
Journal of Automated Reasoning 28: 371–396, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

371

Partial Instantiation Methods for Inference
in First-Order Logic

J. N. HOOKER�

Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA 15213,
U.S.A.

G. RAGO
Computer Science Department, University of Pisa, Corso Italia 40, 156125 Pisa, Italy

V. CHANDRU
Department of Computer Science and Automation, Indian Institute of Science, Bangalore,
India 560 012

A. SHRIVASTAVA
Sanchez Computer Associates, 37/2, 4th Main, Malleswaram, Bangalore, India 560 003

(Received: 21 January 1997; in final form: 3 September 2001)

Abstract. Satisfiability algorithms for propositional logic have improved enormously in recently
years. This improvement increases the attractiveness of satisfiability methods for first-order logic
that reduce the problem to a series of ground-level satisfiability problems. R. Jeroslow introduced
a partial instantiation method of this kind that differs radically from the standard resolution-based
methods. This paper lays the theoretical groundwork for an extension of his method that is general
enough and efficient enough for general logic programming with indefinite clauses. In particular we
improve Jeroslow’s approach by (1) extending it to logic with functions, (2) accelerating it through
the use of satisfiers, as introduced by Gallo and Rago, and (3) simplifying it to obtain further speedup.
We provide a similar development for a “dual” partial instantiation approach defined by Hooker and
suggest a primal–dual strategy. We prove correctness of the primal and dual algorithms for full first-
order logic with functions, as well as termination on unsatisfiable formulas. We also report some
preliminary computational results.
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1. Introduction

The past several years have seen remarkable improvements in the computational
performance of satisfiability algorithms for propositional logic. They lend new
attractiveness to methods that solve satisfiability problems in first-order logic by
first reducing them to propositional satisfiability problems.

A naive approach is to try to generate all complete instantiations of a first-
order formula and to use a fast satisfiability algorithm to find a truth valuation that
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satisfies the resulting ground-level formulas. But the number of instantiations can
be astronomically large or even infinite.

R. Jeroslow [20, 21] addressed this problem with a partial instantiation (PI)
approach. It solves a series of propositional satisfiability problems, each obtained
by instantiating one or more of the variables in the last. With luck, the first-order
satisfiability question is resolved when only a few of the possible instantiations
have been generated. Gallo and Rago [12, 13] and Hooker [16] proposed a “dual”
version of PI.

Both Jeroslow’s “primal” approach and the dual approach apply to the ∃∀ or
Schönfinkel–Bernays fragment of first-order logic without function symbols.
Jeroslow indicates that PI can be extended to undecidable fragments, but it may
run indefinitely because the depth of Skolem function nesting is unbounded.

Our purpose in this paper is twofold:

– To extend the PI method to full first-order logic with function symbols, so as
to make it more useful for theorem proving and logic programming (with both
definite and indefinite clauses).

– To simplify the method by removing Jeroslow’s mechanism of “direct covers”
and accelerate it by using a restricted form of “blockage” between satisfiers,
as defined by Gallo and Rago [13].

Our eventual goal is to develop a practical inference algorithm for non-Horn
first-order logic with functions. In this paper we lay some of the theoretical foun-
dations by stating basic primal and dual PI algorithms for inference and proving
correctness, and termination when applied to unsatisfiable formulas. We also report
some preliminary computational results in order to address implementation issues.

The motivating idea of a primal PI algorithm is similar to that of “row genera-
tion” techniques in optimization. Suppose one wants to find a solution that satisfies
an impracticably large set of constraints. One can first solve the problem using
a small subset of the constraints and check whether the solution satisfies the other
constraints. If not, one or more of the violated constraints are added to the problem,
which is then re-solved. It is not unusual to find a solution when only a small
fraction of the constraints have been explicitly considered.

In the first-order satisfiability problem, the “constraints” are the formula’s var-
ious instantiations that the truth valuation must satisfy. In each iteration of a PI
method, a truth valuation is found to satisfy the formulas that result from instanti-
ating only a few universally quantified variables. If the valuation can be extended
in a natural way to one that satisfies all partial and complete instantiations of the
formula, the problem is solved. Otherwise the valuation is said to be “blocked,” and
the algorithm instantiates a few more variables to generate formulas that are not
satisfied. This presents a new propositional satisfiability problem, and the process
is repeated. The algorithm terminates if the current set of partially instantiated
formulas is unsatisfiable (in which case the original formula is unsatisfiable), or
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if it has an unblocked satisfying valuation exists (in which case the formula is
satisfiable).

The “dual” approach to PI (as defined by [16]) anticipates blockage by tem-
porarily augmenting the formula with clauses that no blocked valuation can jointly
satisfy. The additional clauses not only rule out blocked valuations but typically go
too far and rule out all valuations. In an attempt to relieve this unsatisfiability, a few
more variables are instantiated in the original formula, and the process is repeated.
The algorithm terminates when the augmented formula is satisfiable or the partial
instantiations of the original formula are unsatisfiable.

The name “partial instantiation” is somewhat misleading because PI is also used
in other methods. Resolution methods, for instance, may only partially instantiate
predicates when they unify atoms in the parents of a resolvent [28]. The difference
in PI methods, as defined here, is that a propositional satisfiability problem is
solved to completion after each stage of partial instantiation. This approach per-
mits one to use the fastest available algorithm for propositional satisfiability. In
particular, it permits one to avoid using resolution, which has been demonstrated
to be orders of magnitude slower than other methods when used to check for
propositional satisfiability [15]. Furthermore, when a new instantiation is added
in each stage, the information obtained in solving previous satisfiability problems
can be put to good use [3, 17]. This makes the fast satisfiability algorithms even
faster.

2. Previous Work

After Jeroslow’s original 1988 paper [20], Gallo and Rago [12, 13, 4] described
a hypergraph-based satisfiability algorithm for “datalog” (universally quantified
Horn) formulas that in effect uses PI. Hooker [16] showed that Jeroslow’s method
is actually a “primal” version of PI whereas the Gallo–Rago algorithm is a special
case of a “dual” form. He also described the dual algorithm for general function-
free first-order formulas. Kagan, Nerode, and Subrahmanian [22] described an
algorithm similar to Jeroslow’s primal algorithm in which his mechanism of direct
and indirect covers is implemented in a tree of partial instantiations. Specifically,
an instantiation is directly covered by its parent node in the tree and indirectly
covered by other ancestors.

Another line of research that is related to PI and that has proceeded more or
less independently began in 1960 with the resolution method of Davis and Put-
nam [11]. As already mentioned, resolution-based methods use a form of PI but
are fundamentally different from those presented here. Davis [10] introduced in
1963 a clause linking technique that has influenced much subsequent work and is
related to the idea of blockage defined below. Yet the purpose of clause linking in
Davis’s method is to avoid generating some resolvents that can play no role in the
proof. The resulting algorithm remains a resolution-based method.

The hyperlinking method of Lee and Plaisted [24], on the other hand, bears
some resemblance to the primal PI method described below. It repeatedly solves
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a propositional satisfiability problem to completion after a round of PI based on
the detection of clause links. Our primal method similarly solves a satisfiability
problem after partially instantiating clauses based on blockages. Our instantiations,
however, are guided by semantic information, specifically by the truth values in
the solution of the previous satisfiability problem. So they are more in the spirit of
constraint generation methods in optimization.

The hyperlinking method can be enhanced by using semantic information, and
Chu and Plaisted [7] do just this in their semantic hyperlinking method. It conducts
a depth-first search of a tree that branches by assigning truth and falsehood to
elements of the Herbrand base, with more deeply nested functions in the deeper
parts of the tree. It therefore does not solve a sequence of satisfiability problems to
completion, as our methods do. A similar observation may be made of the ordered
semantic hyperlinking method of Plaisted and Zhu [27].

Baumgartner’s method [2] “lifts” the classical Davis–Putnam–Logeman–Love-
land branching method by branching on partially instantiated formulas rather than
ground formulas. It resembles our method in that a partially instantiated formula
stands for all of its complete instantiations, unless contradicted by a more specific
partially instantiated formula. It does not, however, follow our approach of solving
a series of ground-level satisfiability problems in which semantic information from
the last solution guides the next. It generates a single branching tree in which the
branching is designed to resolve what we call “blockage.” In addition, it does not
accommodate function symbols, nor does it use the concept of satisfiers.

A large literature exists on algorithms for the propositional satisfiability prob-
lem, much of which is surveyed in [5, 29]. More relevant for present purposes, how-
ever, are incremental algorithms: those that update a solution rapidly after a clause
is added to the problem. Ausiello and Italiano [1] originally studied this problem
for the case of Horn (definite) clauses. Hooker [17] presented a discrete branching
algorithm for the general case, and it is used here. Bennaceur et al. [3] recently
proposed what appears to be a faster algorithm based on integer programming and
Lagrangian relaxation.

3. Preliminaries

We begin by defining our notation and stating the form of Herbrand’s theorem we
will use later.

DEFINITION 3.1. A term is recursively defined in the following way:

(1) Variables x1, x2, . . . and constants a1, a2, . . . are terms of (nesting) depth 0.
(2) If f is a function symbol and t1, t2, . . . , tn are terms, then f (t1, t2, . . . , tn) is a

term of depth 1 + maxi{depth(ti)}.
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We assume that a first-order formula F is given in prenex clausal form,

F =
m∧

i=1

∀xiCi,

where xi is a vector of all the variables appearing in clause Ci . The clauses are
standardized apart, meaning that no two contain a common variable. Each clause
Ci is quantifier free and can be written

¬Pi1(ti1) ∨ · · · ∨ ¬Piq(tiq) ∨ Pi,q+1(ti,q+1) ∨ · · · ∨ Pik(tik) (1)

or, in the equivalent form,

Pi1(ti1) ∧ · · · ∧ Piq(tiq ) → Pi,q+1(ti,q+1) ∨ · · · ∨ Pik(tik),

where, for h = 1, . . . , k, Pih(tih) is an atom and tih a vector of terms. It is well
known that any first-order formula can be written in prenex clausal form (see, for
instance, [26]).

A formula is said to be ground if it contains no variables. A substitution σ

replaces one or more variables of a formula F with terms, in such a way that each
occurrence of a given variable is replaced by the same term. The result of the sub-
stitution, written Fσ , is an instantiation of F . It is a ground instance (or complete
instantiation) of F if it is ground; otherwise it is a partial instantiation. A substi-
tution is written σ = {x1/t1, . . . , xk/tk} when it substitutes t1, . . . , tk respectively
for x1, . . . , xk . If t1, . . . , tk are all variables, σ is a renaming substitution.

The Herbrand universe of a formula F consists of all the terms that can be built
up from constants and function symbols in F .

DEFINITION 3.2. Given a formula F , let H0 be the set of constants occurring
in F . If no constants appear in F , then H0 consists of a single element, say a. The
ith level constant set Hi of F is the set of terms that have depth at most i and
that are built up from constants in H0 and function symbols in F .

⋃∞
i=1 Hi is the

Herbrand universe of F .

The Herbrand base of F is the set of all atoms obtained by using terms in the
Herbrand universe.

DEFINITION 3.3. For a given formula F let

Bi = {P(t1, t2, . . . , tn) | t1, . . . , tn ∈ Hi and P appears in F }.
Then

⋃∞
i=1 Bi is the Herbrand base of F .

An Herbrand interpretation for F assigns a truth value to each atom in the
Herbrand base of F . F is true in an Herbrand interpretation I if every ground
instance of F using terms in the Herbrand universe is a true propositional formula
in I . F is satisfiable if it is true in some Herbrand interpretation.



376 J. N. HOOKER ET AL.

THEOREM 3.4. A formula is unsatisfiable if and only if it is false in all of its
Herbrand interpretations. Furthermore, it is unsatisfiable if and only if some finite
conjunction of ground instances is an unsatisfiable propositional formula.

It will also be convenient to say that F is M-satisfiable if there is some Herbrand
interpretation I such that every ground instance of F is true in I or contains a term
with nesting depth greater than M.

EXAMPLE 3.5. Suppose that F is

P(s(a)) ∧ ∀x1(P (x1) → Q(s(x1))) ∧ ∀x2(P (x2) → ¬Q(s(x2))). (2)

F is clearly unsatisfiable, but it is 1-satisfiable because there is a Herbrand inter-
pretation in which every ground instance is true or contains a term of depth greater
than one. In other words, consider the Herbrand interpretation I that sets P(a) to
false and all other atoms in the Herbrand base to true. Then the last two conjuncts
of F contain a term of depth greater than one unless a is substituted for the variable,
in which case I makes the ground instance true.

LEMMA 3.6. A formula that is M-satisfiable for all M is satisfiable. Furthermore,
an M-satisfiable formula is (M − 1)-satisfiable.

Proof. If a formula F is unsatisfiable, then by Theorem 3.4 there is a finite
conjunction of ground instances that is unsatisfiable. Let M be the maximum nest-
ing depth of atoms in these instances. Then F is not M-satisfiable because it is
impossible to make true every ground instance with depth less than or equal to M.

Now suppose F is M-satisfiable. In some Herbrand interpretation of F , every
ground instance is true or has nesting depth greater than M. Then a fortiori, in
this interpretation every ground instance is true or has nesting depth that is greater
than M − 1, which implies (M − 1)-satisfiability.

4. Partial Instantiation and Blockage

We now show when and how a truth valuation that satisfies a partially instantiated
formula can be extended to one that satisfies all complete instantiations of the
formula.

We begin with some definitions. We define a unifier of predicates P(t) and
P(t ′) to be a pair of substitutions σ, τ such that P(t)σ = P(t ′)τ . It is a most
general unifier (mgu) if for any unifier (σ ′, τ ′), P(t)σ ′ is an instance of P(t)σ . In
this case P(t)σ is a most general common instance of P(t), P (t ′). (See [23, 25]
for a detailed description of an mgu.)

DEFINITION 4.1. Let F,F ′ be quantifier-free formulas. If F ′ is an instantiation
of F , then F is a generalization of F ′. Given a set G of formulas containing F ,
we say that F is a most specific generalization of F ′ with respect to G if F

generalizes F ′ and is an instantiation of every formula in G that generalizes F ′.
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EXAMPLE 4.2. Given the set G = {P(u, v), P (a, x), P (y, b), P (b, b)}, the
atoms P(u, v), P (a, x) and P(y, b) are all generalizations of P(a, b), but
only P(a, x) and P(y, b) are most specific generalizations of P(a, b).

We define two formulas E, F to be variants when they can be unified by renam-
ing substitutions. In this case we also say that E is a variant of F and vice versa. For
example, the atom P(x, f (y)) is a variant of P(u, f (v)) but not of P(x, g(y)) or
of P(a, f (y)). This differs slightly from the standard definition, whereby E and F

are variants if E = Fσ and F = Eθ for some pair of substitutions σ, θ [25].
Thus P(x, y) and P(x, x) are variants by our definition but not by the standard
one. A quantifier-free first-order formula F = C1 ∧ · · · ∧ Cm can be viewed
as a propositional formula in which variants of an atom are treated as the same
atom. A truth valuation is a function v that assigns true or false to every atom. It
satisfies F if it makes at least one literal in each clause true.

Our PI algorithm is more efficient if we use the idea of a “satisfier” introduced
in [13], which is a distinguished atom in a clause that makes the clause true.

DEFINITION 4.3. Let S be a mapping that associates each clause C of a quantifier-
free formula F with an atom S(C) of C. Let L(C) be the literal of C that con-
tains S(C). Then S is a satisfier mapping for F if, for some truth valuation v, v
makes L(C) true for every clause C in F . We refer to S(C) as the satisfier of C.
S(C) is a true satisfier if L(C) is S(C) and false if L(C) is ¬S(C).

Given a quantifier-free formula F and a satisfier mapping for it, we can attempt
to satisfy every complete instantiation of F ’s clauses as follows. Let each atom in a
complete instantiation inherit the truth value of the most specific satisfier in F that
generalizes the atom. If no satisfier generalizes the atom, it is given an arbitrary
truth value.

EXAMPLE 4.4. Let F = ∀xC1 ∧ ∀yC2, where

C1 = P(a, x)∨Q(a)∨ ¬R(x)

T
C2 = ¬Q(y)∨ ¬P(y, b).

F

Let Q(a) be the satisfier for C1 and P(y, b) for C2, as indicated. Now consider the
complete instantiations of C1, C2.

P(a, a)∨Q(a)∨ ¬R(a)

T
P(a, b)∨Q(a)∨¬R(b)

F T
¬Q(a)∨ ¬P(a, b)

T F
¬Q(b)∨ ¬P(b, b).

F
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Truth values are inherited as shown, where the unmarked atoms may receive either
truth value. Note that all the clauses are satisfied.

This scheme does not always work, however.

EXAMPLE 4.5. Consider the following satisfier mapping.

C1 = P(a, x)∨Q(a)∨ ¬R(x)

T
C2 = ¬Q(y)∨ ¬P(y, b).

F

Now the predicate P(a, b) in the complete instantiations inherits both true and
false, and the extension is not well defined.

The satisfier mapping in Example 4.4 is “unblocked,” whereas the one in Ex-
ample 4.5 is blocked. Sometimes, however, a conflict of truth values is resolved by
the presence of more completely instantiated predicates, in which case there is no
true blockage.

EXAMPLE 4.6. Let F be ∀xC1 ∧ ∀yC2 ∧ C3 ∧ C4, where C1 and C2 are as in
Examples 4.4 and 4.5 and where

C3 = P(a, b)∨Q(a)∨¬R(b),

C4 = ¬Q(a)∨ ¬P(a, b).

Note that C3 is obtained from C1 by applying the substitution x = b, and C4

from C2 by applying y = a. These are the two substitutions that unify the conflict-
ing satisfiers of C1 and C2. Now if P(a, b) is a satisfier in C3 or C4, the ambiguity
of the truth value of P(a, b) is resolved. If it is a satisfier in neither C3 nor C4,
then C3 and C4 are true regardless of the truth value of P(a, b). In either case the
conflict between the satisfiers of C1 and C2 is innocuous, and there is no blockage.
These ideas are made precise below.

DEFINITION 4.7. Given a satisfier mapping S for a quantifier-free formula F , a
pair of satisfiers P(t), P (t ′) is blocked if

(1) P(t) is a true satisfier.
(2) P(t ′) is a false satisfier.
(3) P(t) and P(t ′) have a most general unifier (σ, τ) such that P(t)σ = P(t ′)τ .
(4) There are clauses C,C ′ in F of which P(t) and P(t ′) are respectively satisfiers

and for which either (a) Cσ generalizes no clause in F or (b) C ′τ generalizes
no clause in F .

A satisfier is blocked if it is a member of a blocked pair, and S is blocked if
some satisfier is blocked.
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In Example 4.5, the satisfiers shown are blocked because S(C1)σ = S(C2)τ

when σ is the substitution {x/b} and τ is {y/a} and because C1σ = P(a, b) ∨
¬Q(a) ∨ ¬R(b) and C2τ = ¬Q(a) ∨ ¬P(a, b) do not both occur in F (in fact,
neither does). Note that a pair of blocked satisfiers cannot be variants of each other,
since they receive different truth values in some valuation.

To ensure termination of the partial instantiation algorithm, we exclude only
blockages between terms whose unification results in nesting depth at most M. We
say that a satisfier mapping is “M-blocked” when at least one blockage is of this
sort.

DEFINITION 4.8. Given a satisfier mapping S for a quantifier-free formula F , a
pair of satisfiers P(t), P (t ′) is M-blocked if they are blocked and their most general
unifier (σ, τ) is such that P(t)σ contains no terms of nesting depth strictly greater
than M. A satisfier is M-blocked if it is the member of an M-blocked pair, and S

is M-blocked if some satisfier is M-blocked.

Thus an unblocked satisfier mapping is never M-blocked, whereas a blocked
mapping may or may not be M-blocked. Moreover, if a satisfier mapping is not
M-blocked, either each satisfier is not blocked or it unifies with another satisfier in
such a way that the unification would create an atom containing terms of nesting
depth strictly greater than M.

EXAMPLE 4.9. Consider the partial instantiation that is, the conjunction of the
following formulas, and the satisfier mapping shown.

P(x, s(x))

T
¬P(s(a), y)

F

The two atoms are blocked but are not 1-blocked, because the most general com-
mon instance P(s(a), s(s(a))) has a term of depth 2. Thus the satisfier mapping is
blocked but not 1-blocked.

THEOREM 4.10. Given F = ∀x1C1 ∧ · · · ∧ ∀xmCm, let S be a satisfier mapping
for the quantifier-free formula F ′ = C1 ∧ · · · ∧Cm. Then (a) if S is not M-blocked,
F is M-satisfiable, and (b) if S is unblocked, F is satisfiable.

Proof. To establish (a), it suffices to show that if S is not M-blocked, one can
define a Herbrand interpretation I such that every ground instance of F is true
in I or contains a term of depth strictly greater than M. Claim (b) follows from
(a): if S is unblocked, then it is not M-blocked for any M. This implies that F is
M-satisfiable for any M, which is tantamount to satisfiability, by Lemma 3.6.

Let I be defined as follows. For any atom P(d) in the Herbrand base of F ,
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– P(d) is true if P(d) ∈ BM and F ′ contains a true satisfier P(t) that is a most
specific generalization of P(d) with respect to the satisfiers of F ′, but no false
satisfier that is a most specific generalization of P(d).

– P(d) is false if P(d) ∈ BM and F ′ contains a false satisfier P(t) that is a most
specific generalization of P(d) with respect to the satisfiers of F ′, but no true
satisfier that is a most specific generalization of P(d).

– P(d) is arbitrarily true or false otherwise.

Note that no ground predicate can assume both a true and a false value.
We now show that any ground instance of any clause of F is true in I or contains

a term of depth greater than M. Let

C = ¬P1(t1) ∨ · · · ∨ ¬Pq(tq) ∨ Pq+1(tq+1) ∨ · · · ∨ Pm(tm)

be any clause in F ′ and

C0 = ¬P1(d1) ∨ · · · ∨ ¬Pq(dq) ∨ Pq+1(dq+1) ∨ · · · ∨ Pm(dm)

be any ground instance of C. (Not all literals of C0 need be distinct.)
Of the clauses in F ′ that are most specific generalizations of C0 with respect to

the clauses in F ′, at least one of them C ′ is an instantiation of C (perhaps C itself).
Let

C ′ = ¬P1(u1) ∨ · · · ∨ ¬Pq(uq) ∨ Pq+1(uq+1) ∨ · · · ∨ Pm(um)

be one such clause. C ′ has a satisfier Pi(ui). We claim that either Pi(di) inherits
Pi(ui)’s truth value and therefore makes C0 true, or else Pi(di) �∈ BM , which
means C0 has a term of depth greater than M. To see this, consider two cases.

1. Pi(ui) is not blocked. We will show that (a) no most specific satisfier that gener-
alizes Pi(di) has a truth value opposite that of Pi(ui), and (b) some such satisfier
has the same truth value of Pi(ui). It follows that Pi(di) inherits Pi(ui)’s truth
value and thereby makes C0 true.

(a) Suppose there is a most specific satisfier Pi(vi) that generalizes Pi(di) and
that has the opposite truth value. Since Pi(di) instantiates both Pi(ui) and
Pi(vi), the latter two have an mgu Pi(u

′
i ) that generalizes Pi(di). We write

Pi(u
′
i ) = Pi(ui)τ1 and observe that for some substitution τ2, C ′τ1τ2 = C0.

We first note that P(u′
i ) is more specific than P(ui). This is because Pi(ui)

and Pi(vi) have different truth values and are therefore not variants of each
other. So if P(ui) and P(u′

i ) were variants, Pi(vi) would not be a most
specific satisfier that generalizes Pi(di). Next, we note that because the
pair Pi(ui) and Pi(vi) are by assumption not blocked, C ′τ1 must general-
ize some clause in F ′. C ′τ1 is more specific than C ′, since as just shown
P(u′

i ) = P(ui)τ1 is more specific than P(ui). Also C ′τ1 generalizes C0

because C0 = C ′τ1τ2. But this contradicts the assumption that C ′ is a most
specific generalization of C0 that is an instantiation of C. So any most
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specific satisfier that generalizes Pi(di) must have the same truth value as
Pi(ui).

(b) We now show that there in fact exists a most specific satisfier that general-
izes Pi(di), which by (a) must have the same truth value as Pi(ui). But this
is clear, because some instantiation of Pi(ui), perhaps Pi(ui) itself, is such
a satisfier.

2. Pi(ui) is blocked but not M-blocked. There are two cases:

(a) For no satisfier Pi(u
′
i ) that creates a blockage with Pi(ui) is Pi(di) an

instance of Pi(u
′
i). In this case, Pi(di) inherits the truth value of Pi(ui),

as desired.
(b) For some satisfier Pi(u

′
i ) that creates a blockage with Pi(ui), Pi(di) is an

instance of Pi(u
′
i ). Then Pi(ui) and Pi(u

′
i ) have an mgu (σ, τ) such that

Pi(di) is an instance of Pi(ui)σ . But because Pi(ui) and Pi(u
′
i ) are not

M-blocked, Pi(ui)σ �∈ BM , which implies Pi(di) �∈ BM .

5. The Primal Approach

Now we present the primal partial instantiation method. For M = 0, 1, . . . , the
algorithm tries to find a satisfier mapping for the given formula F that is not
M-blocked. If it finds a satisfier mapping that is M-blocked, it partially instantiates
two clauses that cause the blockage and conjoins them with F , so that a stronger
formula is checked for satisfiability in the next iteration. The procedure terminates
when (a) no satisfier mapping exists, in which case F is unsatisfiable, or (b) an
unblocked satisfier mapping is found, in which case F is satisfiable.

It will be shown later that if F is unsatisfiable, the algorithm terminates with
a proof of unsatisfiability. Because first-order logic is semidecidable, there is no
assurance of termination if F is satisfiable.

ALGORITHM PPI (Primal Partial Instantiation):

Let F = ∀x1C1 ∧ · · · ∧ ∀xmCm be a first-order formula.

1. Initialization. Set F0 =: C1 ∧ · · · ∧ Cm, k := 0, and M := 0.

2. Ground satisfiability. Try to find a satisfier mapping S for Fk that treats variants
of the same atom as the same atom.

3. Termination check.

– If S does not exist, then stop: F is unsatisfiable.
– Otherwise, if S is unblocked, then stop: F is satisfiable.
– Otherwise, if S is not M-blocked, then F is M-satisfiable. Let M :=

M + 1, and repeat Step 3.

4. Refinement. (S is M-blocked.) Let Ch and Ci be two clauses in Fk whose sat-
isfiers are M-blocked, and let (σ, τ) be a most general unifier of S(Ch) and
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S(Ci). Set Fk+1 = Fk ∧ Chσ ∧ Ciτ after standardizing apart, set k := k + 1,
and go to Step 2.

This algorithm not only generalizes Jeroslow’s so as to accommodate functions,
but it simplifies it in three ways.

– Since F0 is a conjunction of clauses that are standardized apart, the PPI al-
gorithm obtains Fk+1 by conjoining to Fk two partially instantiated clauses
rather than two partial instantiations of the entire formula F0, as in Jeroslow’s
method.

– PPI eliminates Jeroslow’s “direct covering” mechanism, which requires that
two atoms not be considered blocked unless their unifying substitutions are
“directly covered” by the clauses containing them. This requires that one keep
track of which instantiations are covered and directly covered by each clause
generated.

– PPI checks only satisfiers with opposite truth values for possible blockage.
This significantly reduces the amount of computation, as Jeroslow’s method
checks all pairs of atoms that are given opposite truth values by a complete
satisfying truth valuation.

EXAMPLE 5.1 (Satisfiability with termination). Consider the problem C1∧∀xC2∧
∀yC3 ∧ C4, where

C1 = P(s(a))

T
C2 = ¬P(x)∨Q(s(x))

F
C3 = ¬Q(s(y))∨R(s(y))

F
C4 = ¬R(s(a)).

F

(3)

Thus F0 = C1 ∧C2 ∧C3 ∧C4. A satisfier mapping for F0 is shown. For M = 0 we
note that S(C1) and S(C2) – that is, P(s(a)) and P(x) – are blocked because they
have an mgu P(s(a))σ = P(x)τ = P(s(a)), where σ is the empty substitution
and τ = {x/s(a)}. They are not 0-blocked, however, because their common in-
stance contains a term of depth 1, which means that F is 0-satisfiable. Now, setting
M = 1, we note that this pair is 1-blocked, and Step 4 creates F1 = F0 ∧C5, where
C5 = C2τ , or

C5 = ¬P(s(a))∨Q(s(s(a))).

T

It is not necessary to add C1σ to the formula because σ has no effect on C1. The
previous satisfier mapping can be extended as shown. Q(s(y)) and Q(s(s(a))) are
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blocked but not 1-blocked, so that F is 1-satisfiable. Setting M = 2, Step 4 creates
F2 = F1 ∧ C6, where

C6 = ¬Q(s(s(a)))∨R(s(s(a))).

T

The satisfier mapping shown is unblocked, and PPI terminates with satisfiability.

EXAMPLE 5.2 (Advantage of satisfiers). We next illustrate the advantage of using
satisfier mappings rather than complete valuations in the algorithm. Consider the
formula ∀x1C1 ∧ ∀x2C2 ∧ ∀x3C3 ∧ ∀x4C4, where

C1 = P(a, x1)∨ ¬Q(x1, b)

F
C2 = ¬P(x2, b)

F
C3 = ¬P(a, x3)∨¬Q(a, x3)

F
C4 = P(x4, c).

T

An unblocked satisfier mapping is shown, which proves satisfiability. The exam-
ple is interesting because, here, the use of satisfiers not only simplifies the job of
checking for blockage but also avoids an additional iteration. This is because any
truth valuation consistent with the above satisfiers is blocked and therefore would
require another iteration if complete valuations were used in the algorithm. To see
this, note that if P(a, x1) is true, it and P(x2, b) are blocked, whereas if P(a, x3)

is false, P(a, x3) and P(x4, c) are blocked.

EXAMPLE 5.3 (Unsatisfiability). Let F = C1 ∧ ∀xC2 ∧ ∀yC3, where

C1 = P(s(a))

T
C2 = ¬P(x)∨Q(s(x))

F
C3 = ¬P(y)∨¬Q(s(y)).

F

(4)

The satisfier mapping is not 0-blocked, but the 1-blockage between P(s(a)) and
P(x) creates F1 = F0 ∧ C4, with

C4 = ¬P(s(a))∨Q(s(s(a))).

T

The satisfier mapping can be extended as shown. The 2-blockage between Q(s(y))

and Q(s(s(a))) creates F2 = F1 ∧ C5, with

C5 = ¬P(s(a))∨ ¬Q(s(s(a))).
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Because F2 is unsatisfiable as a propositional formula, the algorithm terminates.

EXAMPLE 5.4 (Satisfiability without termination). Bernays and Schönfinkel [8]
mentioned that the following formula is satisfiable only in an infinite domain:

∀x∀y∀z∃w[¬P(x, x) ∧ ((P (x, y) ∧ P(y, z)) → P(x, z)) ∧ P(x,w)]. (5)

We can view P( ) as representing a precedence relation. If we consider any fi-
nite domain whose elements are ordered by this relation, the last element pre-
cedes no element of the domain. Hence, F1 has no finite model. The only Her-
brand model for F1 makes infinitely many members of the Herbrand base true:
P(a, s(a)), P (s(a), s(s(a))), . . . , because of the unlimited nesting of function sym-
bols.

By adding a Skolem function s we obtain from (5) a formula F = ∀x1C1 ∧
∀(x2, y2, z2)C2 ∧ ∀x3C3 in prenex clausal form, where

C1 = ¬P(x1, x1)

F

C2 = ¬P(x2, y2)∨¬P(y2, z2)∨P(x2, z2)

F
C3 = P(x3, s(x3)).

T

(6)

A satisfier mapping is also shown.
The satisfiers in C2 and C3 are 1-blocked. Thus, when M = 1, we set F1 =

F0 ∧ C4, where

C4 = ¬P(x4, s(x4)) ∨ ¬P(s(x4), z4) ∨ P(x4, z4).

F
(7)

Now let M = 2. The satisfier mapping can be extended as shown. The 2-blockage
between S(C3) and S(C4) generates F2 = F1 ∧ C5 ∧ C6, with

C5 = P(s(x5), s(s(x5)))

T
C6 = ¬P(x6, s(x6)) ∨ ¬P(s(x6), s(s(x6))) ∨ P(x6, s(s(x6))),

T

which has the satisfier mapping indicated. A 2-blockage between S(C2) and S(C5)

generates F3 = F2 ∧ C7, with

C7 = ¬P(s(x7), s(s(x7))) ∨ ¬P(s(s(x7)), z7) ∨ P(s(x7), z7).

F

Finally, a 2-blockage between S(C2) and S(C6) generates the clause

C8 = ¬P(x8, s(s(x8))) ∨ ¬P(s(s(x8)), z8) ∨ P(x8, z8).

F
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The valuation shown is no longer 2-blocked, as all the possible remaining block-
ages – namely, those between the pairs {S(C3), S(C7)}, {S(C3), S(C8)}, {S(C4),
S(C6)}, {S(C5), S(C7)}, {S(C5), S(C8)}, {S(C6), S(C7)}, {S(C6), S(C8)} – would
generate terms of depth greater than 2. So F is 2-satisfiable. The process continues
indefinitely, showing that F is M-satisfiable for any given M.

In the above examples, the satisfier mapping obtained for each Fk+1 assigns
the same satisfiers to Fk as obtained in the previous iteration. This is not always
possible. In general, the satisfiers of previous clauses may change. Nonetheless,
as noted earlier, efficient incremental satisfiability algorithms can use information
obtained while solving the satisfiability problem for Fk to help solve the one for
Fk+1.

THEOREM 5.5. If a fixed upper bound M∗ is placed on M, the algorithm PPI
terminates after a finite number of steps.

Proof of this theorem requires the following lemma.

LEMMA 5.6. Let F0 = C1∧· · ·∧Cm, and let F0, F1, . . . , Fk be formulas in which
each Fi = Fi−1 ∧Cσ ∧C ′τ (for i > 0), where C,C ′ are clauses of Fi−1 and (σ, τ)

is an mgu of some pair P(t), P (t ′) of atoms such that

(1) P(t) and P(t ′) are not variants of each other;
(2) P(t) occurs positively in C;
(3) P(t ′) occurs negatively in C ′;
(4) P(t)σ ∈ BM∗;
(5) either Cσ or C ′τ generalizes no clause in Fi−1.

Let Dp be the maximum nesting depth of terms in any given clause Cp of Fk, and
let

.p =
∑

j

(M∗ − min{δpj ,M∗}),

where δpj is the maximum nesting depth of terms in the j th atom of Cp, and the
sum is taken over all atoms of Cp. Then for any clause Cp in Fk,

Dp ≤ max
i∈{1,...,m}

{M ′
i + .i}, (8)

where M ′
i is the maximum nesting depth of terms in Ci, i = 1, . . . , m.

Proof. It suffices to show that the following holds for any clause Cp in Fk :

Dp ≤ max
i∈{1,...,m}

{M ′
i + .i} − .p. (9)

This suffices because it and .p ≥ 0 imply (8).
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The proof of (9) is by induction on k. The claim clearly holds for k = 0, since
the nesting depth of terms in Cp (p = 1, . . . , m) is bounded above by

M ′
p = (M ′

p + .p) − .p.

Now suppose that the claim is true for k − 1. A clause Cq in Fk \ Fk−1 is an
instantiation Crσ of some clause Cr in Fk−1 containing an atom Prj (trj ) that has a
most general common instance Prj (trj )σ with another atom in some other clause
of Fk−1, where Prj (trj )σ ∈ BM∗ . Let δ be the amount by which the nesting depth
of trj increases when σ is applied to Prj (trj ). Then when σ is applied to Cr , it
increases the maximum depth of terms in Cr by at most δ, whence

Dq ≤ Dr + δ. (10)

But the application of σ to Cr reduces .r by at least δ, whence

δ ≤ .r − .q.

Substituting this into (10), we obtain that

Dq ≤ Dr + .r − .q.

From this it follows that (9) is true for p = q because it assumed true for p = r.

Proof of Theorem 5.5. Each Fk+1 in the algorithm consists of Fk conjoined with
one or two additional clauses, neither of which is a variant of any clauses in Fk.
We will show that if M is bounded by M∗, the nesting depth of Fk (for any k) is
bounded above by a number that is independent of k. Because no clause of Fk is a
variant of another, it follows that the number of clauses in Fk is similarly bounded,
and the algorithm is finite.

If Dp is the nesting depth of any clause Cp in Fk, the desired bound is given
by (8) in Lemma 5.6. To apply this lemma, one need only to show that each Fk

satisfies conditions (1)–(5). Let Cp be a clause in Fk \ Fk−1, and let P(t), P (t ′)
be the satisfiers with mgu (σ, τ) whose blockage gives rise to the addition of
Cp. Condition (1) holds because P(t) and P(t ′) receive different truth values
in a variant-independent valuation. Conditions (2) and (3) hold by definition of
blockage, where C and C ′ are distinct because a single clause cannot contain two
satisfiers. Conditions (4) and (5) likewise hold by definition of blockage.

To prove correctness of the algorithm, we need two lemmas. The first is straight-
forward to prove.

LEMMA 5.7. A formula F is satisfiable (or M-satisfiable) if and only if F ∧∧K
k=1 Fσk is satisfiable (or M-satisfiable, respectively) for any set of substitutions

σ1, . . . , σK .
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LEMMA 5.8. Let F = ∀x1C1∧· · ·∧∀xmCm. If F ′ = C1∧· · ·∧Cm is unsatisfiable
when regarded as a propositional formula in which variants of the same atom are
identified, then F is unsatisfiable.

Proof. We will construct a ground instance F ′σ of F ′ such that a pair of atoms
in F ′ are variants of each other if and only if their instances in F ′σ are identical.
Then F ′σ is unsatisfiable, and by Theorem 3.4 F is unsatisfiable.

To construct F ′σ , consider the following equivalence relation among variables.
Whenever two atoms P(t), P (t ′) are variants, so that P(t)σ = P(t ′)τ for some
pair σ, τ of renaming substitutions, regard any pair of variables xj , xk for which
xjσ = xkτ as equivalent. Associate each equivalence class of variables with a
distinct constant that does not already occur in F ′. Now we can let σ replace each
variable with the constant associated with its equivalence class.

THEOREM 5.9 (Correctness). The algorithm PPI indicates (a) unsatisfiability only
if F is unsatisfiable, (b) satisfiability only if F is satisfiable, and (c) M-satisfiability
only if F is M-satisfiable.

Proof. (a) If PPI indicates unsatisfiability, then in the last step it generates a
formula Fk that is unsatisfiable when regarded as a propositional formula in which
variants of atoms are identified. Then by Lemmas 5.7 and 5.8, F is unsatisfiable.

(b) If PPI indicates satisfiability, then it obtains for a formula Fk an unblocked
satisfier mapping. Then F is satisfiable, by Theorem 4.10 and Lemma 5.7.

(c) If PPI indicates M-satisfiability, then it obtains for a formula Fk a satisfier
mapping that is not M-blocked. Then F is M-satisfiable, by Theorem 4.10 and
Lemma 5.7.

THEOREM 5.10 (Completeness). If F is unsatisfiable, then PPI terminates with
an indication of unsatisfiability.

Proof. Because F is unsatisfiable, by Lemma 3.6 there is an M∗ such that F
it is not M-satisfiable for any M ≥ M∗. By Theorem 5.9, PPI will not indicate
M-satisfiability. So the execution of the algorithm is unaffected by placing an upper
bound M∗ on M, which means by Theorem 5.5 that the algorithm terminates. By
Theorem 5.9 it terminates with an indication of unsatisfiability.

6. The Dual Approach

The primal approach to PI uses a reactive strategy that deals with blockages as
they arise. It starts with a weakened form of the satisfiability problem (a partial
instantiation) and gradually strengthens it with further instantiations that resolve
blockages. Unsatisfiability at any point indicates unsatisfiability of the original
formula, but satisfiability indicates the same for the original formula only if the
satisfying valuation is unblocked.

The dual approach uses a proactive strategy that tries to anticipate blockages.
It starts with a strengthened form of the problem that contains clauses that rule
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out possible blockages. It gradually weakens the problem as further instantiations
are added and fewer possible blockages need to be anticipated. Satisfiability at any
point indicates satisfiability of the original formula, but unsatisfiability indicates
the same for the original formula only if the problem is unsatisfiable after removing
the clauses that rule out blockage.

DEFINITION 6.1. Let F = C1 ∧· · ·∧Cm be a quantifier-free first-order formula.
An auxiliary clause for F is any clause of the form P(t) → P(t ′) (i.e., ¬P(t) ∨
P(t ′)) for which

(1) P(t) and P(t ′) are not variants of each other,
(2) P(t) occurs positively in some clause C of F ,
(3) P(t ′) occurs negatively in some other clause C ′ of F ,
(4) P(t) and P(t ′) have an mgu (σ, τ) such that P(t)σ = P(t ′)τ belongs to BM ,

and
(5) either Cσ or C ′τ generalizes no clause in F .

The depth of the auxiliary clause P(t) → P(t ′) is the maximum nesting depth of
P(t)σ, P (t ′)τ .

EXAMPLE 6.2. Consider again the formula F = C1 ∧∀xC2 ∧∀yC3 ∧C4, where
C1, C2, C3, C4 are given by (3). There are two auxiliary clauses, each of depth 1:

P(s(a)) → P(x)

R(s(y)) → R(s(a)).
(11)

ALGORITHM DPI (Dual Partial Instantiation):

Let F = ∀x1C1 ∧ · · · ∧ ∀xmCm be a first-order formula.

1. Initialization. Set F0 = C1 ∧ · · · ∧ Cm, k := 0, and M := 0.

2. Unsatisfiability check. If Fk is satisfied by no variant-independent valuation,
stop; F is unsatisfiable.

3. Blockage Avoidance. Generate auxiliary clauses B1, . . . , Bp for Fk until con-
ditions (a) and (b) below are satisfied or until all auxiliary clauses have been
generated, whichever occurs first.

(a) Fk ∧ B1 ∧ · · · ∧ Bp is satisfied by no variant-independent valuation;
(b) some auxiliary clause Bi has depth less than or equal to M.

4. Satisfiability Check. If B1, . . . , Bp do not satisfy condition (a), then stop; F
is satisfiable. If they do not satisfy (b), let M be one less than the minimum
depth of B1, . . . , Bp; F is M-satisfiable.
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5. Refinement. Let P(t) → P(t ′) be any auxiliary clause generated in Step 3 with
depth at most M + 1, where P(t) occurs posited in clause C of Fk and P(t ′)
occurs negated in clause C ′ of Fk . Let (σ, τ) be an mgu of P(t), P (t ′). Set
Fk+1 = Fk ∧ Cσ ∧ C ′τ , k := k + 1, and go to Step 2.

In practice one would use an incremental algorithm to check each Fk ∧ B1 ∧
· · · ∧ Bi for satisfiability. As in the primal case, one can terminate the algorithm if
M attains some large value M∗ and conclude that F is at least M∗-satisfiable.

It may be best in practice to stop generating auxiliary clauses in Step 3 when
unsatisfiability is detected, rather than to generate them all in order to verify that
F is M-satisfiable for some M (namely, an M equal to one less than the minimum
depth of the auxiliary clauses). One might therefore replace Steps 3 and 4 with the
following. If the modified algorithm terminates when M reaches M∗, F may be
M-satisfiable only for some M smaller than M∗.

3. Blockage Avoidance. Generate auxiliary clauses B1, . . . , Bp for Fk until Fk ∧
B1 ∧ · · · ∧ Bp is satisfied by no variant-independent valuation or until all
auxiliary clauses have been generated, whichever occurs first.

4. Satisfiability Check. If Fk ∧B1, . . . , Bp is satisfiable by a variant-independent
valuation, then stop; F is satisfiable. Otherwise let M be one less than the
minimum depth of the clauses B1, . . . , Bp.

We will use this modified algorithm in all subsequent examples.

EXAMPLE 6.3 (Satisfiability with termination). Consider again F = C1 ∧∀xC2 ∧
∀yC3 ∧C4, where C1, . . . , C4 are given by (3). The auxiliary clauses B1, B2 appear
in (11). Both clauses are needed to obtain an unsatisfiable proposition F0 ∧B1∧B2.
M is set to 0, and F1 is C1 ∧ · · · ∧ C4 ∧ C5, where C5 is obtained either from the
substitution {x/s(a)} in C2 or the substitution {y/a} in C4. We will use the former
to illustrate the nesting of functions:

C5 = ¬P(s(a)) ∨ Q(s(s(a)).

Returning to Step 2, we see there are two auxiliary clauses for F1. Unsatisfiability
occurs only when both have been generated:

B1 = R(s(y)) → R(s(a)),

B2 = Q(s(s(a))) → Q(s(y)).

M is set to 1. F2 is F1 ∧ C6, where C6 is obtained by using the substitution that
unifies the atoms of B2:

C6 = ¬Q(s(s(a)) ∨ R(s(s(a))).
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Only one auxiliary clause exists for F2:

B1 = R(s(y)) → R(s(a)).

Because F2 ∧B1 is satisfiable, the algorithm terminates with the conclusion that F
is satisfiable.

EXAMPLE 6.4 (Unsatisfiability). Let F = C1 ∧ ∀xC2 ∧ ∀yC3, where C1, C2, C3

are given by (4). Generation of one auxiliary clause,

B1 = P(s(a)) → P(x),

results in an unsatisfiable formula F0 ∧ B1. M is set to 0, and F1 is set to F0 ∧ C4,
where

C4 = ¬P(s(a)) ∨ Q(s(s(a))).

Again one auxiliary clause for F1 results in unsatisfiability:

B1 = P(s(a)) → P(y).

Now F2 = F1 ∧ C5, with

C5 = ¬P(s(a)) ∨ ¬Q(s(s(a))).

Because F2 is unsatisfiable (Step 2), so is F .

In the special case of datalog formulas, there are useful heuristics, based on
shortest paths in hypergraphs [12], for selecting the clause P(t) → P(t ′) in Step 3.
Similar heuristics may be available in larger fragments.

THEOREM 6.5. If a fixed upper bound M∗ is placed on M, the algorithm DPI
terminates after a finite number of steps.

Proof. As in the proof of Theorem 5.5, it suffices to show that the nesting depth
of Fk is bounded above by a number that is independent of k. Again the desired
bound is given by (8) in Lemma 5.6. The lemma applies because each Fk in DPI
clearly satisfies conditions (1)–(5) stated in the lemma.

THEOREM 6.6 (Correctness). The algorithm DPI indicates (a) unsatisfiability only
if F is unsatisfiable, (b) satisfiability only if F is satisfiable, and (c) M-satisfiability
only if F is M-satisfiable.

Proof. (a) If PPI indicates unsatisfiability, then in the last step it generates an
unsatisfiable propositional formula Fk. By Lemmas 5.7 and 5.8, F is unsatisfiable.

(b) If DPI indicates satisfiability, then in the last step it finds the formula Fk ∧
B1 ∧ · · · ∧ Bp to have a variant-independent satisfying truth assignment, where
B1, . . . , Bp are a complete list of auxiliary clauses for Fk . Such an assignment
provides an unblocked satisfier mapping for Fk, because any satisfier mapping that
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creates a blocking pair P(t), P (t ′) violates the auxiliary clause P(t) → P(t ′).
So F is satisfiable by Theorem 4.10 and Lemma 5.7.

(c) If DPI indicates M-satisfiability, then it obtains an unsatisfiable formula
Fk ∧ B1 ∧ · · · ∧ Bp, where B1, . . . , Bp is a complete list of auxiliary clauses for
Fk, and M is one less than the minimum depth of these clauses. Because Fk is
satisfiable (Step 2), it has a variant-independent satisfier mapping. Such a mapping
cannot be M-blocked, because if M-blockage were possible, there would be an
auxiliary clause Bi of depth M or less. So F is satisfiable by Theorem 4.10 and
Lemma 5.7.

THEOREM 6.7 (Completeness). If F is unsatisfiable, then DPI terminates with an
indication of unsatisfiability.

Proof. Because F is unsatisfiable, by Lemma 3.6 there is an M∗ such that F
is not M-satisfiable for any M ≥ M∗. By Theorem 6.6, DPI will not indicate
M-satisfiability. So the execution of the algorithm is unaffected by placing an upper
bound M∗ on M, which means by Theorem 6.5 that the algorithm terminates. By
Theorem 6.6 it terminates with an indication of unsatisfiability.

7. Implementation Issues

Since propositional satisfiability problems must be solved many times, with one
or two additional clauses each time, we used an incremental satisfiability algo-
rithm [17]. This substantially reduced computation time.

Testing for blockage, however, remained a bottleneck. It involves checking
whether the satisfiers of any pair of clauses are unifiable and, if so, whether the
partially instantiated clauses so obtained generalize any clause in the current for-
mula F . If F contains clauses C1, . . . , Cn, the unification test requires O(n2) at-
tempts to unify (one for each pair of clauses in the worst case). Checking for the
existence of a generalized clause requires O(n) tests.

We observed that quite often, the satisfier atoms for most clauses are the same as
in the previous iteration (i.e., the last time the propositional satisfiability problem
was solved). This led to the idea of testing blockages incrementally by reusing
the results of the blockage tests (mgus and generalizations) that were obtained in
the previous iteration. This accelerated the procedure considerably by reducing the
number of unification attempts, and generalization tests in many cases.

To implement incremental blockage testing, we associated with each clause Ci

a list of nodes Ni+1, . . . , Nn corresponding to subsequent clauses Ci+1, . . . , Cn

in F . Each Nj stores the results of the most recent check for blockage between
Ci and Cj . The results include pointers to the satisfiers of Ci and Cj , the mgu (if
any), and, if an mgu was found, indicate whether the generalization test succeeded.
Initially all the nodes are empty. When we check for blockage involving a pair
Ci, Cj for a second time, we look up Nj in the list for Ci and check whether the
satisfiers are still the same. If so, we simply use the stored mgu and generalization
test results. If the satisfiers have changed, we redo the computations.



392 J. N. HOOKER ET AL.

Whenever a partially instantiated clause Cn+1 is added to the formula, because
of blockage involving Ci and Cj , we append an empty result node Nn+1 to the
list for each clause C1, . . . , Cn and increment n by one. Also, the generalization
test is not entirely saved because it is necessary to check whether Cn+1 generalizes
clauses that have been added since the pair Ci, Cj was last checked.

8. Computational Results

We applied the primal PI algorithm to four instances of standard planning prob-
lems.

The monkey-banana problem. The problem is stated below as a first-order for-
mula. The first four clauses are the rules, and the last clause is the negation of
the query. The PPI method generates the answer by determining the formula to be
unsatisfiable.

(¬P(x, y, z, s) ∨ P(z, y, z,w(x, z, s)) ∧
(¬P(x, y, x, s) ∨ P(y, y, y, c(x, y, s)) ∧
(¬P(B,B,B, s) ∨ G(cl(s)) ∧
P(A,B,C, S) ∧
¬G(s)

P (x, y, z, s) means that the monkey is at position x, the ladder is at position y, and
the banana is at position z, in state s. G(s) means that the monkey can grasp the
banana in state s. The letters w, c, cl are abbreviated names for the functions walk,
carry, and climb, respectively.

Shortest plan problem. One can move through positions A, B, . . . , G in single
steps or jumps of two. How does one go from A to F in the fewest number of steps?
The problem can be written as follows.

P(A, s) ∧ (initially at A)

(¬P(A, s) ∨ P(B, step(s))) ∧ (can step from A to B)

(¬P(B, s) ∨ P(C, step(s))) ∧ (can step from B to C)

(¬P(C, s) ∨ P(D, step(s))) ∧ (can step from C to D)

(¬P(D, s) ∨ P(E, step(s))) ∧ (can step from D to E)

(¬P(E, s) ∨ P(F, step(s))) ∧ (can step from E to F)

(¬P(F, s) ∨ P(G, step(s))) ∧ (can step from F to G)

(¬P(A, s) ∨ P(C, jump(s))) ∧ (can jump from A to C)

(¬P(B, s) ∨ P(D, jump(s))) ∧ (can jump from B to D)

(¬P(C, s) ∨ P(E, jump(s))) ∧ (can jump from C to E)
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(¬P(D, s) ∨ P(F, jump(s))) ∧ (can jump from D to F)

(¬P(E, s) ∨ P(G, jump(s))) ∧ (can jump from E to G)

(¬P(F, s) ∨ ans(s)) (cannot move from A to F)

Blocks world. Two instances were solved.

The results in Table I, also reported in [6], demonstrate the substantial advan-
tage of both the incremental satisfiability algorithm and incremental testing for
blockage. Detailed results for one problem are given below.

EXAMPLE 8.1 (Monkey-banana problem). PPI resolved 20 blockages, making
the final number of clauses 25. There were 15 literals in the final propositional
satisfiability problem. The method therefore solved a 25-clause, 15-literal propo-
sitional satisfiability problem incrementally (in 20 steps). It performed 427 mgu
computations (both successful and unsuccessful) and 4027 generalization tests.

The following are the additional clauses added upon resolution of various block-
ages encountered. After adding 20 clauses, the formula is determined to be unsat-
isfiable.

¬P (A,B,C, S) ∨ P (C,B,C,w(A,C, S))

¬P (C,B,C,w(A,C, S)) ∨ P (C,B,C,w(C,C,w(A,C, S)))

¬P (C,B,C,w(A,C, S)) ∨ P (B,B,B, c(C,B,w(A,C, S)))

¬P (C,B,C,w(C,C, w(A,C, S)))∨ P (C,B,C,w(C,C,w(C,C,w(A,C, S))))

¬P (B,B,B, c(C,B,w(A,C, S))) ∨ P (B,B,B,w(B,B, c(C,B,w(A,C, S))))

¬P (C,B,C,w(C,C, w(A,C, S)))∨ P (B,B,B, c(C, B,w(C,C, w(A,C, S))))

¬P (B,B,B, c(C,B,w(A,C, S))) ∨ P (B,B,B, c(B, B, c(C,B,w(A,C, S))))

¬P (B,B,B, c(C,B,w(A,C, S))) + R(cl(c(C, B,w(A,C, S))))

¬P (C,B,C,w(C,C, w(C,C,w(A,C, S)))) ∨ P (C,B,C,w(C,C,w(C,C,w(C,C,w(A,C, S)))))

¬P (B,B,B,w(B,B, c(C, B,w(A,C, S))))∨ P (B,B,B,w(B,B,w(B,B, c(C, B,w(A,C, S)))))

¬P (B,B,B, c(C,B,w(C,C,w(A,C, S)))) ∨ P (B,B,B,w(B,B, c(C, B,w(C,C,w(A,C, S)))))

Table I. Computational results.

Problem Instance Number of Clauses Computation Time (seconds)

Initial Final Incremental Incremental Neither

SAT & SAT only

blockage

Monkey-banana 5 25 0.24 0.30 0.32

Shortest plan 13 38 0.27 0.43 0.70

Blocks world (smaller) 19 118 2.53 5.48 27.95

Blocks world (larger) 33 279 16.31 47.05 1904.02
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¬P (B,B,B, c(B,B, c(C, B,w(A,C, S))))∨ P (B,B,B,w(B,B, c(B,B, c(C, B,w(A,C, S)))))

¬P (C,B,C,w(C,C, w(C,C,w(A,C, S)))) ∨ P (B,B,B, c(C,B,w(C,C,w(C,C,w(A,C, S)))))

¬P (B,B,B,w(B,B, c(C, B,w(A,C, S))))∨ P (B,B,B, c(B, B,w(B,B, c(C, B,w(A,C, S)))))

¬P (B,B,B, c(C,B,w(C,C,w(A,C, S)))) ∨ P (B,B,B, c(B, B, c(C, B,w(C,C,w(A,C, S)))))

¬P (B,B,B, c(B,B, c(C, B,w(A,C, S))))∨ P (B,B,B, c(B, B, c(B,B, c(C, B,w(A,C, S)))))

¬P (B,B,B,w(B,B, c(C, B,w(A,C, S))))∨ R(cl(w(B,B, c(C, B,w(A,C, S)))))

¬P (B,B,B, c(C,B,w(C,C,w(A,C, S)))) ∨ R(cl(c(C,B,w(C,C,w(A,C, S)))))

¬P (B,B,B, c(B,B, c(C, B,w(A,C, S))))∨ R(cl(c(B,B, c(C, B,w(A,C, S)))))

¬R(cl(c(C,B,w(A,C, S))))

The monkey gets the banana after he walks from A to C, carries the ladder from C
to B, and then climbs the ladder.

9. Concluding Remarks

Both the primal and dual algorithms leave considerable freedom for variation, and
the efficiency of the algorithms will depend on how well this freedom is used.

In the primal algorithm, a large number of blockages will typically occur in any
given iteration. The key decision is which blockage(s) to remove in Step 3 before
re-solving the propositional satisfiability problem. The aim of a selection heuristic
should be to find a satisfying solution as soon as possible.

In the dual algorithm, the key decisions are (a) in what order to generate the
clauses that avoid blockage (assuming that generation stops as soon as the clause
set is unsatisfiable), and (b) which of the generated clauses is selected in Step 3.
The aim of a heuristic should be to discover a refutation as soon as possible.

Since the primal algorithm is oriented toward finding a solution and the dual
algorithm toward finding a refutation, and since one does not know at the outset
which will succeed, it is reasonable to combine the two approaches to obtain a
primal-dual algorithm. This device is often used successfully in optimization. In
the present context a primal-dual algorithm might begin with a dual phase by
generating only a predetermined subset of the clauses that avoid blockage. If un-
satisfiability results within this subset, instantiation would proceed as in the dual
algorithm. Otherwise the algorithm would move to a primal phase by checking the
solution for blockage. If blockage is found, instantiation would proceed as in the
primal algorithm.

The rationale for the primal-dual approach is that an intelligent heuristic for
generating clauses in the dual phase could rule out the most likely kinds of block-
age with a relative small number of clauses. This reduces the number of primal
iterations, but since the primal strategy operates as well, it is still possible to find a
solution by luck before very many instantiations are generated.
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