
175 Years of Linear ProgrammingPart 4. Minimax and CakeVijay Chandru & M.R. Rao\One of the most striking events in connection with the emergence of modern economictheory was the simultaneous but independent development of linear programming onthe one hand and game theory on the other, and the eventual realization of the veryclose relationship that exists between these two subjects."David Gale, 1960The mother of the twin brothers, Ram and Shyam, has a di�cult problem to solve. There isonly one cake and two hungry and competitive lads. But she is resourceful (as mothers have to be)and comes up with a brilliant solution. \Ramu", she says, \since you are older by a few hours, youget to cut the cake into two pieces. And, Shyamu, you get to choose the piece you want".\Johnny" von Neumann would have been happy with this arrangement, since it illustrates hisfamous minimax principle of two-person, zero-sum games. This article will explain this principlein some detail and show its equivalence to the duality theorem of linear programming (proved inpart 1 of this series).You may have guessed what Ram and Shyam would do to share the cake. Ram knows thatwhen the cake is in two pieces, his greedy twin will grab the larger of the two pieces. Hence, Ram'sbest strategy has to be to cut the cake into two equal pieces and thus minimise the maximum shareof cake that Shyam gets. The game can be represented by the matrix below, whose entries are thepayo� to Shyam (his share of the cake).Ram's Strategies------------------Cut equal Cut unequalPieces Pieces---------------------------------Choose | || Bigger | Half Big Piece |Shyam's | Piece | |Straegies| | || Choose | |Smaller | Half Small Piece |Piece | |---------------------------------{\em Figure 1.} Minimax and CakeIf Shyam had to declare his strategy �rst, the outcome would not be any di�erent. He wouldsimply declare that he would always choose the bigger piece and Ram would respond by cutting1
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the cake evenly. Thus maximin equals minimax, the minimum row maximum equals the maximumcolumn minimum in the 2 � 2 matrix above, and the game has an obvious saddle point. Motherhas shewn herself to be a compleat strategyst.Mixed Strategies and Johnny's 1928 Theorem\You know that the best you can expect is to avoid the worst."Italo Calvino, 1979Unfortunately, not all two-person, zero-sum games have as clean and simple solution as the cakeexample we saw above. By zero-sum we mean that the payo� to one player is always made by theother player, i.e., there are no externalities. We can always invent a rectangular payo� matrix withentries such that the minimum row maximum exceeds the maximum column minimum. Considerfor example, ----------------| 1 -1 || -1 1 |----------------{\em Figure 2.} Odd-Even Gamefor which the di�erence between the minimax and the maximin is 2. We can interpret thegame corresponding to this matrix as one in which both players simultaneously call out a numberbetween 1 and n. If the total value is even, the row player (R) is awarded a rupee by the columnplayer (C) and vice-versa if the total is odd. So the pure strategies, for both players, are the choicesof picking an odd or an even number between 1 and n. The game is played repeatedly and so oneof the players can end up very rich (at the expense of the other!).Assuming that both players are rational, we see that neither could consider playing a purestrategy since the other player would eventually catch on and cash in. Hence, the only possibilityis that they play mixed strategies which means that they pick the pure strategies at random andaccording to some probability distribution of their choice. For the payo� matrix above, both R andC should choose a (0.5,0.5) mixed strategy and we see that this ensures that the expected payo�for both players is 0. Notice that the minimax of expected payo�s equals the maximin of expectedpayo�s.In 1928, von Neumann proved that this closure of the gap between minimax and maximin ofexpected payo�s holds for mixed strategies on any payo� matrix. Check that the matrix game--------------------| 5 3 4 4 || || 3 6 1 6 |--------------------{\em Figure 3.} Rectangular Game 2



has a value of 3.5 (expected payo� to the row player R) with mixed strategies of (5/6,1/6) by Rand (0,1/2,1/2,0) by C.We are now ready to state the general form of the theorem. The (m�n) payo� matrix A = (aij)de�nes a game for two. The entry aij represents the payo� to R (\Rose") when she picks the ithstrategy and C (\Colm") picks his jth, and xi and yj represent the probabilities of R and Crespectively, picking their ith and jth strategies. The resulting expected payo� to R is given by theexpression Pmi=1Pnj=1 aijxiyj . An m-vector x is called stochastic if Pmi=1 xi = 1 and x � 0.If R picks a stochastic m-vector x as her mixed strategy, she is assured of winning at leastminyfxAyg per round on average, with the minimum taken over all stochastic n-vectors y. Notethat in our notation, x is a row vector and y is a column vector. Similarly, if C's strategy is y, heis assured that he can expect to pay no more than maxxfxAyg per round.The Minimax Theorem: For every m � n matrix A there are stochastic vectors x�and y� such that maxx miny fxAyg = miny maxx fxAyg = x�Ay�where the minimum is taken over stochastic n-vectors y and the maximum over stochas-tic m-vectors x.This result is known as the von Neumann Minimax Principle and is the fundamental resultof game theory. We will now see that this theorem is really a simple consequence of the dualitytheorem of linear programming.LP Duality Proves the Minimax TheoremWe saw in the last section that having chosen a mixed strategy x, R can expect a payo� of atleast minyfxAyg on average, where the minimum is over fy � 0 : Pnj=1 yj = 1g. This is actuallya simple linear programming problem with a single equality constraint on non-negative variables.Hence it follows that miny fxAyg = minj f mXi=1 aijxigwhich exhibits an optimal extreme point solution. And similarly,maxx fxAyg = maxi f nXj=1aijyjgThus the problem of R �nding her best strategy reduces tomaxx minj f mXi=1 aijxigwhich is equivalent to the linear programmez� = maxfz : z � mXi=1 aijxi � 0 (j = 1; � � � ; n); mXi=1 xi = 1; x � 0g (R)3



and the problem of C �nding his best strategy reduces tow� = minfw : w � nXj=1 aijyj � 0 (i = 1; � � � ; m); nXj=1 yj = 1; y � 0g (C)Notice that (R) and (C) are a pair of linear programmes that are dual to one another. Noticealso, that both linear programmes are feasible. Consequently, z� = w� and the minimax theoremis proved. We say that z� = w� is the value of the game. Applying the complementary slacknessproperty of optimal solutions to this dual pair of linear programmes, we observe, for each j andeach i, that z� < mXi=1 aijx�i ! y�j = 0w� > nXj=1 aijy�j ! x�i = 0These conditions may also be seen as a natural way of interpreting the fact that optimal minimaxsolutions lead to a stable equilibrium for two-person zero-sum games.The proof of the minimax theorem, as presented in this section, leads to many useful insights- not the least of which is that the enormous algorithmic machinery of linear programming (parts1-3 of this series) can be brought to bear on solving matrix games. Two-person zero-sum gamesdi�er from other games in that there is no reason for any negotiation between the players. This canbe inferred from the observation that if (x1; y1) and (x2; y2) are both pairs of equilibrium solutionsfor the game, then the linear programmes (R) and (C) imply that so are (x1; y2) and (x2; y1).The Minimax Theorem Proves LP DualityThe minimax theorem of matrix games and duality in linear programming are of equivalentpower. This seems to have been �rst conjectured by von Neumann (see Box 1). To complete theproof of his conjecture, we now need an argument to show that the minimax theorem implies theduality theorem.A game is symmetric if, to begin with, the number of pure strategies of the two players areequal (i.e., the payo� matrix is square) and also the payo� to R when she chooses strategy i and Cchooses j is equal to the payo� to C when he chooses i and R chooses j, holds for all i and j (i.e.,the payo� matrix is skew-symmetric or aij = �aji). This is to be distinguished from the odd-evengame (Figure 2.) which has a symmetric payo� matrix but is not a symmetric game. It is fairlyeasy to convince oneself that all symmetric matrix games have the following property,Lemma: The value of a symmetric matrix game is zero.Symmetric games capture the duality theorem of linear programming in a very natural way aswe shall now see. Consider the pair of dual linear programmesminf c0x : Ax � b; x � 0 g(P )maxf b0y : A0y � c; y � 0 g(D)where b0, c0 and A0 are transposes. Now let us construct a skew-symmetric payo� matrix using thedata of the linear programmes 4



Y X t- -Y | 0 -A +b |X | +A' 0 -c |t | -b' c' 0 |- -{\bf Figure 4.} Primal-Dual PayoffFrom the lemma we surmise that the value of the game is zero and hence that any optimalmixed strategies (Y �; X�; t�) must satisfy the following linear inequality system.f�AX + bt � 0; A0Y � ct � 0; �b0Y + c0X � 0; X � 0; Y � 0gThe justi�cation for this observation is that, for a symmetric game, the linear programmes (R) and(C) are solvable with z� = w� = 0. In addition, if t� > 0 we can dehomogenise the linear inequalitysystem by substituting X  xt and Y  yt and we would have the pair (x�; y�) satisfyingf�Ax� + b � 0; A0y� � c � 0; �b0y� + c0x� � 0; x� � 0; y� � 0gwhich we recognise as precisely the necessary and su�cient conditions for optimality of the linearprogrammes (P) and (D).What if t� = 0 in an optimal strategy for the matrix game? The dehomogenising trick willnot work and in general we need additional work to extract optimal solutions to (P) and (D). Thedetails get a bit too technical and we will skip them here. Su�ce it to say that this degeneratesituation can be avoided altogether by assuming that the primal linear programme (P) has a full-dimensional convex polytope as its feasible region. There is no loss of generality in making thisassumption since it can be implemented by introducing an innocuous auxilliary variable into thelinear programme. Under this assumption, it can be shown that all solutions to the game musthave t� > 0.Conversely, if we had a pair of optimal solutions (~x; ~y) to the linear programmes (P) and (D),we could homogenise this solution by de�ning t� > 0 by the identityt(X ~xi +X ~yj + 1 = 1and substituting ~xt�  X� and ~yt�  Y �. This would yield a mixed strategy (Y �; X�; t�) thatsolves the game represented by the matrix of Figure 4. Thus we have established,The Skew-Symmetric Theorem: Corresponding to any pair of dual linear pro-grammes is a skew-symmetric matrix game such that optimal solutions to the linearprogrammes can be extracted from any optimal (minimax=maximin) mixed strategy ofthe game.G.B. Dantzig developed an algorithm for solving skew-symmetric matrix games using a pivotingprocedure akin to the simplex method that works on tableaux (or dictionaries as we called them in5



part 2 of this series). This has come to be known as the self-dual parametric method. This approachhas been generalised to the setting of bimatrix games via the linear complementarity problem orLCP (see Box 2).The Saddle-Point of the LagrangeanWe conclude this article with a two-person zero-sum game interpretation of the duality theoremof linear programming that has been found to be very useful in mathematical economics.Primal (P) is a producer of goods in a closed economy. Let (x1; x2; � � � ; xn) denote the bundle ofgoods produced by P. Producing goods requires resources and let (b1; b2; � � � ; bm) denote the set ofresources owned by P to start with. To produce the goods he sells, P requires aij units of resourcei for each unit of good j manufactured. The selling price of good j has been �xed at cj .Dual (D) is the adversary of P and represents the \market" of the closed economy. The playerD has to pay P for the goods produced. In addition, D can sell (or buy) additional resources to(from) P for his production activities but at a cost. Let yi denote the \price" charged by D foreach additional unit of resource i provided to P.The game is as follows. The two players P and D are allowed to pick strategies x and yrespectively. So if P announces an activity level of x � 0 in production and D announces a pricevector y � 0, the total payo� to P equalsL(x; y) = c0x � (Ax� b)0y = (c0 � y0A)x + b0yand is called the Lagrangean. The payo� is the total revenue earned by P, less the cost of theadditional resources used by him. Since this is a closed economy, the burden of the payo� restswith D.Let us now examine the conditions that any stable solution (x�; y�) must satisfy.� A stable solution must correspond to a saddle-point of L(x; y). That is, miny maxxfL(x; y)g =maxxminyfL(x; y)g = L(x�; y�).� Ax� � b must hold. For if Pnj=1 aijx�j > bi for some i, then D would pick an arbitrarily largeprice y�i for the resource i and the payo� would be driven to �1.� A0y� � c must hold. For if Pmi=1 aijy�i < cj for some j, then P would manufacture arbitrarilylarge amounts of good j and the payo� would be driven to +1.� If Pnj=1 aijx�j < bi for some i, then D would pick the price y�i = 0 for the resource i sinceotherwise the payo� to P would be unnecessarily high.� Similarly, if Pmi=1 aijy�i > cj for some j, then P would not manufacture good j and hencex�j = 0The alert reader would have recognised that these market equilibrium conditions are preciselythe necessary and su�cient conditions for optimality of the primal/dual pair of linear programmesmaxf c0x : Ax � b; x � 0 g(P )minf b0y : A0y � c; y � 0 g(D)This explains why dual solutions are often called \shadow prices" in the literature on linear pro-gramming. 6
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Box 1. A historic encounterGeorge Dantzig loves to tell the story of his meeting with John von Neumann on October3, 1947 at the Institute for Advanced Study at Princeton. Dantzig went to that meetingwith the express purpose of describing the linear programming problem to von Neumannand asking him to suggest a computational procedure. He was actually looking for methodsto benchmark the simplex method against. Instead, he got a 90 minute lecture on FarkasLemma and Duality (Dantzig's notes of this session formed the source of the modern per-spective on linear programming duality). Not wanting Dantzig to be completely amazed,von Neumann admitted\I don't want you to think that I am pulling all this out of my sleeve like amagician. I have recently completed a book with Morgenstern on the theory ofgames. What I am doing is conjecturing that the two problems are equivalent.The theory that I am outlining is an analogue to the one we have developed forgames."
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Box 2. Bimatrix Games and Linear ComplementarityA two person, non-zero sum game is one in which the sum of the payo�s to the two players is notzero. In this case we need to consider two payo� matrices, A the payo�s to R and B the payo�sto C. We can assume, with no loss of generality, that the elements of both A and B are strictlypositive. Adding the same large positive constant to each of the elements does not change theequilibrium or stable strategies but merely changes the expected payo� by the added constant. Ifx� and y� denote the stable strategies for R and C respectively, we must have x�Ay� � xAy� forall stochastic m-vectors x and x�By� � x�By for all stochastic n-vectors y. Since x and y arestochastic, we may as well rewrite these conditions asx�Ay� � Xj aijy�j i = 1; 2; � � � ; mx�By� � Xi bijx�i j = 1; 2; � � � ; nwhich can be further simpli�ed toAv + s = em and uB + r = enwhere ek denotes a column vector of dimension k with all entries equalling 1 and all variablesu; v; r; s are non-negative. The simpli�cation has used the reversible (show this) substitutionsu = (x�By�)�1x� and v = (x�Ay�)�1y� and the slack variables r and s. These are now justnecessary conditions for stable strategies to the bimatrix game. To make them su�cient we add thecomplementarity conditions rv = us = 0. The reader should verify that complementarity as statedabove is the same as what we have encountered before. For example, saying that x�Ay� >Pj aijy�jwould imply that x�i = 0 is compactly expressed by uisi = 0.The search for optimal/stable strategies for bi-matrix games therefore reduces to solving the systemAv + s = em; uB + r = en; rv = us = 0; u; v; r; s � 0which is a special case of the linear complementarity problem.
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