
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Appendix. Stability of the bifurcation

Here we determine a formula that establishes the stability of bifurcating periodic orbits.
The calculation is based on Hassardet al. (1981). We assume the case where Hopf
bifurcation occurs (atτ = τ0 andω = ω0) and using the standard notation as in Hassard
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et al. (1981) we rewrite (28) in the form

ẋt = Aα′ xt + Rxt (A1)

wherext ∈ C([−τ, 0], �) is given byxt (θ
′) = x(t + θ ′); α′ represents the parameter

values atτ = τ0, ω = ω0.

Aα′φ(θ ′) =




dφ

dθ ′ −τ � θ ′ < 0∫ 0

−τ

dη(ρ, α′)φ(ρ) θ ′ = 0·
(A2)

Rφ(θ ′) =




(
0
0

)
−τ � θ ′ < 0


a11φ1(θ

′)φ2(θ
′) + a20φ

2
1(θ ′)

{b11φ1(θ
′)φ2(θ

′) + ´b11
φ1(θ

′ − τ)

γ + φ1(θ ′ − τ)
φ2(θ

′)

+ ´b12
φ1(θ

′−τ)
γ+φ1(θ

′−τ)
}


 θ ′ = 0

(A3)

dη(θ ′; α′) =
(

A δ(θ ′) B δ(θ ′)
C δ(θ ′) + α′δ(θ ′ + τ) D δ(θ ′)

)
dθ ′. (A4)

An eigenfunction of the problem corresponding to the eigenvalue iω0

q(θ ′) =
(

β1
1

)
eiω0θ

′
(A5)

where

β1 = B

λ − A
.

At λ = iω0

β1 = AB + iBω0

A2 + ω2
0

. (A6)

Now we define the following bilinear form:

〈ψ, φ〉 = ψ(0)φ(0) −
∫ 0

θ ′=−τ

∫ θ ′

ξ=0
ψ(ξ − θ ′)[dη(θ ′)]φ(ξ)dξ . (A7)

To obtain the corresponding adjoint eigenfunctionq́(θ ′), we use the standard result
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〈q́, q〉 = 1 and〈q́, q̄〉 = 0, lettingq́ = eiω0θ
′
(ν1, ν2), then we have

〈q́, q〉 = q́(0)q(0) −
∫ 0

−τ

∫ θ ′

0
q́(ξ − θ ′)dη(θ ′)q(ξ)dξ

= βν̄1 + ν̄2 −
∫ 0

−τ

∫ θ ′

0
e−iω0(ξ−θ ′)(ν̄1 ν̄2)

(
0
α′δ(θ ′ + τ)

) (
β1
1

)
eiω0ξ dθ ′dξ

= βν̄1 + ν̄2 −
∫ 0

−τ

∫ θ ′

0
eiω0θ

′
α′ν̄2δ(θ

′ + τ) dθ ′ dξ

= βν̄1 + ν̄2 − α′ν̄2(τ cosω0τ − iτ sinω0τ). (A8)

Therefore,

β1ν̄1 + ν̄2(1 − α′τ cosω0τ + iα′τ sinω0τ) = 1 (A9)

〈q́, q̄〉 = β̄1ν̄1 + ν̄2

−
∫ 0

−τ

∫ θ ′

0
e−iω0(ξ−θ ′)(ν̄1 ν̄2)

(
0
α′δ(θ ′ + τ)

) (
β̄1
1

)
e−iω0ξ dθ ′ dξ

= β̄1ν̄1 + ν̄2 −
∫ 0

−τ

∫ θ ′

0
e−iω0(ξ−θ ′)α′ν̄2δ(θ

′ + τ)e−iω0ξ dθ ′ dξ (A10)

Therefore,

β̄1ν̄1 + ν̄2 + iα′ ν̄2

ω0
sinω0τ = 0. (A11)

So, the required equations forν̄1 andν̄2 are

β1ν̄1 + e1ν̄2 = 1
β̄1ν̄1 + e2ν̄2 = 0

}
(A12)

where

e1 = 1 − α′τ cosω0τ + iα′τ sinω0τ

e2 = 1 + i
α′

ω0
sinω0τ


 (A13)

ν̄1 = e2

e2β1 − e1β̄1

ν̄2 = −β̄1

e2β1 − e1β̄1
.


 (A14)

Finally, we have the values ofν1 andν2 by taking the complex conjugate of (A14). Using
the notation as in Hassardet al. (1981), we write(

x
y

)
= zq+ z̄q̄ + W (A15)

z =
〈
q́

(
x
y

)〉
(A16)
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ż(t) = iω0z(t) + q́(0) · f (w(z, z̄, θ ′) + Re{z(t)q(θ ′)})
= iω0z(t) + q́(0) · f0(z, z̄) (A17)

where

f0 =
(

f 1
0

f 2
0

)
(A18)

f 1
0 = {W1(0) + 2Re(z(t)β1)}[a11(W2(0) + 2Rez(t))

+a20(W1(0) + 2Re(z(t)β1))],
f 2
0 = {W2(0) + 2Rez(t)}[b11(W1(0) + 2Re(z(t)β1))

+ ´b11(W1(−τ) + 2Re(z(t)e−iω0τ β1))]
+ ´b12(W1(−τ) + 2Re(z(t)e−iω0τ β1))

2




(A19)

Using the result∆(iω, τ) = 0, for ω = ω0, τ = τ0, and lettingΩ0 = e−iω0τ0 also we have
assumed thatW = O(|z|2). We have retained only the terms necessary to computeC1(0).
Therefore,

f 1
0 = a11(W1(0) + β1z + β̄1z̄)(W2(0) + z + z̄)

+a20(W1(0) + β1z + β̄1z̄)2

= (a11β1 + a20β1
2)z2 + (a11β̄1 + a20β̄1

2
)z̄2

+(a11(β1 + β̄1) + 2a20β1β̄1)zz̄ + O(|z|4)




(A20)

f 2
0 = b11(W1(0) + β1z + β̄1z̄)(W2(0) + z + z̄)

+(W1(0) + (β1z + β̄1z̄)Ω0) ´b11(W2(0) + z + z̄)

+ ´b12(W1(0) + (β1z + β̄1z̄)Ω)2

= (b11β1 + ´b12β1Ω0
2)z2 + (b11β̄1 + β̄1 ´b12Ω0

2)z̄2

+(b11(β1 + β̄1) + 2 ´b12β1β̄1)zz̄

´b11β1
2Ω0

2z3 + ´b11β̄1
2Ω0

2z̄3 + ´b11(β1
2 + 2β1β̄1)Ω0

2z2z̄

+ ´b11(2β1β̄1 + β̄1
2
)zz̄2 + O(|z|4).




(A21)

So, after taking the dot product off0 andq́(0) and after expanding, we have

ż = iω0z + ν̄1 f 1
0 + ν̄2 f 2

0

= iω0z + 1

2
g20z2 + 1

2
g02z̄2 + g11zz̄ + 1

6
g30z3

+1

6
g03z̄3 + 1

2
g21z2z̄ + 1

2
g12zz̄2 + O(|z|4) (A22)
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where

g20 = 2[ν̄1(a11β1 + a20β1
2) + ν̄2(b11β1 + ´b12β1Ω0)

2]
g02 = 2[ν̄1(a11β̄1 + a20β̄1

2
) + ν̄2(b11β̄1 + ´b12β̄1Ω0)

2]
g11 = ν̄1(a11(β1 + β̄1) + 2a20β1β̄1) + ν̄2(b11(β1 + β̄1)

+2 ´b12β1β̄1)

g12 = 2ν̄2 ´b11(2β1β̄1 + β̄1
2
)Ω0

2

g21 = 2ν̄2 ´b11(2β1β̄1 + β1
2)Ω0

2

g30 = 6ν̄1 ´b11β1
2Ω0

2

g03 = 6ν̄1 ´b11β̄1
2Ω0

2.




(A23)

Finally we use the expression of Hassardet al. (1981):

C1(0) = i

2ω0
(g20g11 − 2|g11|2 + 1

3
|g02|2) + 1

2
g21

µ2 = −ReC1(0)

α̇′(0)

τ2 = − Im C1(0) + µ2ω
′(0)

ω0
.




(A24)

So, the bifurcation is supercritical ifµ2 > 0 and subcritical ifµ2 < 0. Further ifτ2 > 0,
the period of the solution increases withτ .


