Complexity of Compositional Model Checking of Computation Tree Logic on Simple Structures

Krishnendu Chatterjee¹, Pallab Dasgupta^{2*}, and P.P. Chakrabarti^{2*}

¹ EECS, University of California, Berkeley,

² Dept. of Computer Science & Engg., Indian Institute of Technology, Kharagpur c_krish@cs.berkeley.edu, {pallab,ppchak}@cse.iitkgp.ernet.in

Abstract. Temporal Logic Model Checking is one of the most potent tools for the verification of finite state systems. Computation Tree Logic (CTL) has gained popularity because unlike most other logics, CTL model checking of a single transition system can be achieved in polynomial time. However, in most real-life problems, specially in distributed and parallel systems, the system consist of a set of concurrent processes and the verification problem translates to model check the composition of the component processes. Since explicit composition leads to state explosion, verifying the system without actually composing the components is attractive, even for possibly restrictive class of systems. We show that the problem of compositional CTL model checking is PSPACE complete for the class of systems composed of components that are tree-like transition structure and do not interact among themselves. For the simplest forms of existential and universal CTL formulas model checking turns out to be NP complete and coNP complete, respectively. The results hold for both synchronous and asynchronous composition.

1 Introduction

Temporal logic model checking [2, 7] has emerged as one of the most powerful techniques for verifying temporal properties of finite-state systems. The correctness property of the system that needs to be verified is specified in terms of a temporal logic formula. Model checking has been extensively studied for two broad categories of temporal logics, namely *linear time temporal logic* (LTL) and *branching time temporal logic* [3]. The branching time temporal logics in practice. CTL allows us to express a wide variety of branching time properties which can be verified in polynomial time (that is, the time complexity of CTL model checking is polynomial in the size of the state transition system times the length

^{*} Pallab Dasgupta and P.P.Chakrabarti thank the Dept. of Science & Tech., Govt. of India, for partial support of this work.

A. Sen et al. (Eds.): IWDC 2004, LNCS 3326, pp. 98–109, 2004. © Springer-Verlag Berlin Heidelberg 2004

99

of the CTL formula). CTL is also a syntactically elegant, expressive logic which makes CTL model checking computationally attractive as compared to the other logics like LTL and CTL* which are known to be PSPACE complete [7].

Given an explicit representation of a state transition system, M, CTL model checking is polynomial in the size of M times the length of the formula. In practice systems are seldom represented explicitly as a single transition structure. Generally a large system consists of several concurrent components that run parallely or in a distributed environment. Hence for verification of parallel and distributed systems it is important to be able to verify systems that are described as a set of concurrent processes. Given a set of concurrent components the complete transition system can be a synchronous [1], [7] or asynchronous composition of the components [7]. The composition of the components into a single transition structure is accompanied by the state-explosion problem as the size of the complete state transition structure will be the product of the size of the component transition structures. Therefore the ability to perform model checking without explicit composition is an attractive proposition, even for possibly restrictive class of systems. There have been several approaches to this sort of compositional model checking [7].

Model checking of logics like LTL and CTL^{*} are known to be PSPACE complete for a state transition system. So the complexity of compositional model checking for such logics will be computationally hard as well. CTL model checking is known to be polynomial for a state transition system [2]. Given a set of k concurrent transition systems of size |S|, where k is a constant, CTL model checking on the global system which is a composition of the component systems can be achieved in time polynomial in $|S|^k$ times the length of the formula. This is done by composing the components into a single system (of the size $O(|S|^k)$) and applying the *CTL model checking algorithm* on it. If k is not an constant this approach of model checking does not produce a polynomial time solution.

In this paper we study complexity of model checking of CTL properties of a set of concurrent processes considering several modes of composition, namely synchronous and asynchronous composition. We show that the problem is hard even for a very restrictive class of concurrent systems. We consider system composed of components that tree-like transition systems, i.e., the components are trees with leaves having self-loops. Moreover, the components do not communicate among themselves and all these components are specified as an explicit representation of the system. We prove that the problem of CTL model checking is PSPACE complete. However, a PSPACE-upper bound can be proved for a more general class of concurrent systems. We also show that the problem of checking simple existential CTL formulas like $E(B \cup B)$ and universal formulas like $A(B \ U \ B)$, where B is a Boolean formula, is NP complete and coNP complete, respectively. We also show that the problem of reachability of two states of such tree-like structures can be answered in time linear in the size of the input. All the results hold for both synchronous and asynchronous composition. Our result proves that the compositional model checking for CTL is hard for very restrictive classes of systems and the problem is inherently computationally hard.

This paper is organized as follows. In Section 2 we define *tree-like* kripke structures and the synchronous, asynchronous composition of a set of tree-like kripke structures; and also describe the syntax and semantics of CTL in Section 2. In Section 3 we study the complexity of model checking of CTL on a system which is the composition of a set of tree-like kripke structures. In Section 4 we analyze the complexity of two states.

2 Tree-like Kripke Structure

We formally define a tree-like kripke structure and the composition of a set of tree-like kripke structures below.

Definition 1 (Tree-like Kripke Structure). A tree-like kripke structure, $T_i = \langle S_i, s_{0i}, \mathcal{R}_i, \mathcal{L}_i, \mathcal{AP}_i \rangle$, consists of the following components:

- $-S_i$: finite set of states and $s_{0i} \in S_i$ is the initial state.
- \mathcal{AP}_i is the finite set of atomic propositions.
- $-\mathcal{L}_i: S_i \to 2^{\mathcal{AP}_i}$ labels each state $s \in S_i$ with a set of atomic propositions true in s.
- $-\mathcal{R}_i \subseteq S_i \times S_i$ is the transition relation with the restriction that the transition relation graph is a tree with leaves having self-loops. The transition relation is also total, i.e., for every state $s_i \in S_i$, $\exists s'_i \in S_i$ such that $\mathcal{R}_i(s_i, s'_i)$.

Definition 2 (Composition). Let $T = \{T_1, T_2, \ldots, T_m\}$ be a set of m tree-like kripke structures. The synchronous, asynchronous and strict asynchronous composition of the tree-like kripke structures in T is denoted by T_S, T_A and T_{SA} , respectively. The set of states, initial state, the set of atomic proposition and the labeling function is same for T_S, T_A and T_{SA} and is defined as follows: 1. $S = S_1 \times S_2 \times \ldots \times S_m$ and $s_0 = (s_{01}, s_{02}, \ldots, s_{0m})$ is the initial state; 2. $\mathcal{AP} = \bigcup_{i \in \{1, 2, \ldots, m\}} \mathcal{AP}_i$; 3. $\mathcal{L}(s = (s_1, s_2, s_3, \ldots, s_m)) = \bigcup_{i \in \{1, 2, \ldots, m\}} \mathcal{L}_i(s_i)$.

The transition relation for T_S, T_A and T_{SA} is defined as follows:

- Synchronous composition $T_S: \mathcal{R} \subseteq S \times S$ such that given $s = (s_1, s_2, s_3, ..., s_m)$ and $t = (t_1, t_2, t_3, ..., t_m), \mathcal{R}(s, t)$ iff $\forall i \in \{1, 2, ..., m\}$ we have $\mathcal{R}_i(s_i, t_i),$ *i.e.*, every component T_i make a transition.
- Asynchronous composition $T_A: \mathcal{R} \subseteq S \times S$ such that given $s = (s_1, s_2, s_3, ..., s_m)$ and $t = (t_1, t_2, t_3, ..., t_m), \mathcal{R}(s, t)$ iff $\exists i \in \{1, 2, ..., m\}$ we have $\mathcal{R}_i(s_i, t_i)$, i.e., one or more component T_i make a transition.
- Strict asynchronous composition T_{SA} : $\mathcal{R} \subseteq S \times S$ such that given $s = (s_1, s_2, s_3, ..., s_m)$ and $t = (t_1, t_2, t_3, ..., t_m)$, $\mathcal{R}(s, t)$ iff for some *i* we have $\mathcal{R}_i(s_i, t_i)$ and for all *j* such that, $j \neq i$, we have $s_j = t_j$, *i.e.*, exactly one of the components is allowed to make a transition.

We now present the syntax and semantics of CTL [2, 7].

Syntax of CTL. The syntax of CTL is as follows:

 $S ::= p \mid \neg S \mid S \land S \mid AX(S) \mid EX(S) \mid A(S \cup S) \mid E(S \cup S) \text{ where } p \in \mathcal{AP}.$

In the syntax of ECTL the rules AX(S) and $A(S \cup S)$ are not allowed. Similarly, in ACTL the rules EX(S) and $E(S \cup S)$ are not allowed.

Semantics of CTL. The semantics of CTL is as follows:

- $s_0 \models p$ iff $p \in \mathcal{L}(s)$; $s_0 \models \neg f$ iff $s_0 \not\models f$;
- $s_0 \models f_1 \land f_2$ iff $s_0 \models f_1$ and $s_0 \models f_2$;
- $s_0 \models AX(f)$ iff for all states t such that $\mathcal{R}(s,t), t \models f$;

The semantics for EX(f) and $E(f_1 U f_2)$ is similar to the semantics of AX(f)and $A(f_1 U f_2)$ with the for all states and for all paths quantifier changed to there exists a state and there exists a path, respectively.

3 Complexity of Compositional CTL Model Checking

In this section we study the complexity of CTL model checking on the composition of a set of tree-like kripke structures. We show that CTL model checking is PSPACE hard by reducing the QBF, that is, the truth of *Quantified Boolean Formulas* (QBF) [6], to the model checking problem. A QBF formula is of the following form: $\phi = \exists x_1 \forall x_2 \exists x_3 \dots \forall x_n. C_1 \land C_2 \dots \land C_m$. In the formula ϕ all C_i 's are clauses which are disjunction of literals (variables or negation of variables). We restrict each clause to have exactly three distinct literals. QBF is PSPACE complete with this restriction [6]. We reduce the QBF problem to the model checking of CTL formulas on synchronous/asynchronous composition of tree-like kripke structures. We present our reduction in steps as follows. We first present the idea of constructing a tree-like kripke structure for a given clause. Given a QBF formula ϕ with m clauses $C_1, C_2, \dots C_m$ we construct m tree-like kripke structures T_1, T_2, \dots, T_m , one for each clause. We define a CTL property ψ on the composition of T_1, T_2, \dots, T_m (denoted as T_S) and show that ψ is true in the start state of T_S iff the QBF formula ϕ is true.

3.1 Construction of Tree-Like Kripke Structure for a Clause

Let ϕ be a QBF formula on a set of variables $X = \{x_1, x_2, ..., x_n\}$ and a clause C_j with exactly three variables from X. We construct a tree-like kripke structure T_j , where T_j is a tree of depth n, as follows:

- 1. The root of the tree T_i is at depth 0. The root is the initial state of T_i .
- 2. If a node is at depth i then the depth of its child (successor) is i + 1.
- 3. A node s at level i has two children if variable x_{i+1} appears in C_j , else s has only one child.
- 4. The root is marked by the atomic proposition r_i .
- 5. If a variable x_i appears in C_j then for a node s at depth i then: if s is a left child of its parent it is labeled with p_{ji0} , and if s is a right child of its parent it is labeled with p_{ji1} .

6. If x_i does not appear in C_j then every node at depth *i* is labeled with both p_{ji0} and p_{ji1} .

The number of nodes at level n is 8 for any tree as exactly three variables occur in any clause. Let the variables for the clause C_j be x_i, x_k, x_t where i < k < t. Let the nodes at the level n be numbered from 0 to 7 in order as they will appear in an in-order traversal of T_j . The nodes at depth n are labeled with the proposition t_j as follows : Consider a node s at depth n such that it is numbered i. Let $B_1B_2B_3$ be the binary representation of i. If assigning $x_i = B_1, x_k = B_2, x_l = B_3$ makes C_j false then s is not labeled by t_j , otherwise it is labeled by t_j . (B_1, B_2, B_3 are 0, 1 respectively and 0 represents false and 1 represents true). Intuitively the idea is as follows: the assignment of truth value 0 to variable x_{i+1} in C_j is represented by the choice of the left child at depth i in T_j and right child represents the assignment of truth value 1. We refer to the tree-like kripke structure for clause C_j . The tree structure corresponding to a clause is illustrated in the Figure 1.

Fig. 1. Tree-like kripke structure for clause $C_i = (x_2 \lor \neg x_4 \lor x_5)$

The next Lemma follows from construction of tree-like kripke structures.

Lemma 1. Let variables x_i, x_k, x_t occur in C_j . Given a truth assignment to variables x_i, x_k, x_t we can construct a path (state sequence) $(s_{j0}, s_{j1}, ..., s_{jn})$ in T_j such that s_{jn} is marked with t_j iff the truth assignment makes C_j true. The state sequence is constructed as follows:

- If x_{ℓ} is assigned false then $s_{j\ell}$ is the left child of $s_{j,\ell-1}$ and if x_{ℓ} is assigned true then $s_{j\ell}$ is the right child of $s_{j,\ell-1}$, where $\ell \in \{i,k,t\}$.

3.2 CTL Model Checking of Synchronous Composition

Given *m* clauses $C_1, C_2, ..., C_m$ we construct the corresponding tree-like kripke structures $T_1, T_2, ..., T_m$ for the respective clauses. The synchronous composition of the tree-like structures is denoted as T_S . We define the properties $p_i, 1 \leq i \leq n$ as follows : $p_1 = (\wedge_{j=1}^m p_{j10}) \vee (\wedge_{j=1}^m p_{j11}), p_2 = (\wedge_{j=1}^m p_{j20}) \vee (\wedge_{j=1}^m p_{j21})$ and in general, $p_i = (\wedge_{j=1}^m p_{ji0}) \vee (\wedge_{j=1}^m p_{ji1})$. Given a QBF formula with *m* clauses an *inconsistent* assignment of truth value to a variable x_i occurs if different truth values are assigned to variable x_i in different clauses.

Lemma 2. Consider a state sequence $\langle \nu_0, \nu_1, \dots, \nu_n \rangle$ in T_S where $\nu_0 = s_0$ and each ν_i is the immediate successor of ν_{i-1} . Let ν_i be represented as $(s_{i1}, s_{i2}, \dots, s_{im})$. Let $O_i = \{k \mid x_i \text{ occurs in } C_k\}$. Then $\nu_i \models p_i$ iff one of the following conditions are satisfied:

- 1. for all $k \in O_i$ we have s_{ik} is the left child of $s_{i-1,k}$.
- 2. for all $k \in O_i$ we have s_{ik} is the right child of $s_{i-1,k}$.

Proof. We prove the result considering the following cases:

- If for all k ∈ O_i we have s_{ik} is the left child of s_{i-1,k} in T_k then ν_i ⊨ ∧^m_{j=1}p_{ji0}. This is because for any clause C_k in which x_i occurs a node at depth i in T_k which is a left child satisfies p_{ki0}. In any clause C_l such that x_i does not occur a node depth i is the only child of its parent in T_l and satisfies p_{li0}. Similar argument can show that if for all k ∈ O_i we have s_{ik} is the right child of s_{i-1,k} in T_k then ν_i ⊨ ∧^m_{j=1}p_{ji1}.
 If ∃ t, l such that t, l ∈ O_i and s_{it} is the left child of s_{i-1,t} in T_t and s_{il}
- 2. If $\exists t, l$ such that $t, l \in O_i$ and s_{it} is the left child of $s_{i-1,t}$ in T_t and s_{il} is the right child of $s_{i-1,l}$ in T_l then $\nu_i \not\models \wedge_{j=1}^m p_{ji0}$ as $\nu_i \not\models p_{li0}$ and $\nu_i \not\models \wedge_{j=1}^m p_{ji1}$ as $\nu_i \not\models p_{ti1}$. Intuitively, the state ν_i which does not satisfy p_i actually shows that in one component, T_t , the left branch is followed at depth i-1 (representing the assignment of truth value 0 to x_i in C_t) and in other component, T_l , the right branch is followed at depth i-1 (representing the assignment of truth value 1 to x_i in C_l) which is represents a inconsistent truth value assignment to x_i .

Given a QBF formula : $\phi = \exists x_1 \forall x_2 \exists x_3 \dots \forall x_n.C_1 \wedge C_2 \dots \wedge C_m$ where each C_j is a clause with exactly three variables, for every clause we construct tree-like kripke structure as described in Section 3.1. Given the clauses C_1, C_2, \dots, C_m we have T_1, T_2, \dots, T_m as the respective tree-like kripke structures. Let T_S denote the parallel synchronous composition of the *m* kripke structures. We consider model checking the CTL property ψ on T_S , where ψ is defined as follows:

We will prove that ϕ is true iff ψ is true in the start state of T_S .

Example 1. We illustrate the whole construction through a small example. Given the following QBF formula ϕ_1 with four variables and two clauses, the corresponding formula ψ_1 is as follows:

$$\phi_1 = \exists x_1 \forall x_2 \exists x_3 \forall x_4 . [(x_1 \lor x_2 \lor x_4) \land (x_2 \lor \neg x_3 \lor \neg x_4)]$$

 $\psi_1 = EX(p_1 \land AX(\neg p_2 \lor (p_2 \land EX(p_3 \land AX(\neg p_4 \lor (p_4 \land (t_1 \land t_2)))))))$

Given the clauses the corresponding tree-like kripke structures are shown in the figures, Figure. 2 and Figure. 3.

Fig. 2. The tree corresponding to the clause $(x_1 \lor x_2 \lor x_4)$

Fig. 3. The tree corresponding to the clause $(x_2 \lor \neg x_3 \lor \neg x_4)$

Solution tree. Given a QBF formula ϕ that is true there is a solution tree defined as follows to prove that ϕ is true. The solution tree can be described as:

- A node at depth 2*i has a one child that represents a truth value assignment of 0 or 1 assigned to x_{2*i+1} .
- A node at depth 2 * i 1 has two children: left child represents the truth value 0 and the right child represents the truth value 1 assigned to x_{2*i} .

A path from the root to a leaf represents an assignment of truth values to each variable $x_1, x_2, ..., x_n$. A solution tree proves the truth of ϕ iff for all paths from the root to a leaf the corresponding truth assignment satisfy each clause in ϕ .

Lemma 3. If ϕ is true then ψ is true in the start state of T_S .

Proof. Given a truth value assignment for variables $x_1, x_2, ..., x_n$ we follow the state sequence $(\nu_0, \nu_1, \nu_2, ..., \nu_n)$ with $\nu_0 = s_0$ as follows : $(\nu_i$ is represented as $(s_{i1}, s_{i2}, ..., s_{im})$)

- If x_i is assigned true then in all clauses C_k where x_i occurs s_{ik} is the right child of $s_{i-1,k}$, else if x_i is false then s_{ik} is the left child of $s_{i-1,k}$. In all the other clauses C_l in which x_i does not occur s_{il} is the only child of $s_{i-1,l}$.

It follows from Lemma 2 that in this state sequence ν_i satisfies p_i . It also follows from Lemma 1 that ν_n satisfies t_j iff the valuation of the variables makes C_j true. Given a solution tree to prove ϕ we construct a proof tree P_T , that proves that ψ holds in the start state of T_S , as follows:

- 1. For a node ν_{2*i} at depth 2*i in P_T its immediate successor is defined as follows:
 - If ν_{2*i} satisfies $\neg p_{2*i}$ it has no successor.

- Else ν_{2*i} satisfies p_{2*i} and if x_{2*i+1} is assigned true then in all T_j 's such that x_{2*i+1} is in C_j choose the right child in T_j and if x_{2*i+1} is assigned false then choose the left branch in T_j . In all T_r 's such that x_{2*i+1} is not in C_r choose the only immediate successor in T_r .
- 2. For a node at depth 2 * i + 1 in P_T its immediate successors are all its successors present in T.

Note that for any node at any depth i only two of its successor can satisfy p_{i+1} , one representing the assignment of truth value 0 to x_{i+1} where in all components left branches are taken and the other representing the assignment of truth value 1 to x_{i+1} where in all components right branches are taken. A proof tree has been sketched in It follows that in P_T a node at depth 2 * i + 1 from the start state will satisfy p_{2*i+1} . Hence the node at depth 2 * i will satisfy $EX(p_{2*i+1})$. For a node at depth (2 * i - 1) if in all the T_j 's for clause C_j in which x_{2*i} occurs left branches or right branches are followed (consistently in all T_j 's) then the next state satisfy p_{2*i} . All the other successors satisfy $\neg p_{2*i}$. By the construction of P_T it follows any leaf node which is at a depth i where i < n it satisfies $\neg p_i$. Since for the given solution tree $C_1 \wedge C_2 \wedge \ldots \wedge C_m$ is satisfied any leaf at depth n will either satisfy $\neg p_n$ or will satisfy $t_1 \wedge t_2 \wedge \ldots t_m$. Hence P_T proves that ψ is satisfied in the start state of T_S .

Lemma 4. If ψ is true in the start state of T_S then ϕ is true.

Proof. If the formula ψ is true in the starting state of T_S then there is a proof tree P_T to prove ψ to be true. We construct a solution tree to prove ϕ . For a node $\nu_{2*i} = (s_{2*i,1}, s_{2*i,2}, ..., s_{2*i,m})$ at depth 2*i in P_T let $\nu_{2*i+1} = (s_{2*i+1,1}, s_{2*i+1,2}, ..., s_{2*i+1,m})$ be its successor such that p_{2*i+1} is satisfied at ν_{2*i+1} . From Lemma 2 we have that one of the following two conditions hold:

1. in every T_j such that x_{2*i+1} occurs in C_j , $s_{2*i+1,j}$ is the left child of $s_{2*i,j}$ 2. in every T_j such that x_{2*i+1} occurs in C_j , $s_{2*i+1,j}$ is the right child of $s_{2*i,j}$.

If the former condition is satisfied then we construct the solution tree assigning truth value 0 (false) to x_{2*i+1} and if the later is satisfied then we assign the value 1 (true) to x_{2*i+1} . As ψ is true in the start state it follows that in P_T any leaf at depth n which satisfy p_n must satisfy $t_1 \wedge t_2 \dots \wedge t_m$. Hence the choice of the truth values for the odd variable as constructed above from the proof tree P_T ensures that the solution tree thus constructed will prove ϕ (will satisfy all clauses). Hence if ψ is true in the start state then $\phi = \exists x_1 \forall x_2 \exists x_3 \dots \exists x_{n-1} \forall x_n . [C_1 \wedge C_2 \dots \wedge C_m]$ is true.

It follows from Lemma 3, 4 that the CTL model checking is PSPACE-hard. A DFS model checking algorithm that performs on-the-fly composition requires space polynomial in the size of the depth of the proof tree. This gives us the following result.

Theorem 1. *CTL* model checking of synchronous composition of tree-like kripke structures is PSPACE complete.

Theorem 2. Model checking of formulas of the form $E(B \cup B)$ and $A(B \cup B)$, where B is an Boolean formula, is NP complete and coNP complete respectively, for synchronous composition of tree-like kripke structures.

Proof. Given a SAT formula in CNF (Conjunctive Normal Form) $\psi = C_1 \wedge C_2 \wedge \dots \wedge C_m$ where each C_i is a clause with exactly three variables from the set of variables of $\{x_1, x_2, \dots, x_n\}$. For each clause C_j we construct a clause tree-like kripke structure T_j as described in Subsection 3.1. Let synchronous composition of the component kripke structures be T_S . We will prove that the SAT formula ψ is satisfiable iff the following formula φ is true in the start state of T_S , where φ is defined as $\varphi = E(r \vee p_1 \vee p_2 \vee \dots \vee p_n U(t_1 \wedge t_2 \wedge \dots \wedge t_m))$, where $r = r_1 \wedge r_2 \wedge \dots \wedge r_n$. Note that for every T_j the root of T_j is marked with proposition r_j . Hence the staring state of T will satisfy r.

Suppose ψ is satisfiable, then there is a satisfying assignment A. Given A we construct the following path (state sequence) $\nu_0, \nu_1, \nu_2, ..., \nu_n$, where $\nu_i = (s_{i1}, s_{i2}, ..., s_{im})$, to satisfy φ . We construct the immediate successor ν_i of ν_{i-1} as follows:

- if x_i is assigned false by A then in all T_j such that x_i occurs in C_j the left branch is followed.
- if x_i is assigned true by A then in all T_j such that x_i occurs in C_j the right branch is followed.

It is evident that ν_i satisfies p_i (from Lemma 2) and ν_0 satisfies r. Since ψ is satisfiable we have ν_n satisfies $t_1 \wedge t_2 \wedge \ldots \wedge t_m$. So φ is true in the start state.

If φ is true at the start state then there is a path P in T to satisfy $(r \lor p_1 \lor p_2 \lor \ldots \lor p_n U(t_1 \land t_2 \land \ldots \land t_m))$. Let the path be $\nu_0, \nu_1, \nu_2, \ldots, \nu_n$. Then in this path ν_i must satisfy p_i . For a node $\nu_i = (s_{i1}, s_{i2}, \ldots, s_{im})$ at depth i in P let $\nu_{i+1} = (s_{i+1,1}, s_{i+1,2}, \ldots, s_{i+1,m})$ be its successor such that ν_{i+1} satisfy p_{i+1} . It follows from Lemma 2 then one of the following two conditions must hold:

- in every T_j such that x_{2*i+1} occurs in C_j , $s_{2*i+1,j}$ is the left child of $s_{2*i,j}$.
- in every T_j such that x_{2*i+1} occurs in C_j , $s_{2*i+1,j}$ is the right child of $s_{2*i,j}$.

If the former condition is satisfied then assign x_{i+1} to be 0 (false) and if the later is satisfied assign x_{i+1} to be 1 (true). As $t_1 \wedge t_2 \wedge ... t_m$ is satisfied in the last state we have ψ satisfied for the given assignment. This proves that the model checking of a simple formula of the form $E(B \cup B)$ is NP hard.

To prove the model checking is in NP we note that in T any infinite path is path from the start state which is a state sequence of the form : $\nu_0, \nu_1, \nu_2, ..., \nu_i, \nu_i, \nu_i, ...$ where i is bounded by the maximum of the depth of the component tree-like kripke structure. Hence for any infinite path of the form: $\nu_0, \nu_1, \nu_2, ..., \nu_i, \nu_i, \nu_i, ...$ which satisfies $E(B \ U \ B), (\nu_0, \nu_1, \nu_2, ..., \nu_i)$ can be a proof. This proof is polynomial in size of the input. A NP algorithm guesses the state sequence and then verifies that the state sequence satisfies the formula $E(B \ U \ B)$, which can be achieved in P. The desired result follows.

To prove that the model checking problem is coNP hard for formulas of the form $A(B \ U \ B)$ we reduce the *validity* problem to it. Consider the problem of

validity of a formula ψ expressed in DNF (Disjunctive Normal Form) as follows: $\psi = F_1 \lor F_2 \lor \ldots \lor F_m$ where each F_i is a *term* (conjunction of literals) with exactly three variables from the set of variables of $\{x_1, x_2, \ldots, x_n\}$. We construct the clause tree-like kripke structure T_j for every term F_j as mentioned in Section 3.1. The only difference is that every node in T_j at depth *i* is marked with a proposition d_i . Also the nodes at depth *n* are marked with t_i according to the following condition: Consider a node *s* at depth *n* such that it is numbered *i*. Let $B_1B_2B_3$ be the binary representation of *i*. If assigning $x_i = B_1, x_k = B_2, x_l = B_3$ makes F_j true then *s* is labeled by t_j , otherwise it is not labeled by t_j . (B_1, B_2, B_3 are 0, 1 respectively and 0 represents false and 1 represents true). Let the synchronous composition of T_1, T_2, \ldots, T_M be T_S . Consider the formula:

$$\varphi = A(r \lor p_1 \lor p_2 \ldots \lor p_n \ U \ (t_1 \lor t_2 \lor \ldots t_n) \lor (d_1 \land \neg p_1) \lor (d_2 \land \neg p_2) \ldots \lor (d_n \land \neg p_n))$$

where $r = r_1 \wedge r_2 \wedge ... \wedge r_n$. Similar argument as above with minor modifications for the *universal* nature of the *A* operator and the validity problem we can show φ is true in the start state of T_S iff the formula ψ is valid. The proof of the model checking problem of formulas of the form $A(B \cup B)$ is in coNP is similar.

3.3 CTL Model Checking of Asynchronous Composition

Given *m* clauses $C_1, C_2, ..., C_m$ we construct $T_1, T_2, ..., T_m$ as *m* tree-like kripke structures for the respective clauses. Let T_A denote the asynchronous composition of the tree-like structures. We prove that the CTL model checking of asynchronous composition is PSPACE complete. In this section we refer to p_i 's, ψ, ϕ as defined in the Subsection 3.2. The construction of the tree-like kripke structure in Subsection 3.1 gives us the following result.

Lemma 5. Given a state $\nu_i = (s_{i1}, s_{i2}, \dots, s_{in})$ in T_A such that ν_i satisfies p_k then for all j, depth of s_{ij} in T_j is k.

Theorem 3. *CTL* model checking of asynchronous composition of tree-like kripke structures is PSPACE complete.

Proof. Consider the formula ϕ and ψ as described in the Subsection 3.2. Consider the start state s in T_A . It follows from Lemma 5 that any successor s_1 of s in T_A which satisfies p_1 follows from a transition in which all the components make a transition (which corresponds to a transition of the synchronous composition). Similarly consider any successor s_2 of s_1 , a transition in which all the components does not make a transition will cause s_2 to satisfy $\neg p_2$. For a transition which satisfies p_2 it will have to be a transition in which all the component T_j 's make a transition (which again corresponds to a transition of the synchronous composition). This argument can be extended for any depth 2 * i and 2 * i + 1. Hence the construction of the proof tree P_T from a given solution tree of truth values to variables to prove ψ and the construction of a solution tree from the proof tree P_T is similar as in the Lemmas and Theorems in the Subsection 3.2. This proves that CTL model checking of T_A is PSPACE hard. The PSPACE upper bound argument is similar to Theorem 1.

Lemma 5, Theorem 3 and arguments similar to to Theorem 2 gives us the following Theorem.

Theorem 4. Model checking of formulas of the from $E(B \cup B)$ is NP complete and model checking of formulas of the form $A(B \cup B)$ is coNP complete, where B is a Boolean formula, for asynchronous composition of tree-like kripke structures.

3.4 CTL Model Checking of Strict Asynchronous Composition

Given *m* clauses $C_1, C_2, ..., C_m$ we construct $T_1, T_2, ..., T_m$ as *m* tree-like kripke structures for the respective clauses. We denote by T_{AS} the strict asynchronous composition of the tree-like structures. For every node *s* in T_j such that the depth of *s* is *d* it is marked with an atomic proposition l_{jd} . In this section we refer to p_i 's , ϕ as defined in the Subsection 3.2. We define properties l_i, l'_i at a node in *T*, for $1 \leq i \leq n$ as follows: $l_i = \wedge_{j=1}^m (l_{ji} \vee l_{j,i-1}), \ l'_i = \wedge_{j=1}^m (l_{ji})$. We define ψ as follows:

$$\psi = E(l_1U(p_1 \land A(l_2U(\neg l_2 \lor (\neg p_2 \land l'_2) \lor (p_2 \land E(l_3U(p_3 \land \dots A(l_nU(\neg l_n \lor (\neg p_n \land l'_n) \lor (p_n \land (t_1 \land t_2 \dots \land t_m))))...))))))$$

We briefly sketch the idea of the proof of the reduction of QBF to CTL model checking of strict asynchronous composition. The property l_i is true at a state if the depth of every component node is either i or i - 1. Consider a path $\pi = (s_0, s_1, ...)$ which satisfy $l_1 U p_1$, where s_0 is the start state of T. In the path π in no component more than one transition is taken. When p_1 is reached all components must have taken one transition each. Hence it corresponds to a single transition of a synchronous composition. Consider a state which satisfy $s' \in T$ such that s'satisfies p_1 . The state s' is a state in T_{AS} such that depth of all the component nodes is 1. We consider the truth of the formula $A(l_2U(\neg l_2 \lor (l'_2 \land \neg p_2) \lor p_2))$ in s'. The part $(\neg l_2 \lor (l'_2 \land \neg p_2))$ ensures the following :

- If there is more than one transition in a component then $\neg l_2$ is satisfied.
- If in all components one transition is made and there are components such that in one component the left branch transition is followed whereas in the other component the right branch transition is followed then we have $l'_2 \vee \neg p_2$ satisfied.

So in the above cases $A(l_2U(\neg l_2 \lor (l'_2 \land \neg p_2) \lor p_2)$ cannot be false. So any l_2 path to a state with more than one transition for any component or to a state which is a representative of inconsistent truth values to variable x_2 (a state which satisfy $\neg p_2$) in different clauses will not cause $A(l_2U(\neg l_2 \lor (l'_2 \land \neg p_2) \lor p_2))$ to be falsified. A l_2 path to a state satisfying p_2 again corresponds to a single synchronous transition. Similar arguments can be extended to depth 2 * i and 2*i+1 respectively. The rest follows arguments similar to those in Lemmas and Theorems in the Subsection 3.2 and 3.3 to prove that the model checking of strict asynchronous composition of tree-like kripke structure is PSPACE complete.

Theorem 5. *CTL* model checking of strict asynchronous composition of treelike kripke structures is PSPACE complete. *Remark 1.* The PSPACE-upper bound for CTL model checking holds for synchronous, asynchronous and strict asynchronous composition even if the component structures are arbitrary kripke structure. (i.e., underlying transition relation is a graph rather than a tree).

4 Reachability Analysis

The reachability problem asks given two states s and t in the composition of m tree-like kripke structure whether there is a path from s and to t.

Synchronous Composition. Let $s = (s_1, s_2, ..., s_m)$ and $t = (t_1, t_2, ..., t_m)$ be two states. It can be shown that t is reachable from s if and only if the following two conditions hold: (a) for all non-leaf nodes t_i and t_j we have $depth(t_j) - depth(s_j) = depth(t_i) - depth(s_i) = d$, and (b) for all leaf nodes t_k we have $depth(t_k) - depth(s_k) \le d$. The values for $depth(t_i) - depth(s_i)$ can be computed by a simple BFS algorithm linear in the size of the input.

Theorem 6. Given two states $s = (s_1, s_2, ..., s_m)$ and $t = (t_1, t_2, ..., t_m)$ whether t is reachable from s can be determined in time linear in the input size for synchronous composition of tree-like kripke structures.

Asynchronous Composition. For asynchronous and strict asynchronous composition reachability analysis is linear even if the individual components are arbitrary kripke structures. Given m kripke structures $G_1, G_2, ..., G_m$ let G be their asynchronous composition (or strict asynchronous composition).

Theorem 7. Given two states $s = (s_1, s_2, ..., s_m)$ and $t = (t_1, t_2, ..., t_m)$ whether t is reachable from s can be determined in time linear in the input size for asynchronous and strict asynchronous composition of arbitrary kripke structures.

References

- Burch, J.R., Clarke, E.M., Long, D.E., McMillan, K.L., and Dill, D.L., Symbolic model checking for sequential circuit verification. *IEEE Trans. on Computer Aided Design*, 13, 4, 401-424, 1994.
- Clarke, E.M., Emerson, E.A., and Sistla, A.P., Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. on Program. Lang. & Systems, 8, 2, 244-263, 1986.
- Clarke, E.M., and Kurshan, R.P., Computer aided verification. *IEEE Spectrum*, 33, 6, 61-67, 1996.
- 4. Cormen, T.H., Leiserson, C.E., and Rivest, R.L., *Introduction to Algorithms*. The MIT Press, Cambridge and McGraw-Hill, 1990.
- Emerson, E.A., Mok, A.K., Sistla, A.P. and Srinivasan, J., Quantitative temporal reasoning, In *First Annual Workshop on Computer-Aided Verification*, France, 1989.
- 6. Papadimitriou, C.H., Computational Complexity, Addison-Wesley, 1994.
- 7. Clarke, E.M., Grumberg, O., and Peled, D.A., Model Checking, MIT Press, 2000.