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Abstract. Here we are concerned about uniform stability of damped nonlinear trans-
verse vibrations of an elastic string fixed at its two ends. The vibrations governed by
nonlinear integro-differential equation of Kirchoff type, is shown to possess energy uni-
formly bounded by exponentially decaying function of time. The result is achieved by
considering an energy-like Lyapunov functional for the system.
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1. Introduction

The textbook treatment of transverse vibrations of a metallic wire (string), governed by
the linear wave equation, does not portray existence of whirling out of plane motion. The
phenomenon was first observed by Hunton as reported by Harrison [9]. The reference
to other subsequent experiments can be found in the book by Nayfeh and Mook [14].
It is observed that the whirling motion, sometimes also referred to asballooning motion
occurs when the amplitude and frequency of a plane excitation and the phase difference
between the response and the excitation exceeds certain critical values. The explanation
of the phenomenon lies in a nonlinear treatment of the problem. Long ago Kirchoff [10],
taking longitudinal elasticity also into consideration, gave the following nonlinear integro-
differential equation for transverse vibrations confined to a plane:
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whereu(x, t) is the transverse deflection,l the length of the string,δ > 0 the coefficient
of damping,a2

= T0/ρA andb = E/2ρl. The constantsT0, ρ, A, E are respectively
the initial axial tension, the mass density, the cross-section area and Young’s modulus
of the string. For treating nonlinear out of plane motion with components(v, w) in the
perpendiculary andz directions, Anand [1] derives a generalization of equation (1a):
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whereu has components(v, w). A systematic rederivation of (1b) can also be found in
Nayfeh and Mook [14]. The book [14] also refers to other authors who derived different
nonlinear differential equations under various assumptions.

For a string fixed at both ends, we have

u(0, t) = u(l, t) = 0 (2)

and ifu0(x), u1(x) are initial displacement and velocity

u(x, 0) = u0(x),

∂u
∂t

(x, 0) = u1(x), 0 < x < l. (3)

The existence and uniqueness in the scalar case are discussed in [12] and [15].
Arosio and Spagnola [3], Gough [7] and several other authors referred to in Nayfeh

and Mook [14] have studied the problem (1a, b) from mathematical and physical points of
view with a focus on modal analysis and eigenvalues of the system. In particular, Anand
[2] has investigated (1b) proving that the vibrations are stable even in the planar case.
The elaborate method of treatment employs stability analysis of the time-dependent Hill’s
equation satisfied by the modal amplitudes. In recent years, Shahruz [16] has treated the
problem (1a) with a bounded input disturbance and his result shows boundedness of the
ouput. The approach is systems and control theoretic.

The mathematical theory of stabilisation of distributed parameter systems is currently of
interest in view of application to vibration control of various structural elements. The most
common class of vibration control mechanism is of passive type that absorbs vibration
energy. A system is called strongly stable if the total energyE(t) of each solution of the
system converges to zero as timet → + ∞. If the convergence is uniform fort > 0 with
respect to all initial data in the energy space for whichE(0) < ∞, the system is called
uniformly stable. Here our investigation is a direct Lyapunov stability approach to obtain
uniform exponential energy decay estimate for the system (1b), (2), (3) and establish that
the system is a passive energy absorber. Such estimate has earlier been obtained by Gorain
[4] for damped linear wave equation in a bounded domain inR

n. Gorain and Bose [5,6]
have obtained such estimates for an internally damped beam governed by linear equations
in torsional and flexural modes of vibration.

2. Energy of the system

The total energy at timet , of the system (1b)–(3) is defined by the functional

E(t) =

1

2

∫

l

0

[

∣

∣

∣

∣

∂u
∂t

∣

∣

∣

∣

2

+ a

2
∣

∣

∣

∣

∂u
∂x

∣

∣

∣

∣

2
]

dx +

b

4

[

∫

l

0

∣

∣

∣

∣

∂u
∂x

∣

∣

∣

∣

2

dx

]2

, t ≥ 0. (4)

Diferentiating (4) with respect tot and using the governing equation (1b) we obtain
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The value of the first integral vanishes in view of the boundary conditions (2). We thus get
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The negativity of the right hand side of (5) shows that the energyE(t) is decreasing with
time due to the incorporation of passive viscous damping coefficientδ > 0. The system
is thus non-energy conserving. Naturally the question arises as to whether the system is
uniformly stable or not. An affirmative answer is contained in the following theorem, which
essentially states that in fact the energy of vibration has uniform exponential decay.

Theorem. Let u(x, t) be a solution of the system(1b)–(3)with u0 ∈ H

1[ 0, l] andu1 ∈

L

2[ 0, l], whereH 1[ 0, l] is the Sobolev space of order1, then the energyE(t) of the system
defined by(4) satisfies

E(t) ≤ Me−µt

E(0), t > 0 (6)

for some realsµ > 0 andM > 1.

From eq. (4)
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From eq. (6) it follows that ifE(0) < ∞ with respect to all initial valuesu0 ∈ H

1[0, l]
andu1 ∈ L

2[0, l] thenE(t) → 0 ast → ∞ and the system is uniformly stable. In order
to prove (6), letε > 0 be a fixed constant. Proceeding as in Gorain [4] (see also Komornik
[11]), we define an energy-like Lyapunov functionalV according to

V (t) = E(t) + εG(t), (8)

where

G(t) =

∫

l

0

(

u ·

∂u
∂t

+ δ|u|

2
)

dx. (9)

Now sinceu(0, t) = 0 = u(l, t), the Poincaŕe-like Scheefer’s inequality
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holds (see [13] and [8]). A simple proof is provided in the Appendix. Hence using Schwarz’s
inequality, we obtain
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where (10) and the defining equation (4) are used. Also, similarly
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Thus using (11) and (12) in eq. (9)
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The inequalities (13) and (14) yield forV (t) (defined by (8)) the estimates
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E(t) ≤ V (t) ≤ (1 + εµ0)E(t), t > 0 (15)

where we assume thatε < πa/l, so that the left hand side of (15) is positive.
Next, differentiating (9) with respect tot , and using the governing equation (1b), we
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Integration by parts of the first term yields

dG

dt

= −

(

a

2
+ b

∫

l

0

∣

∣

∣

∣

∂u
∂x

∣

∣

∣

∣

2

dx

)

∫

l

0

∣

∣

∣

∣

∂u
∂x

∣

∣

∣

∣

2

dx +

∫

l

0

∣

∣

∣

∣

∂u
∂t

∣

∣

∣

∣

2

dx

≤ − 2E(t) + 2
∫

l

0

∣

∣

∣

∣

∂u
∂t

∣

∣

∣

∣

2

dx, t > 0. (16)

If we now differentiate (8) with respect tot and then insert the results of (5) and (16), we get
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and so multiplying by exp(µt) and integrating from 0 tot , we obtain

V (t) ≤ e− µt

V (0), t > 0.

Finally, using (15) again, we obtain the estimate (6) where
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Hence the theorem.

Remark.In the above we have also obtained exponential energy decay estimate for the
solution of the nonlinear damped elastic string for initial conditionsu0 ∈ H

1[ 0, l], u1 ∈
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2[ 0, l]. The decay rateµ is a function ofε as given in eq. (17), whereε is the lesser of
the two quantitiesδ andπa/l. Since dµ/dε = 2/(1 + εµ0)

2
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ε is maximum. In actual casesδ is the smaller parameter unless the string is very long. So
from the restriction onε, we can assumeε ≤ δ ≤ πa/l. Henceεmax = δ and so
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for all possible cases of damping.
It is of some interest to note that Anand [1] in his modal solution of the problem assumed

µ = δ. This assumption holds whenδ < πa/l. In the contrary caseµ = πa/l will suffice
exponential decay of the solution.

The quantityM given by eq. (18) however also increases withε, because dM/dε =
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2. Thus if we look for steeply falling estimate, the energy gets multi-
plied many times in the initial stages.

3. Quasi-steady amplitude estimate

Scheefer’s inequality (10) when applied to the energy functionalE(t) given by equation
(4) yields
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whose solution yields the estimate for the total amplitude of the string
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We say that the estimate (22) is really close for the quasi-steady staget � 0 when the
velocities die down. This is because the kinetic energy part in the derivation of (22) gets
ignored. Apparantly whent → + ∞, |u| → 0.

4. Conclusion

Here we have established uniform stability of a transversely vibrating string (or a metallic
wire) fixed at both ends, governed by vector Kirchoff type nonlinear integro-differential
equation, which takes into account the string’s elasticity and passive viscous damping.
It has been proved directly from the equations of motion that the energy of the system
decays exponentially with time. Study of nonlinear vibrations assumes significance in
analysing slender structural elements capable of withstanding finite deformations. This
paper is motivated by such considerations.

Appendix

Here we give a simple proof of Scheefer’s inequality (10). Sinceu(0, t) = 0 = u(l, t), we
can have a Fourier representation
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