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02 Magnetization of oupled spin lusters in LadderGeometryEmily Chattopadhyay and Indrani Bose1st February 2008Physis Department, Bose Institute, 93/1, A.P.C. Road,Calutta-700009, IndiaAbstratIn this paper, we onstrut a lass of spin-1/2 antiferromagneti (AFM)two-hain ladder models onsisting of bloks of n-spin tetrahedral lustersalternating with two-spin rungs. For n=4 and 6 and in extended parame-ter regimes, the exat ground state of the ladder is shown to be a produtof the ground states of the rungs and the n-spin bloks, in both zero and�nite magneti �elds. In the latter ase, magnetization/site m versus ma-geneti �eld h plot exhibits well-de�ned magnetization plateaus.PACS numbers: 75.10 Jm, 75.40 Mg, 75.50EeSpin ladders have been widely studied in reent times as these systems exhibita variety of novel phenomena in the undoped as well as the doped states1,2.There are also several magneti ompounds whih an be onsidered as oupledspin luster systems in whih the dominant exhange interations our withinlusters of spins. The lusters are oupled through weaker exhange interations.A prominent example of suh systems is that of moleular magnets3. Examplesof spin lusters are dimers and four-spin plaquettes. The magneti propertiesof spin lusters an be determined exatly if the size of the luster is small. Itis of signi�ant interest to �nd out how the luster properties are modi�ed inthe bulk. In this paper, we propose a lass of two-hain spin ladder modelswhih an be de�ned in terms of n-spin lusters and dimers. The spei� valuesof n onsidered are n = 4 and 6 though a generalisation to higher n valuesis also possible. The models desribe spins of magnitude 1/2 interating viamodulated antiferromagneti (AFM) exhange interations. We show that ina wide parameter regime, the exat ground and low-lying exited states of thefull ladder model an be desribed in terms of the eigenstates of the dimersand n-spin lusters, i.e., the lusters at as deoupled entities even in the bulk.This is also true when the exhange interations oupling the lusters are ofonsiderable strength. In the same parameter region, the magnetization/site ofthe ladder in the presene of an external magneti �eld exhibits the phenomenon1
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of magnetization plateaus. The ondition for the appearane of a plateau is givenby4

Su −mu = integer (1)where Su and mu are the total spin and magnetization in unit period of theground state.Spin-1/2 ladder models of various types have been extensively studied bothin zero and �nite magneti �elds5−16. In frustrated spin ladder models, extradiagonal exhange ouplings (one or two) are present. Hakobyan et al.10 havegiven an overview on the phase diagram of the general frustrated two-hainladder model. The magnetization proess of the general model is, however, yetto be undertaken. Brenig et al.11have introdued a dimerized and ompletelyfrustrated two-hain ladder model. The model, in whih diagonal exhange in-terations are present in every plaquette, is equivalent to a hain of edge sharingtetrahedra. The rung exhange interations in the ladder model are of strength
J2. The nearest -neighbour intra-hain and diagonal exhange interations areof equal strengths and in alternate plaquettes the strengths are J1 and J3 re-spetively. Examples of tetrahedral luster ompounds are tellurates of the type
Ca2Te2O5X2 with X = Cl, Br12. The lass of models we propose desribestwo-hain spin-ladders with modulated exhange interations. The spin laddersonsist of tetrahedral spin lusters ontaining n spins separated by two-spinlusters, i.e., dimers (rungs). In setion II, we introdue the models and dis-uss the magnetization properties in the presene of an external magneti �eld.Setion III ontains a summary and disussion of the major results obtained.The spin ladder model onsists of bloks of tetrahedral lusters ontainingn spins separated by rungs of two spins. Fig. 1. shows the simplest suh laddermodel with n = 4. The tetrahedral lusters are represented by solid lines andthe two-spin rungs (dimers) by dashed lines. Within a tetrahedral luster, thediagonal exhange interations are of strength J3 and the other exhange inter-ations are of strength J1. The rung exhange interation strengths are J ′ anda rung is oupled to a neighbouring tetrahedral luster through exhange inter-ations (dashed lines) of strength J2. Periodi boundary ondition is assumedto hold true. The spin Hamiltonian desribing the ladder model is given by
H =

∑

i=3j+1,j=0,1,···

[J1(
−→
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S 2i
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= HT +HR +HTR2



The spin operator −→
S 1i (−→S 2i ) is assoiated with the i-th site of the lower(upper) hain of the ladder, the site indies are sequential as shown in Fig.1. The Hamiltonians HT and HR desribe the tetrahedral lusters and therungs respetively whereas HTR ontains the exhange ouplings between thetetrahedral lusters and the rungs. The total spin of eah rung is a onservedquantity due to the speial struture of the Hamiltonian.We now determine the ground state of the ladder model. Using the methodof `divide and onquer'17, it is easy to show that for J2 ≤ J′

4
, the exat groundstate has all the rungs and the tetrahedral lusters in their ground state spinon�gurations. A brief sketh of the proof is given in the following. The groundstate of a rung is a singlet. The ground state of a tetrahedral spin luster isa resonating valene bond (RVB) state and has total spin S=0. The groundstate is |ψRV B1〉 for J3 < J1 and |ψRV B2〉 forJ3 > J1. The states |ψRV B1〉 and

|ψRV B2〉 are linear ombinations (plus and minus) of two valene bond (VB)states. In one VB state, the two VBs (singlets) are horizontal and in the othervertial. TABLE IS Eigenvalues Sz Eigenstates0 −2J1 + J3

2
0 |ψRV B1〉0 − 3J3

2
0 |ψRV B2〉1 −J1+

J3

2
0 ↑↓↓↑ − ↓↑↑↓1 −J3

2
0 ↑↓↑↓ − ↓↑↓↑1 −J3

2
0 ↑↑↓↓ − ↓↓↑↑2 J1 + J3

2
0 ↑↑↓↓ + ↓↓↑↑ + ↑↓↑↓ + ↓↑↓↑

+ ↑↓↓↑ + ↓↑↑↓1 −J3

2
1 ↑↑↓↑ − ↑↓↑↑1 −J1+

J3

2
1 ↑↑↑↓ − ↑↑↓↑ − ↑↓↑↑ + ↓↑↑↑1 J1 + J3

2
1 ↑↑↑↓ + ↓↑↑↑ + ↑↑↓↑ + ↑↓↑↑2 J1 + J3

2
2 ↑↑↑↑Table I: The energy eigenvalues and eigenvetors of a tetrahedral lusterwith exhange interations of strength J1 (horizontal and vertial) and J3. Theeigenstates |ψRV B1〉 and |ψRV B2〉 are the resonating valene bond states.At J3 = J1, the ground state of a tetrahedral luster is doubly degenerate. Thetwo states have a pair of singlets (valene bonds) along either the horizontal orthe vertial bonds. The Hamiltonian HTR (Eq. (2)), ontaining the exhangeouplings between the rungs and the tetrahedral lusters, at on the rung singletsto give zero and thus has no ontributions to the energy E1 of the eigenstate.

E1 is the sum of the ground state energies of the tetrahedral lusters and therungs. Let Eg be the exat ground state energy of the total Hamiltonian H .Then Eg is ≤ E1. Let |ψg〉 be the exat ground state wave funtion. Then,from variational theory,
Eg =

∑

i

〈ψg|Hi |ψg〉 +
∑

i

〈ψg|H
′

i |ψg〉 ≥
∑

i

(Eio + E′

io) (3)3



H =
∑

i

(Hi +H ′

i)where Hi 's are the tetrahedral luster Hamiltonians with the ground stateenergyEio (Table I) andH ′

i's are the six spin luster Hamiltonians, eah of whihontains the rung exhange interation Hamiltonian and the eight exhangeouplings (four horizontal and four diagonal) whih onnet the rung to nearest-neighbour tetrahedral lusters. The ground state energy of H ′

i is E′

io. For
J2 ≤ J′

4
, E′

io is the energy of a singlet aross the rung. We an now write downthe inequality,
∑

i

(Eio + E′

io) ≤ Eg ≤ E1 (4)
E1 is, however, exatly equal to ∑

i(Eio+E′

io) sine it is the sum over the groundstate energies of all the rungs and the tetrahedral lusters. Thus, Eg = E1, i.e.,the exat eigenstate is also the exat ground state of the full ladder model. Theground state has the novel struture of islands of four-spin RVB on�gurationsin the tetrahedral lusters separated by singlet spin on�gurations along therungs. The exat ground state energy is Eg = N(Ei0−3J′

4
) where N is the totalnumber of tetrahedral lusters as well as rungs in the ladder. Ei0 = −2J1 + J3

2for J3 < J1 and Ei0 = − 3J3

2
for J3 > J1 (Table I). When J3 = J1, the exatground state is highly degenerate. The number of suh states is 2N .We now want to hek whether the exat ground state is still a produt ofthe ground states of the rungs and the tetrahedral lusters when J2 is madelarger than J

′

4
. For this, the total Hamiltonian H (Eq. (2)) is written as a sumover six-spin sub-Hamiltonians, hi's, i.e., H =

∑
i hi. Eah sub-hamiltoniandesribes a tetrahedral luster oupled to a rung. The six-spin sub-Hamiltonianan be diagonalised exatly to obtain the ground state energy. Again, one usesthe method of `divide and onquer'. When the six-spin sub-Hamiltonians areadded together to obtain the full Hamiltonian, the J1, J3, J

′ bonds are ountedtwie and the J2 bonds only one. One an identify the region of parameterspae in whih the exat ground state of the full ladder is of the produt form.Fig. 2 shows the phase boundaries, in the parameter spae of J2

J1

and J
′

J1

fordi�erent values of J3

J1

. In the parameter regime below eah phase boundary,the exat ground state is a produt over the ground states of the rungs andthe tetrahedral lusters. One �nds that in ertain parameter regimes J2 an belarger than J′

4
and the exat ground state ontinues to be of the produt form.We next inlude an external magneti �eld term −h

∑6N

i=1
Sz

i in the Hamil-tonian H (Eq. (2)), where 6N is the total number of sites in the ladder. We �rstonsider the ase of a single tetrahedral luster in the presene of a magneti�eld. The magneti �eld ouples to the z-omponent of the total spin of theluster, Sz
tot, whih is a onserved quantity. The ground state energy Eg(S

z
tot) at

h = 0 for Sz
tot = 0, 1 and 2 an be obtained from Table I. When the external �eld

h 6= 0, the ground state in eah Sz
tot subspae is Eg(S

z
tot, h) = Eg(S

z
tot, 0)−hSz

tot.4



The ground state magnetization urve an be easily obtained. Consider the ase
J3 < J1. The magnetization per site m is zero from h = 0 upto a ritial �eld
hc1

= J1. For hc1
< h < hc2

= 2J1, m = 1

4
and beyond h = hc2

, the saturationmagnetization,m = 1

2
, is obtained. Thus there are three magnetization plateausat m = 0, 1

4
and 1

2
. For the external �eld h = 0, we have already seen that thereis an extended parameter regime in whih the exat ground state of the fullladder is a produt of the ground states of the rungs and the tetrahedral lus-ters. We now investigate whether the same holds true for a �nite magneti �eld.Again, one uses the method of `divide and onquer' and the sub-Hamiltonianused is a six-spin luster onsisting of a tetrahedral luster and a rung. For thefull ladder, one an identify a region (region A) in parameter spae in whih for

0 < h < hc1
, m is zero. At hc1

, there is a jump in the value of m to m = 1

6
anda plateau is obtained for h upto hc2

(Fig. 3). When hc1
< h < hc2

, the exatground state has the tetrahedral lusters in their Sz = 1 ground states and therungs in singlet spin on�gurations. Sine, the number of tetrahedral lusters isN and the total number of sites is 6N, the magnetization/site m in the groundstate is 1

6
. The quantization ondition in Eq. (1) is obeyed as unit period ofthe ground state ontains six spins so that Su = 3 and the magnetization muin the unit period is 1. At hc2

, there is a seond jump in m from 1

6
to 1

3
. When

hc2
< h < hc3

, the exat ground state has the tetrahedral lusters in their
Sz = 2 ground states and the rungs in singlet spin on�gurations. In this ase,
Su and mu in Eq. (1) are 3 and 2 respetively. At h = hc3

, there is a jump in mfrom 1

3
to the saturation magnetization 1

2
. For J3 < J1, hc1

, hc2
and hc3

havethe values J1, 2J1 and J ′ + J2, (2J1 < (J ′ + J2)) respetively. There are otherparameter regions (regions B and C) in the parameter spae in whih the fullplateau struture in the m versus h plot, as shown in Fig. 3, is not obtained.Fig. 4 shows the phase diagram for the full ladder in a magneti �eld in the J′

J1vs. J3

J1

parameter spae and for J2

J1

= 0.2. The region A exhibits the full plateaustruture in m vs. h as shown in Fig. 3. In region B, the jump in m from 0 to 1

6ours at h = hc1
(Fig. 3) but beyond hc2

, the ground state is no longer of theprodut form. In region C, the ground state loses its simple produt struturebeyond h = hc1
. Similar phase diagrams are obtained for higher values of J2

J1
andalso for J3 > J1. One an generalise the ladder model shown in Fig. 1 by as-signing di�erent oupling strengths J1, J4 and J3 to the vertial, horizontal anddiagonal ouplings of the tetrahedral lusters. Again, results similar to the ase

J1 = J4 are obtained. With J4 = J3 = J2 and J1 = J ′, the two-hain frustratedladder model introdued by Bose and Gayen18 is reovered. In a �nite magneti�eld h, the magnetization/site m vs. h has a simple plateau struture6.Another generalisation of the ladder model shown in Fig. 1 is to replae atetrahedral luster by a blok of tetrahedral lusters. Fig. 5 shows an examplein whih the blok ontains two tetrahedral lusters. The six-spin bloks are sep-arated by two-spin rungs. Again, one an show that in an extended parameterregime, the ground state has the produt form in both zero and �nite magneti�elds. The exat ground state is the produt of the ground states of the six-spinbloks and the rungs. The ground state of a six-spin blok is a RVB state. An5



extra magnetization plateau exists for hc3
< h < hc4

in whih the ground statehas all the six-spin bloks in their Sz = 3 ground state on�gurations and therungs are in singlet spin on�gurations. At h = hc4
, m jumps to its full satu-ration value. Fig. 6 is the phase diagram similar to Fig. 4 for the full ladderwith J2

J1
= 0.2. In the `divide and onquer' method, the full ladder Hamiltonianis a sum over eight-spin sub-Hamiltonians. Eah sub-Hamiltonian desribes theinterations in a blok of spins onsisting of two tetrahedral lusters and a singlerung. In region A1, the full plateau struture in m vs. h is obtained. In regions

B1, C1 and D1, the ground state no longer has the produt form beyond the�elds hc3
, hc2

and hc1
respetively. Similar phase diagrams are obtained forhigher values of J2

J1

. One an generalise the ladder models shown in Figs. 1 and6 by making the bloks of tetrahedral lusters of bigger size (the total number ofspins in a blok may be 4, 6, 8, 10..... et.). Two-spin rungs separate the bloksof spins. In ertain parameter regimes, the exat ground state is possibly theprodut of the exat ground states of the rungs and the bloks of tetrahedrallusters. A full study of suh ladder models is yet to be undertaken.In this paper, we have desribed a lass of two-hain ladder models onsistingof bloks of tetrahedral lusters, ontaining n spins, separated by two-spin rungs.We have spei�ally onsidered two ases: n=4 and 6. We have shown that inan extended parameter regime, the ground state of the ladder is a produt overthe ground states of the rungs and the bloks of tetrahedral lusters. For n=4,we have shown that the exat ground state onsists of RVB spin on�gurationsin the tetrahedral lusters and the rungs are in singlet spin on�gurations. For
J3 = J1, the ground state is highly degenerate. When J3 is < J1 (> J1), thetetrahedral luster is in the RVB state |ψRV B1〉 (|ψRV B2〉) and the exat groundstate of the full ladder model is non-degenerate. A notable feature of the laddermodel is the presene of singlet exitations in the triplet spin gap in ertainparameter regimes. As already pointed out in earlier referenes11,12, the singletenergy level |ψRV B2〉 of a tetrahedral luster rosses the triplet energy level at
J3 = J1

2
(Table I). Thus for J1

2
< J3 < J1, the singlet exitation desribed by

|ψRV B2〉 falls in the triplet gap. Similarly, for J3 > J1, |ψRV B2〉 is the groundstate and for J1 < J3 < 2J1, the singlet exitation orresponding to |ψRV B1〉falls in the triplet gap. These features arry over to the ase of the full laddermodel in the parameter region in whih the exat ground state an be writtenin a produt form. The existene of singlet exitations in the triplet spin gapis a harateristi feature of some other AFM spin systems whih inlude the
S = 1

2
Heisenberg antiferromagnet (HAFM) on the kagomé lattie19, the S = 1

2HAFM on the pyrohlore lattie20 and some S = 1

2
AFM spin models on the

1

5
-depleted square lattie21,22.The model shown in Fig. 1 an be generalised to bigger bloks of tetrahe-dral lusters. (Fig. 5 shows bloks of two tetrahedral lusters). Instead of thetetrahedral luster shown in Fig. 1, one an also onsider a generalised tetrahe-dral luster with the horizontal, vertial and diagonal exhange interations ofdi�erent strengths. Again, in an extended parameter regime, the exat groundstate is found to be of the produt form. The ground states have the interestingstruture of islands of RVB spin on�gurations separated by singlet spin on-6



�gurations along the rungs. This type of exat ground state is not known forother spin models inluding ladders with modulated exhange interations.The ladder models have also been studied in an external magneti �eld h. Inthe parameter regime in whih the ground states in the di�erent magnetizationsubspaes are of the produt form, the magnetisation/site m as a funtion of hexhibits plateaus (Fig. 3). The quantization ondition in Eq. (1) is obeyed ateah plateau. Figs. 4 and 6 show the phase diagrams for the ladder models ofthe types shown in Figs. 1 and 5. Both the phase diagrams show that thereare extended regions in parameter spae in whih the ground states in di�er-ent magnetization subspaes are of the produt form. Kolezhuk23 has studiedmagnetization plateaus in a spin system onsisting of strongly oupled dimerswhih are again weakly oupled in a planar arrangement of zigzag interations.In our ladder models, we have two di�erent type of lusters: dimers (two-spinrungs) and tetrahedral lusters. Further studies are needed to obtain the phasediagrams of the ladder models in the full parameter spae.The authors thank S. Ramasesha and K. Tandon for letting them use theirHeisenberg Calulator (exat diagonalisation program) for quantum spin sys-tems. E. Chattopadhyay is supported by the Counil of Sienti� and IndustrialResearh, India under santion No. 9/15(186)/97-EMR-I.
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Figure CaptionsFig. 1. Two-hain ladder model onsisting of tetrahedral lusters (solid lines)oupled to two-spin rungs (dashed lines). The exhange interation strengthsare as shown in the Figure.Fig. 2. Phase diagram of the ladder model (Fig.1) in the parameter spae of
J2

J1

and J′

J1

. The parameter spae below a solid line orresponds to the phase inwhih the exat ground state is a produt over the ground states of the rungsand the tetrahedral lusters.Fig. 3. Plot of magnetization/site m versus external magneti �eld h for thetwo-hain ladder model shown in Fig. 1. The plot is obtained in the parameterregion in whih the exat ground states in di�erent Sz
tot subspaes have theprodut form. Two non-trivial magnetization plateaus our at m = 1

6
and

m = 1

3
.Fig. 4. Phase diagram of the ladder model (Fig. 1) in a �nite magneti �eldand in the parameter spae of J′

J1

and J3

J1

with J2

J1

= 0.2. The regions A, B andC are explained in the text.Fig. 5. A two-hain spin ladder whih onsists of bloks of two tetrahedrallusters oupled to two-spin rungs (dashed lines). The exhange interationstrengths are as shown in the Figure.Fig. 6. Phase diagram of the ladder model (Fig. 5) in a �nite magneti �eldand in the parameter spae of J′

J1
and J3

J1
with J2

J1
= 0.2. The regions A1, B1 ,

C1 and D1 are explained in the text.
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