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Deterministic stochastic resonance in a piecewise linear chaotic map
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The phenomenon of stochastic resonaf8® is observed in a completely deterministic setting—with
thermal noise being replaced by one-dimensional chaos. The piecewise linear map investigated in the paper
shows a transition from symmetry-broken to symmetric chaos on increasing a system parameter. In the latter
state, the chaotic trajectory switches between the two formerly disjoint attractors, driven by the map’s inherent
dynamics. This chaotic switching rate is found to “resonate” with the frequency of an externally applied
periodic perturbatiofmultiplicative or additiveé. By periodically modulating the parameter at a specific fre-
quencyw, we observe the existence of resonance where the response of the ggsEnms of the residence-
time distribution is maximum. This is a clear indication of SR-like behavior in a chaotic system.
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PACS numbegps): 05.45+b, 05.40+j

Stochastic resonand&R) is a recently observed nonlin- the normalized distribution of residence timég§. For SR,
ear phenomena in noisy systems, where the noise helps the strength of the peaks shows nonmonotonicity with the
amplifying a subthreshold signdivhich would have been variation of both noise intensity and signal frequency.
otherwise undetectédvhen the signal frequency is close toa  Ippen, Lindner, and Ditt¢8] have used a chaotic driving
critical value[1]. This occurs because of noise-induced hop-term to show SR-like behavior in the SNR of the system
ping between multiple stable states of a system, locking on toesponse. However, in this case the chaos is supplied from
an externally imposed periodic signal. The characteristic sigeutside, and not inherent to the system. Indeed, this distinc-
nature of SR is the nonmonotonic nature of the signal-totion between stochastic and chaotic driving is somewhat ar-
noise ratio(SNR) as a function of the external noise inten- tficial as, e.g., random numbers for Monte Carlo simulations
sity. A theoretical understanding of this phenomena ingre generated using chaos. If SR is actually used for infor-
bistable systems, subject to both periodic and random forcmation processing by biological systems, then it is likely that
ing, has been obtained based on the rate equation approagfyans producing chaotic behavior might enhance their sur-
[2]. As the output of a chaotic process is indistinguishablejya| capability through selective amplification of signals in
from that of a noisy system, the question of whether a similar, noisy background. In this case, the inherent chaos of the
process oceurs in the forr.ner' case has long been dEbated'ég)stem itself could play the role of “noise.” In the model
fact, the authors of Ref1] indicated that the Lorenz system proposed in this paper, a simple one-dimensional map has

%fi el’?tusgOsnhsc;wainweslll-:{knl(_)av_\{grps?lz?j?é%rz] Oifn ngﬂt'giscizg'or’been shown to use its inherent chaoticity to replicate SR-like
9 9 : o Vphenomena. This suggests a deep relation between stochastic

and continuous-time systems, seemed to support this vie h hand. and cri in chaotic d .
However, it is difficult to guarantee that the response behay eSONaNce, on the oné hand, and Crises In chaotic dynamics,

ior is due to “resonance” and not due to “forcing.” In the on the other hand, mentioned in RE®]. The present work

latter case, the periodic perturbation is of so large an ampli@!SC SUPports this view.

tude that the system is forced to follow the driving frequency ' n€ Simplest chaotic system to show SR-type behavior
of the periodic forcing. The ambiguity is partly because the@re one-dimensional maps with two critical points. The most
SNR is a monotonically decreasing function of the forcingcommonly studied system of this kind is the cubic nfag]
frequency, and cannot be used to distinguish between res#n+1=axj+(1—a)x,, wherea is a tunable parameter. The
nance and forcing. map is found to consist of two attractors, the initial condition
The signature of SR can also be observed in the residenaetermining the attractor into which the system settles. Vari-
time distribution. In the presence of a periodic modulation,ous properties of such ‘bimodal’ maps differ from those ob-
the distribution shows a number of peaks superposed on aerved for the well-studied class of maps with a single criti-
exponential background. However, this is observed both ircal point(e.g., the logistic map
the case of resonance as well as forcing. The ambiguity is, Recently, SR has been studied in one-dimensi¢hB)
therefore, present in theoreticBh] and experimenta[6] maps with two well-defined statefut not necessarily
studies of noise-free SR, where regular and chaotic phasesable with switching between them aided by either additive
take the role of the two stable states in conventional SRor multiplicative external nois¢11]. However, dynamical
Although the distribution of the lengths of the chaotic inter- contact of two chaotic 1D maps can also induce rhythmic
val shows a multipeaked structure, this by itself is not suffi-hopping between the two domains of the systeiB]. The
cient to ensure that the enhanced response is not due to fongresent work shows how the chaotic dynamics of a system
ing. In the present work this problem is avoided by can itself be used for resonant switching between two states,
measuring the response of the system in terms of the peakswithout introducing any external noise.
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FIG. 1. The DAT map foiay=2.01. Inset: a magnified view of

the map in the intervdl—0.005,0.00%Xx[ —0.005,0.005.
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FIG. 3. The time evolution of the sinusoidally perturbed DAT
map for a,=2.01, =755, and 5=0.05. The broken line is the

boundary betweeh andR.

The model chosen here is a piecewise linear bimodal map,
henceforth referred to as the discontinuous antisymmetric The map has a symmetrical pair of fixed points.,

tent (DAT) map, defined in the intervtl,1]

x(n+1)=F(x,)
1+a[0.5—x(n)] if x(n)=0.5

1-a[0.5-x(n)]  if 0<x(n)<0.5

—1+a[0.5+x(n)] if —0.5<x(n)<0

—1-a[0.5+x(n)] if x(n)<-0.5.

The map has a discontinuity at=0. The behavior of the
system was controlled by the paramete(0<a<4). The

=+ (1+a/2)/(1+a) which are stable for &a<1 and un-
stable fora>1. Another pair of unstable fixed points; ,
==*(1—al/2)/(1—a) come into existence faa>2. It is to
be noted that as—2 from above,x3, both collide atx
=0 causing an interior crisis, which leads to symmetry
breaking of the chaotic attractor.

To observe SR, the value af was kept close to 2, and
then modulated sinusoidally with amplitudeand frequency
w, i.e.,

ap+ osin(2wrwn) if
@17 g ssin2mwn) if xel.

XxeR

@

onset of chaos occurs at=1. The chaos is symmetry bro- We refer to this henceforth as multiplicative or parametric
ken, i.e., the trajectory is restricted to either of the two subperturbation, to distinguish it from additive perturbati@lis-

intervals R:(0,1] and L:(0,—1], depending on initial condi-

tion. Symmetry is restored at=2. The Lyapunov exponent

cussed later
The system immediately offers an analogy to the classical

of the map is a simple monotonic function of the parametebistable well scenario of SR. The sub intervalandR cor-

a. The piecewise linear nature of the map makes its behaviatespond to the two wells between which the system hops to
simpler to study than, say, the cubic map described aboveind fro, aided by the inherent noiéghao$ and the periodic
The map is shown in Fig. 1, the inset giving a detailed pic-signal. In each positivénegative half-cycle of the periodic

ture of the region around the discontinuityxat 0. Figure 2
shows the evolution of the map’s attractor wéhincreasing
from O to 4.

dg

FIG. 2. Attractor of the DAT map vs,. The figure was ob-

signal, a portion of the map defined ovR(L) overlaps into

the domain of the other portion defined ouelR). This is
analogous to the successive raising and lowering of the wells
in synchronization with the signal frequency, allowing the
system to escape from one well to the other. The resultant
intermittent switching of the trajectory betweénandR is
shown in Fig. 3. If the dynamics of the system due to the
internal noisg(chaog has some inherent time scdkayn,),

as 1l —ny, the two time scales may lock onto each other.
This resonance should be observable through an increase in
the response characteristics of the map.

The response of the system is measured in terms of the
normalized distribution of residence timed(n) [7]. This
distribution shows a series of peaks centerednpt (]
—3)ng, i.e., odd-integral multiples of the forcing period,
no=1l/w. The strength of th¢th peak,

P,= fnj+an0N(n)dn(0<a<0.25), (€

nj—ano

tained forxg e R. Forx, e L the corresponding image is obtained by is obtained at different values @b, keepinga, fixed for

reflecting about the axis.

j=1, 2, and 3. To maximize sensitivityy was taken to be
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0.25. Forag=2.01 ands=0.05, the response of the system
showed a nonmonotonic behavior @swas varied, withP,
peaking atw;~ 755, a value dependent up@y—a clear sig-
nature of a SR-type phenomend®, and P; also showed a
nonmonotonic behavior, peaking roughly at odd-integral

(a) (b)

Y

multiples of w; [Fig. 4@)]. Foray<2, P, increases mono- *° /z \

-0

tonically to 1 with decreasing, while, P;(j>1) goes down

R
to zero. So, “true resonance,” signified by the nonmono- 5 B
tonic profile of P4, occurs only forag>2. 5 N
Similar observations oP; were done also by varying, - “/__k
X 2
ag

keepingw fixed. Figure 4b) shows the results of simulations ° 00t 002 1.98 204

@

for w= 75 and §=0.05. Here also a nonmonotonicity was

observed folP;, P,, andP;. The broadness of the response  FIG. 4. (a) Py (n=1, 2, 3 vs w for a,=2.01 and5=0.05, (b)
curve and the magnitude of the peak strengths are a functiofn (N=1, 2, 3 vsa, for = 35 and 6= 0.05. The circles represent

of the perturbation magnitudé, The variation ofP; with the average value d?, for 18 diﬁgrgnt initial values Qk, and .th.e

a, for different values ofs were also studied. A$ de- bar_s rgpresent the standard devnat_lon. The data points are joined by
creases, the response curve becomes more sharply peak@dd lines for the reader’s convenience.

while the peak strength decreases.

Note that the parametric perturbation cannot be done . . .
without modulating the noise intensity. This seems to be th _robab|I|ty density over the four intervals. The next largest

difference between this type of chaotic resonance and Clag_lgenvall,!e domlnr?ltes any t|me-dependent' phenpmena. The
sical SR. As the local slope of the mam, is varied periodi- relevant time scalé.e., the mean residence tijnis given by

cally, the internal noise, whose intensity is a function of the[s]
Lyapunov exponentand hence ofa) also varies periodi-

cally. In contrast, for classical SR, the wells are raised or = ot - . _ (5)
lowered periodically without affecting the external noise, 1-el2— €14\ In(1—€l2)
which is independent of the geometry of the wells. In —1_ 2/a

Analytical calculations were done to obtain the invariant

probability density and the dominant time scale governingg, forag=2.01, n,=200. This predicts that a peak in the

the residence-time distribution. This was done by proper parr'esponse should be observed at a frequency, H2L/400,
titioning of the domain of definition of the system and ob-

L . . " which agrees with the simulation results. For smagli\,
taining the eigenvalues of the corresponding transition ma-_

. ; o =exp(— €/2). Therefore, asay;—2 from above, the resi-
trix. From Fig. 2, it is clear that the system spends a longe, . .o time diverges as
time in the interval — €/2,e/2], wheree=ay;—2. So a natu-
ral partitioning of the interva[—1,1] is into the four sub-
intervals:Cq: [ —1,—€/2], C,: [ —€/2,0], C3: [0,e/2], and
C,4: [€/2,1]. This is an exactly Markov partition at integral The mean time spent by the trajectory in any one of the
values ofe, i.e., the partition boundarigg;} transform into  subintervalgL or R) can be calculated exactly for piecewise
each other on application of the map dynamid{p{) linear maps[13]. For €>0, the intervals3;=[0,e/2(2
e{pi}). Itis assumed that for— O the partitioning approxi- +¢)] and B8,=[1— [€e/2(2+ €) ],1] of R maps toL, so that
mately retains its Markovian character, so that the procesghe trajectory escapes from one subinterval to the other. Note
can be mapped onto a Markov process. Close+d, the  the symmetrical placement of the twR—L “escape re-
transition matrix corresponding to the above partitioning is gions” aboutx=0.5, because of the symmetR(1/2—Xx)

=F(1/2+x) of the DAT map. So the total fraction dR

n~(ap—ag) !, ag=2. (6)

1—el2— €%14 € € escaping toL after one iteration i$,=2¢/2(2+€). Let us
1-¢/a 41— €8 41— b 0 now consider the first preimage gf and3,, which escapes

from R to L after two iterations. The total fraction & be-
€ 1 o 0 longing to this set id,=4€/2(2+ €)2. Proceeding in this

We 2+e 2+e 2+e manner, we find from the geometry of the map that the total
0 1 1 € ’ fraction of R which maps tdL after n iterations, is
2+e 2+e 2+e
) 2"e
0 € € 1-€/l2— €14 In:—n' (7)
4(1-€d8) A(1-eda)  1- €A 2(2+e)

where W;;=P(C;,C;) is the probability of transition from

(4)

Ci to C;. The eigenvalues of the above matrix arg=1,

No=(1—el2— €214)/(1— €214), A3=(1—€)/(1—€°/4,) and
A4=0. The largest eigenvalue 1 corresponds to the invariant

These are just the probabilities that the trajectory spends a
period of n iterations inR before escaping td (Ejillj
=1). So the average lifetime of a trajectory Ris

” 2
(ny=2, (i—1)l;=-. ®
=1 €



8012 BRIEF REPORTS PRE 58

For a;=2.01,(n)=200, in good agreement with the result turbation. This work can be seen in context with studies con-
obtained using the approximate Markov partitioniwghich  ducted on the dynamics of the logistic map under parametric
ensures the validity of the latter approximatiofihe above perturbation15]. ) _ )
equation also exactly establishes the linear scaling relation of Low-dimensional discrete-time dynamical systems are
the mean lifetime about=0, with (n) diverging ata, amenable to several analytical techniques, and hence can be
=2. By symmetry of the map, identical results will be ob- Well understood compared to other systems. The examina-
tained if we consider the trajectory switching frdmto R. tion of resonance phenomena in this scenario was for ease of
behavior around =0, is the drift ratey from one subinterval 10 assume that similar behavior occurs in a higher-
to the othe[14]. This measures the rate at which the chaoticdimensional chaotic system described by both maps and dif-
trajectory switches betwednandR. Owing to the symmetry ~ferential equations. . _
F(—x)=—F(x) of the DAT map, the net drift rate is zero The close resemblance of the merging of attractors with
i.e., switching to either subinterval occurs equally often. Letcritical phenomena has possible relevance to SR in Ising
us consider switching frorR to L (identical results will hold ~ SyStéms. Although numerical studies have reported SR in a
for switching in the opposite direction due to symmgtry kinetic Ising system, it seems to b_e mconpluswe as the_ pri-
The drift rate is measured by the fraction of R mapping.to Mary peak strength of the nqrmallzed reS|der_10e—t|me distri-
per iteration. Hence ¥ /(2+¢). It is again a linear scaling Pution shows only a monotonic behavid]. This response
relation asa,— 2 from above. Note that, faa,<2, v=0 as profile is identical .to that observe.d in the DAT map By
the two subintervals are isolated from each other. This =~ <2- A study of kinetic aspects like hysteresis is planned,
analogous to an order parameter, having a fifiesitive which should give information concerning the phase depen-
value aboveay,=2 and zero below it. This suggests that the d€nce of the resonance behavior. o
merging of the chaotic attractorsag= 2 is akin to a critical The observation of SR in chaotic systems also has impli-
phenomena, with the local slopg as the tuning parameter. cations for the area of noisy information processing. It has
A similar study was also conducted with additive pertur-P&€n Proposed that the sensory apparatus of several creatures
bation for the above map. In this case the dynamical systeriS€ SR to enhance their sensitivity to weak external stimulus,
is defined as followsx, . ;=F(x,)+ ésin(2rwn). Fora €9 _the approach of a predatc_>r. Some experlmental work_ on
=1.9 (say, the map has two disconnected subintervals crayfish has provided supporting evidence for this assertion
L:{—1,0 and R:(0,1]. However, an additive perturbation of [17]. The above study indicates that external noise is not
magnitudes>0.1 causes a portion df to diffuse intoR in necessary for such amplification, as chaos in neural networks
the positive half-cycle of the sinusoidal sigriaf frequency can enhance weak signals. As chaotlc' behavior is ex'tr'emely
). Similarly, in the negative half-cycle, a portion of the common in a recurrent network of excitatory and inhibitory
interval diffuses intd_. The long-term behavior of the map is "€U'ONS, such a scenario Is not e_nt|re|y unlikely to have oc-
described by a “smeared-out’ DAT map with a widi curred in the biological world. This can, however, be con-
rather than the “crisp” piecewise linear DAT map with, firmed only by further biological studies and detailed mod-
=1.9. This happens as the map performs a periodic vertica‘?IIngl of the phenomena.
motion, causing a smearing out over time. The simulation Several interesting comments on the work were made by
results showed a nonmonotonic behavior for the response #& M. Gade (JNCASR, Bangalone and P. A. Rikvold
either w or ag was varied, keeping the other constant, but(Florida State University J. K. Bhattacharje€lACS, Cal-
this was less marked than in the case of multiplicative percutta made some useful suggestions.
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