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Abstract. Temporal Logic Model Checking is one of the most potent
tools for the verification of finite state systems. Computation Tree Logic
(CTL) has gained popularity because unlike most other logics, CTL
model checking of a single transition system can be achieved in polyno-
mial time. However, in most real-life problems, specially in distributed
and parallel systems, the system consist of a set of concurrent processes
and the verification problem translates to model check the composition of
the component processes. Since explicit composition leads to state explo-
sion, verifying the system without actually composing the components is
attractive, even for possibly restrictive class of systems. We show that the
problem of compositional CTL model checking is PSPACE complete for
the class of systems composed of components that are tree-like transition
structure and do not interact among themselves. For the simplest forms
of existential and universal CTL formulas model checking turns out to
be NP complete and coNP complete, respectively. The results hold for
both synchronous and asynchronous composition.

1 Introduction

Temporal logic model checking [2, 7] has emerged as one of the most powerful
techniques for verifying temporal properties of finite-state systems. The correct-
ness property of the system that needs to be verified is specified in terms of
a temporal logic formula. Model checking has been extensively studied for two
broad categories of temporal logics, namely linear time temporal logic (LTL) and
branching time temporal logic [3]. The branching time temporal logic, Computa-
tion Tree Logic (CTL) [2], is one of the most popular temporal logics in practice.
CTL allows us to express a wide variety of branching time properties which
can be verified in polynomial time (that is, the time complexity of CTL model
checking is polynomial in the size of the state transition system times the length
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of the CTL formula). CTL is also a syntactically elegant, expressive logic which
makes CTL model checking computationally attractive as compared to the other
logics like LTL and CTL* which are known to be PSPACE complete [7].

Given an explicit representation of a state transition system, M , CTL model
checking is polynomial in the size of M times the length of the formula. In
practice systems are seldom represented explicitly as a single transition struc-
ture. Generally a large system consists of several concurrent components that
run parallely or in a distributed environment. Hence for verification of parallel
and distributed systems it is important to be able to verify systems that are
described as a set of concurrent processes. Given a set of concurrent components
the complete transition system can be a synchronous [1], [7] or asynchronous
composition of the components [7]. The composition of the components into a
single transition structure is accompanied by the state-explosion problem as the
size of the complete state transition structure will be the product of the size
of the component transition structures. Therefore the ability to perform model
checking without explicit composition is an attractive proposition, even for pos-
sibly restrictive class of systems. There have been several approaches to this sort
of compositional model checking [7].

Model checking of logics like LTL and CTL* are known to be PSPACE com-
plete for a state transition system. So the complexity of compositional model
checking for such logics will be computationally hard as well. CTL model check-
ing is known to be polynomial for a state transition system [2]. Given a set of
k concurrent transition systems of size |S|, where k is a constant, CTL model
checking on the global system which is a composition of the component systems
can be achieved in time polynomial in |S|k times the length of the formula. This
is done by composing the components into a single system (of the size O(|S|k))
and applying the CTL model checking algorithm on it. If k is not an constant
this approach of model checking does not produce a polynomial time solution.

In this paper we study complexity of model checking of CTL properties of
a set of concurrent processes considering several modes of composition, namely
synchronous and asynchronous composition. We show that the problem is hard
even for a very restrictive class of concurrent systems. We consider system com-
posed of components that tree-like transition systems, i.e., the components are
trees with leaves having self-loops. Moreover, the components do not commu-
nicate among themselves and all these components are specified as an explicit
representation of the system. We prove that the problem of CTL model check-
ing is PSPACE complete. However, a PSPACE-upper bound can be proved for
a more general class of concurrent systems. We also show that the problem of
checking simple existential CTL formulas like E(B U B) and universal formulas
like A(B U B), where B is a Boolean formula, is NP complete and coNP com-
plete, respectively. We also show that the problem of reachability of two states of
such tree-like structures can be answered in time linear in the size of the input.
All the results hold for both synchronous and asynchronous composition. Our
result proves that the compositional model checking for CTL is hard for very
restrictive classes of systems and the problem is inherently computationally hard.
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This paper is organized as follows. In Section 2 we define tree-like kripke struc-
tures and the synchronous, asynchronous composition of a set of tree-like kripke
structures; and also describe the syntax and semantics of CTL in Section 2. In
Section 3 we study the complexity of model checking of CTL on a system which
is the composition of a set of tree-like kripke structures. In Section 4 we analyze
the complexity of reachability of two states.

2 Tree-like Kripke Structure

We formally define a tree-like kripke structure and the composition of a set of
tree-like kripke structures below.

Definition 1 (Tree-like Kripke Structure). A tree-like kripke structure,
Ti = 〈Si, s0i,Ri,Li,APi〉, consists of the following components:

– Si : finite set of states and s0i ∈ Si is the initial state.
– APi is the finite set of atomic propositions.
– Li : Si → 2APi — labels each state s ∈ Si with a set of atomic propositions

true in s.
– Ri ⊆ Si ×Si is the transition relation with the restriction that the transition

relation graph is a tree with leaves having self-loops. The transition relation
is also total, i.e., for every state si ∈ Si,∃ s′

i ∈ Si such that Ri(si, s
′
i).

Definition 2 (Composition). Let T = {T1, T2, . . . , Tm} be a set of m tree-like
kripke structures. The synchronous, asynchronous and strict asynchronous
composition of the tree-like kripke structures in T is denoted by TS , TA and
TSA, respectively. The set of states, initial state, the set of atomic proposition
and the labeling function is same for TS , TA and TSA and is defined as follows:
1. S = S1 × S2 × ...× Sm and s0 = (s01, s02, ..., s0m) is the initial state;
2. AP =

⋃
i∈{1,2,...,m} APi; 3. L(s = (s1, s2, s3, ..., sm)) =

⋃
i∈{1,2,...,m} Li(si).

The transition relation for TS , TA and TSA is defined as follows:

– Synchronous composition TS : R ⊆ S×S such that given s = (s1, s2, s3, ...sm)
and t = (t1, t2, t3, ...., tm), R(s, t) iff ∀ i ∈ {1, 2, ...,m} we have Ri(si, ti),
i.e., every component Ti make a transition.

– Asynchronous composition TA: R ⊆ S × S such that given s =
(s1, s2, s3, ...sm) and t = (t1, t2, t3, ...., tm), R(s, t) iff ∃ i ∈ {1, 2, ...,m}
we have Ri(si, ti), i.e., one or more component Ti make a transition.

– Strict asynchronous composition TSA: R ⊆ S × S such that given s =
(s1, s2, s3, ...sm) and t = (t1, t2, t3, ...., tm), R(s, t) iff for some i we have
Ri(si, ti) and for all j such that, j �= i, we have sj = tj, i.e., exactly one of
the components is allowed to make a transition.

We now present the syntax and semantics of CTL [2, 7].

Syntax of CTL. The syntax of CTL is as follows:
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S ::= p | ¬S | S ∧ S | AX(S) | EX(S) | A(S U S) | E(S U S) where p ∈ AP.

In the syntax of ECTL the rules AX(S) and A(S U S) are not allowed.
Similarly, in ACTL the rules EX(S) and E(S U S) are not allowed.

Semantics of CTL. The semantics of CTL is as follows:
• s0 |= p iff p ∈ L(s); • s0 |= ¬f iff s0 �|= f ;
• s0 |= f1 ∧ f2 iff s0 |= f1 and s0 |= f2;
• s0 |= AX(f) iff for all states t such that R(s, t), t |= f ;

The semantics for EX(f) and E(f1 U f2) is similar to the semantics of AX(f)
and A(f1 U f2) with the for all states and for all paths quantifier changed to
there exists a state and there exists a path, respectively.

3 Complexity of Compositional CTL Model Checking

In this section we study the complexity of CTL model checking on the compo-
sition of a set of tree-like kripke structures. We show that CTL model checking
is PSPACE hard by reducing the QBF, that is, the truth of Quantified Boolean
Formulas (QBF) [6], to the model checking problem. A QBF formula is of
the following form: φ = ∃x1∀x2∃x3....∀xn.C1 ∧ C2... ∧ Cm. In the formula φ all
Ci’s are clauses which are disjunction of literals (variables or negation of vari-
ables). We restrict each clause to have exactly three distinct literals. QBF is
PSPACE complete with this restriction [6]. We reduce the QBF problem to the
model checking of CTL formulas on synchronous/asynchronous composition of
tree-like kripke structures. We present our reduction in steps as follows. We first
present the idea of constructing a tree-like kripke structure for a given clause.
Given a QBF formula φ with m clauses C1, C2, . . . Cm we construct m tree-like
kripke structures T1, T2, ..., Tm, one for each clause. We define a CTL property
ψ on the composition of T1, T2, ..., Tm (denoted as TS) and show that ψ is true
in the start state of TS iff the QBF formula φ is true.

3.1 Construction of Tree-Like Kripke Structure for a Clause

Let φ be a QBF formula on a set of variables X = {x1, x2, ..., xn} and a clause
Cj with exactly three variables from X. We construct a tree-like kripke structure
Tj , where Tj is a tree of depth n, as follows:

1. The root of the tree Tj is at depth 0. The root is the initial state of Tj .
2. If a node is at depth i then the depth of its child (successor) is i+ 1.
3. A node s at level i has two children if variable xi+1 appears in Cj , else s has

only one child.
4. The root is marked by the atomic proposition rj .
5. If a variable xi appears in Cj then for a node s at depth i then: if s is a left

child of its parent it is labeled with pji0, and if s is a right child of its parent
it is labeled with pji1.
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6. If xi does not appear in Cj then every node at depth i is labeled with both
pji0 and pji1.

The number of nodes at level n is 8 for any tree as exactly three variables
occur in any clause. Let the variables for the clause Cj be xi, xk, xt where i <
k < t. Let the nodes at the level n be numbered from 0 to 7 in order as they
will appear in an in-order traversal of Tj . The nodes at depth n are labeled
with the proposition tj as follows : Consider a node s at depth n such that
it is numbered i. Let B1B2B3 be the binary representation of i. If assigning
xi = B1, xk = B2, xl = B3 makes Cj false then s is not labeled by tj , otherwise
it is labeled by tj . (B1, B2, B3 are 0, 1 respectively and 0 represents false and 1
represents true). Intuitively the idea is as follows: the assignment of truth value 0
to variable xi+1 in Cj is represented by the choice of the left child at depth i
in Tj and right child represents the assignment of truth value 1. We refer to
the tree-like kripke structure for clause Cj , denoted by Tj , as the clause tree
kripke structure for clause Cj . The tree structure corresponding to a clause is
illustrated in the Figure 1.

ri

pi10,pi11

pi21

pi30,pi31

pi20

pi40 pi41 pi40 pi41

pi50 pi51 pi50 pi51 pi50 pi51 pi50 pi51

  pi60 and pi61
All nodes here labeled

titi ti ti ti ti ti All nodes here labeled
  pin0 and pin1

Depth 0

Depth 1

Depth 2

pi30,pi31

Fig. 1. Tree-like kripke structure for clause Ci = (x2 ∨ ¬x4 ∨ x5)

The next Lemma follows from construction of tree-like kripke structures.

Lemma 1. Let variables xi, xk, xt occur in Cj. Given a truth assignment to
variables xi, xk, xt we can construct a path (state sequence) (sj0, sj1, ..., sjn) in
Tj such that sjn is marked with tj iff the truth assignment makes Cj true. The
state sequence is constructed as follows:

– If x� is assigned false then sj� is the left child of sj,�−1 and if x� is assigned
true then sj� is the right child of sj,�−1, where � ∈ { i, k, t }.

3.2 CTL Model Checking of Synchronous Composition

Given m clauses C1, C2, ..., Cm we construct the corresponding tree-like kripke
structures T1, T2, ..., Tm for the respective clauses. The synchronous compo-
sition of the tree-like structures is denoted as TS . We define the properties
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pi, 1 ≤ i ≤ n as follows : p1 = (∧m
j=1pj10) ∨ (∧m

j=1pj11), p2 = (∧m
j=1pj20) ∨

(∧m
j=1pj21) and in general, pi = (∧m

j=1pji0) ∨ (∧m
j=1pji1). Given a QBF formula

with m clauses an inconsistent assignment of truth value to a variable xi occurs
if different truth values are assigned to variable xi in different clauses.

Lemma 2. Consider a state sequence 〈ν0, ν1, .....νn〉 in TS where ν0 = s0
and each νi is the immediate successor of νi−1. Let νi be represented as
(si1, si2, ..., sim). Let Oi = {k | xi occurs in Ck}. Then νi |= pi iff one of the
following conditions are satisfied:

1. for all k ∈ Oi we have sik is the left child of si−1,k.
2. for all k ∈ Oi we have sik is the right child of si−1,k.

Proof. We prove the result considering the following cases:

1. If for all k ∈ Oi we have sik is the left child of si−1,k in Tk then νi |= ∧m
j=1pji0.

This is because for any clause Ck in which xi occurs a node at depth i in
Tk which is a left child satisfies pki0. In any clause Cl such that xi does not
occur a node depth i is the only child of its parent in Tl and satisfies pli0.
Similar argument can show that if for all k ∈ Oi we have sik is the right
child of si−1,k in Tk then νi |= ∧m

j=1pji1.
2. If ∃ t, l such that t, l ∈ Oi and sit is the left child of si−1,t in Tt and sil

is the right child of si−1,l in Tl then νi �|= ∧m
j=1pji0 as νi �|= pli0 and νi �|=

∧m
j=1pji1 as νi �|= pti1. Intuitively, the state νi which does not satisfy pi ac-

tually shows that in one component, Tt, the left branch is followed at depth
i− 1 (representing the assignment of truth value 0 to xi in Ct) and in other
component, Tl, the right branch is followed at depth i− 1 (representing the
assignment of truth value 1 to xi in Cl) which is represents a inconsistent
truth value assignment to xi.

Given a QBF formula : φ = ∃x1∀x2∃x3....∀xn.C1 ∧C2...∧Cm where each Cj

is a clause with exactly three variables, for every clause we construct tree-like
kripke structure as described in Section 3.1. Given the clauses C1, C2, ..., Cm we
have T1, T2, ..., Tm as the respective tree-like kripke structures. Let TS denote
the parallel synchronous composition of the m kripke structures. We consider
model checking the CTL property ψ on TS , where ψ is defined as follows:

EX(p1 ∧AX(¬p2 ∨ (p2 ∧ EX(p3 ∧AX(¬p4 ∨ (p4 ∧ ....
EX(pn−1 ∧AX(¬pn ∨ (pn ∧ (t1 ∧ t2.... ∧ tm)) . . .)))))))).

We will prove that φ is true iff ψ is true in the start state of TS .

Example 1. We illustrate the whole construction through a small example. Given
the following QBF formula φ1 with four variables and two clauses, the corre-
sponding formula ψ1 is as follows:

φ1 = ∃x1∀x2∃x3∀x4.[(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ ¬x4)]

ψ1 = EX(p1 ∧AX(¬p2 ∨ (p2 ∧ EX(p3 ∧AX(¬p4 ∨ (p4 ∧ (t1 ∧ t2)))))))
Given the clauses the corresponding tree-like kripke structures are shown in

the figures, Figure. 2 and Figure. 3.
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Fig. 2. The tree corresponding to the clause (x1 ∨ x2 ∨ x4)

r2
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p240
t2

p241
t2

p240
t2

p241 p240
t2

p241
t2

p240
t2

p241
t2

Fig. 3. The tree corresponding to the clause (x2 ∨ ¬x3 ∨ ¬x4)

Solution tree. Given a QBF formula φ that is true there is a solution tree
defined as follows to prove that φ is true. The solution tree can be described as:

– A node at depth 2∗i has a one child that represents a truth value assignment
of 0 or 1 assigned to x2∗i+1.

– A node at depth 2 ∗ i − 1 has two children: left child represents the truth
value 0 and the right child represents the truth value 1 assigned to x2∗i.

A path from the root to a leaf represents an assignment of truth values to
each variable x1, x2, ..., xn. A solution tree proves the truth of φ iff for all paths
from the root to a leaf the corresponding truth assignment satisfy each clause in
φ.

Lemma 3. If φ is true then ψ is true in the start state of TS.

Proof. Given a truth value assignment for variables x1, x2, ..., xn we follow the
state sequence (ν0, ν1, ν2, ...., νn) with ν0 = s0 as follows : (νi is represented as
(si1, si2, ..., sim) )

– If xi is assigned true then in all clauses Ck where xi occurs sik is the right
child of si−1,k, else if xi is false then sik is the left child of si−1,k. In all the
other clauses Cl in which xi does not occur sil is the only child of si−1,l.

It follows from Lemma 2 that in this state sequence νi satisfies pi . It also
follows from Lemma 1 that νn satisfies tj iff the valuation of the variables makes
Cj true. Given a solution tree to prove φ we construct a proof tree PT , that
proves that ψ holds in the start state of TS , as follows:

1. For a node ν2∗i at depth 2 ∗ i in PT its immediate successor is defined as
follows:
– If ν2∗i satisfies ¬p2∗i it has no successor.
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– Else ν2∗i satisfies p2∗i and if x2∗i+1 is assigned true then in all Tj ’s such
that x2∗i+1 is in Cj choose the right child in Tj and if x2∗i+1 is assigned
false then choose the left branch in Tj . In all Tr’s such that x2∗i+1 is not
in Cr choose the only immediate successor in Tr.

2. For a node at depth 2 ∗ i + 1 in PT its immediate successors are all its
successors present in T .

Note that for any node at any depth i only two of its successor can satisfy
pi+1, one representing the assignment of truth value 0 to xi+1 where in all
components left branches are taken and the other representing the assignment
of truth value 1 to xi+1 where in all components right branches are taken. A
proof tree has been sketched in It follows that in PT a node at depth 2 ∗ i + 1
from the start state will satisfy p2∗i+1. Hence the node at depth 2 ∗ i will satisfy
EX(p2∗i+1). For a node at depth (2 ∗ i − 1) if in all the Tj ’s for clause Cj in
which x2∗i occurs left branches or right branches are followed (consistently in all
Tj ’s ) then the next state satisfy p2∗i. All the other successors satisfy ¬p2∗i. By
the construction of PT it follows any leaf node which is at a depth i where i < n
it satisfies ¬pi. Since for the given solution tree C1 ∧ C2 ∧ .... ∧ Cm is satisfied
any leaf at depth n will either satisfy ¬pn or will satisfy t1 ∧ t2 ∧ ...tm. Hence
PT proves that ψ is satisfied in the start state of TS .

Lemma 4. If ψ is true in the start state of TS then φ is true.

Proof. If the formula ψ is true in the starting state of TS then there is a
proof tree PT to prove ψ to be true. We construct a solution tree to prove
φ. For a node ν2∗i = (s2∗i,1, s2∗i,2, ..., s2∗i,m) at depth 2 ∗ i in PT let ν2∗i+1 =
(s2∗i+1,1, s2∗i+1,2, ..., s2∗i+1,m) be its successor such that p2∗i+1 is satisfied at
ν2∗i+1. From Lemma 2 we have that one of the following two conditions hold:

1. in every Tj such that x2∗i+1 occurs in Cj , s2∗i+1,j is the left child of s2∗i,j

2. in every Tj such that x2∗i+1 occurs in Cj , s2∗i+1,j is the right child of s2∗i,j .

If the former condition is satisfied then we construct the solution tree as-
signing truth value 0 (false) to x2∗i+1 and if the later is satisfied then we
assign the value 1 (true) to x2∗i+1. As ψ is true in the start state it follows
that in PT any leaf at depth n which satisfy pn must satisfy t1 ∧ t2... ∧ tm.
Hence the choice of the truth values for the odd variable as constructed above
from the proof tree PT ensures that the solution tree thus constructed will
prove φ (will satisfy all clauses). Hence if ψ is true in the start state then
φ = ∃x1∀x2∃x3....∃xn−1∀xn.[C1 ∧ C2... ∧ Cm] is true.

It follows from Lemma 3, 4 that the CTL model checking is PSPACE-hard.
A DFS model checking algorithm that performs on-the-fly composition requires
space polynomial in the size of the depth of the proof tree. This gives us the
following result.

Theorem 1. CTL model checking of synchronous composition of tree-like kripke
structures is PSPACE complete.
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Theorem 2. Model checking of formulas of the form E(B U B) and A(B U B),
where B is an Boolean formula, is NP complete and coNP complete respectively,
for synchronous composition of tree-like kripke structures.

Proof. Given a SAT formula in CNF (Conjunctive Normal Form) ψ = C1 ∧C2 ∧
... ∧ Cm where each Ci is a clause with exactly three variables from the set of
variables of {x1, x2, ..., xn}. For each clause Cj we construct a clause tree-like
kripke structure Tj as described in Subsection 3.1. Let synchronous composition
of the component kripke structures be TS . We will prove that the SAT formula ψ
is satisfiable iff the following formula ϕ is true in the start state of TS , where ϕ is
defined as ϕ = E(r∨p1∨p2∨....∨pnU(t1∧t2∧...∧tm)), where r = r1∧r2∧...∧rn.
Note that for every Tj the root of Tj is marked with proposition rj . Hence the
staring state of T will satisfy r.

Suppose ψ is satisfiable, then there is a satisfying assignment A. Given A
we construct the following path (state sequence) ν0, ν1, ν2, ..., νn ,where νi =
(si1, si2, ..., sim), to satisfy ϕ. We construct the immediate successor νi of νi−1
as follows:

– if xi is assigned false by A then in all Tj such that xi occurs in Cj the left
branch is followed.

– if xi is assigned true by A then in all Tj such that xi occurs in Cj the right
branch is followed.

It is evident that νi satisfies pi (from Lemma 2) and ν0 satisfies r. Since ψ
is satisfiable we have νn satisfies t1 ∧ t2 ∧ ...∧ tm. So ϕ is true in the start state.

If ϕ is true at the start state then there is a path P in T to satisfy (r ∨ p1 ∨
p2 ∨ .... ∨ pnU(t1 ∧ t2 ∧ ... ∧ tm)). Let the path be ν0, ν1, ν2, ..., νn. Then in this
path νi must satisfy pi. For a node νi = (si1, si2, ..., sim) at depth i in P let
νi+1 = (si+1,1, si+1,2, ..., si+1,m) be its successor such that νi+1 satisfy pi+1. It
follows from Lemma 2 then one of the following two conditions must hold:

– in every Tj such that x2∗i+1 occurs in Cj , s2∗i+1,j is the left child of s2∗i,j .
– in every Tj such that x2∗i+1 occurs in Cj , s2∗i+1,j is the right child of s2∗i,j .

If the former condition is satisfied then assign xi+1 to be 0 (false) and if the
later is satisfied assign xi+1 to be 1 (true). As t1 ∧ t2 ∧ ...tm is satisfied in the last
state we have ψ satisfied for the given assignment. This proves that the model
checking of a simple formula of the form E(B U B) is NP hard.

To prove the model checking is in NP we note that in T any infinite
path is path from the start state which is a state sequence of the form :
ν0, ν1, ν2, ...., νi, νi, νi, ..... where i is bounded by the maximum of the depth of
the component tree-like kripke structure. Hence for any infinite path of the form:
ν0, ν1, ν2, ...., νi, νi, νi, ..... which satisfies E(B U B), (ν0, ν1, ν2, ...., νi) can be a
proof. This proof is polynomial in size of the input. A NP algorithm guesses
the state sequence and then verifies that the state sequence satisfies the formula
E(B U B), which can be achieved in P . The desired result follows.

To prove that the model checking problem is coNP hard for formulas of the
form A(B U B) we reduce the validity problem to it. Consider the problem of
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validity of a formula ψ expressed in DNF (Disjunctive Normal Form) as follows:
ψ = F1 ∨ F2 ∨ ... ∨ Fm where each Fi is a term (conjunction of literals) with
exactly three variables from the set of variables of {x1, x2, ..., xn}. We construct
the clause tree-like kripke structure Tj for every term Fj as mentioned in Sec-
tion 3.1. The only difference is that every node in Tj at depth i is marked with
a proposition di. Also the nodes at depth n are marked with ti according to the
following condition: Consider a node s at depth n such that it is numbered i. Let
B1B2B3 be the binary representation of i. If assigning xi = B1, xk = B2, xl = B3
makes Fj true then s is labeled by tj , otherwise it is not labeled by tj . (B1, B2, B3
are 0, 1 respectively and 0 represents false and 1 represents true). Let the syn-
chronous composition of T1, T2, . . . , TM be TS . Consider the formula:

ϕ = A(r∨p1 ∨p2...∨pn U (t1 ∨ t2 ∨ ... tn)∨ (d1 ∧¬p1)∨ (d2 ∧¬p2)...∨ (dn ∧¬pn))

where r = r1 ∧ r2 ∧ ...∧ rn. Similar argument as above with minor modifications
for the universal nature of the A operator and the validity problem we can show
ϕ is true in the start state of TS iff the formula ψ is valid. The proof of the model
checking problem of formulas of the form A(B U B) is in coNP is similar.

3.3 CTL Model Checking of Asynchronous Composition

Given m clauses C1, C2, ..., Cm we construct T1, T2, ..., Tm as m tree-like kripke
structures for the respective clauses. Let TA denote the asynchronous compo-
sition of the tree-like structures. We prove that the CTL model checking of
asynchronous composition is PSPACE complete. In this section we refer to pi’s,
ψ, φ as defined in the Subsection 3.2. The construction of the tree-like kripke
structure in Subsection 3.1 gives us the following result.

Lemma 5. Given a state νi = (si1, si2, ....sin) in TA such that νi satisfies pk

then for all j, depth of sij in Tj is k.

Theorem 3. CTL model checking of asynchronous composition of tree-like
kripke structures is PSPACE complete.

Proof. Consider the formula φ and ψ as described in the Subsection 3.2. Con-
sider the start state s in TA. It follows from Lemma 5 that any successor s1
of s in TA which satisfies p1 follows from a transition in which all the compo-
nents make a transition (which corresponds to a transition of the synchronous
composition). Similarly consider any successor s2 of s1, a transition in which all
the components does not make a transition will cause s2 to satisfy ¬p2. For a
transition which satisfies p2 it will have to be a transition in which all the com-
ponent Tj ’s make a transition (which again corresponds to a transition of the
synchronous composition). This argument can be extended for any depth 2 ∗ i
and 2 ∗ i+ 1. Hence the construction of the proof tree PT from a given solution
tree of truth values to variables to prove ψ and the construction of a solution
tree from the proof tree PT is similar as in the Lemmas and Theorems in the
Subsection 3.2. This proves that CTL model checking of TA is PSPACE hard.
The PSPACE upper bound argument is similar to Theorem 1.
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Lemma 5, Theorem 3 and arguments similar to to Theorem 2 gives us the
following Theorem.

Theorem 4. Model checking of formulas of the from E(B U B) is NP complete
and model checking of formulas of the form A(B U B) is coNP complete, where B
is a Boolean formula, for asynchronous composition of tree-like kripke structures.

3.4 CTL Model Checking of Strict Asynchronous Composition

Given m clauses C1, C2, ..., Cm we construct T1, T2, ..., Tm as m tree-like kripke
structures for the respective clauses. We denote by TAS the strict asynchronous
composition of the tree-like structures. For every node s in Tj such that the
depth of s is d it is marked with an atomic proposition ljd. In this section we
refer to pi’s , φ as defined in the Subsection 3.2. We define properties li, l′i at
a node in T , for 1 ≤ i ≤ n as follows: li = ∧m

j=1(lji ∨ lj,i−1), l′i = ∧m
j=1(lji). We

define ψ as follows:

ψ = E(l1U(p1 ∧A(l2U(¬l2 ∨ (¬p2 ∧ l′2) ∨ (p2 ∧ E(l3U(p3∧
...A(lnU(¬ln ∨ (¬pn ∧ l′n) ∨ (pn ∧ (t1 ∧ t2... ∧ tm))))...)))))))

We briefly sketch the idea of the proof of the reduction of QBF to CTL model
checking of strict asynchronous composition. The property li is true at a state
if the depth of every component node is either i or i − 1. Consider a path π =
(s0, s1, ...) which satisfy l1Up1, where s0 is the start state of T . In the path π in no
component more than one transition is taken. When p1 is reached all components
must have taken one transition each. Hence it corresponds to a single transition
of a synchronous composition. Consider a state which satisfy s′ ∈ T such that s′

satisfies p1. The state s′ is a state in TAS such that depth of all the component
nodes is 1. We consider the truth of the formula A(l2U(¬l2 ∨ (l′2 ∧ ¬p2) ∨ p2) in
s′. The part (¬l2 ∨ (l′2 ∧ ¬p2)) ensures the following :

– If there is more than one transition in a component then ¬l2 is satisfied.
– If in all components one transition is made and there are components such

that in one component the left branch transition is followed whereas in the
other component the right branch transition is followed then we have l′2∨¬p2
satisfied.

So in the above cases A(l2U(¬l2 ∨ (l′2 ∧ ¬p2) ∨ p2) cannot be false. So any l2
path to a state with more than one transition for any component or to a state
which is a representative of inconsistent truth values to variable x2 (a state
which satisfy ¬p2) in different clauses will not cause A(l2U(¬l2 ∨ (l′2 ∧¬p2)∨ p2)
to be falsified. A l2 path to a state satisfying p2 again corresponds to a single
synchronous transition. Similar arguments can be extended to depth 2 ∗ i and
2∗ i+1 respectively. The rest follows arguments similar to those in Lemmas and
Theorems in the Subsection 3.2 and 3.3 to prove that the model checking of strict
asynchronous composition of tree-like kripke structure is PSPACE complete.

Theorem 5. CTL model checking of strict asynchronous composition of tree-
like kripke structures is PSPACE complete.
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Remark 1. The PSPACE-upper bound for CTL model checking holds for syn-
chronous, asynchronous and strict asynchronous composition even if the compo-
nent structures are arbitrary kripke structure. (i.e., underlying transition relation
is a graph rather than a tree).

4 Reachability Analysis

The reachability problem asks given two states s and t in the composition of m
tree-like kripke structure whether there is a path from s and to t.

Synchronous Composition. Let s = (s1, s2, ..., sm) and t = (t1, t2, ..., tm) be
two states. It can be shown that t is reachable from s if and only if the following
two conditions hold: (a) for all non-leaf nodes ti and tj we have depth(tj ) −
depth(sj ) = depth(ti) − depth(si) = d , and (b) for all leaf nodes tk we have
depth(tk )−depth(sk ) ≤ d . The values for depth(ti)−depth(si) can be computed
by a simple BFS algorithm linear in the size of the input.

Theorem 6. Given two states s = (s1, s2, ..., sm) and t = (t1, t2, ..., tm) whether
t is reachable from s can be determined in time linear in the input size for
synchronous composition of tree-like kripke structures.

Asynchronous Composition. For asynchronous and strict asynchronous com-
position reachability analysis is linear even if the individual components are arbi-
trary kripke structures. Given m kripke structures G1, G2, ..., Gm let G be their
asynchronous composition (or strict asynchronous composition).

Theorem 7. Given two states s = (s1, s2, ..., sm) and t = (t1, t2, ..., tm) whether
t is reachable from s can be determined in time linear in the input size for
asynchronous and strict asynchronous composition of arbitrary kripke structures.
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