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In this paper we have studied the problem of instability in a helical field.
Generally the magnetic field in the containing devices is of helical type.
But it is very difficult to solve the resulting equations in the presence of
general axial and azimuthal fields. After establishing equations for general
helical field, we have considered the field which is constant in the axial
direction and the azimuthal component is produced by a small line current
as a particular case. The plasma shell of finite thickness and of infinite
conductivity is taken in the presence of such a field. The normal mode
technique is applied to study the axisymmetric and azimuthal disturbances.
A sixth degree equation in frequency for the various values of parameters
is obtained. In the azimuthal disturbances a neutral stability curve plotted

indicates a very strong dependence of stability on the thickness of the plasma
shell.

1. INTRODUCTION

Many investigators have studied the problem of stability of eylindrical
plasma in the presence of axial magnetic field which may be uniform or non-
uniform due to its application in fusion devices. However, most of the experi-
mental fusion devices such as toroidal pinch and stellarators, etc., have the
azimuthal component of the magnetic field in addition to axial component.
Auluck and Kothari (1957) have studied the problem of stability of an infinitely
long gravitating cylinder of incompressible inviscid and infinitely conducting
fluid in the presence of axial and azimuthal components separately. Auluck
and Nayyar (1960) extended this problem to take account of both azimuthal
and axial components together. Newcomb and Kaufman (1961) have also
investigated the stability of a tubular pinch which has both axial and azimuthal
components. However, in all the above investigations, the energy method is
used to discuss the stability which does not give the quantitative results.
Kruskal and Schwarzchild (1954), however, have applied the normal mode
method to study the stability of a plasma in which the magnetic field is caused
by an electric current within the plasma and found the system to be unstable
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against lateral distortions. Chakraborty and Bhatnagar (1960) have studied
the stability of an ideally conducting infinite liquid column carrying a uniform
volume current and uniform surface charge density and have established
various criteria for axisymmetric and azimuthal disturbances. Bhat (1968)
studied the problem of stability of a self-gravitating cylindrical plasma in
the presence of a non-uniform axial magnetic field and the azimuthal
field produced by a constant volume current by the method of normal mode
technique.

In the present investigation, we have considered the cylindrical plasma
in the presence of both the axial and azimuthal components of magnetic field
given in section 2 which are non-uniform and depend on the radial coordinate
only. For simplicity, the plasma is taken to be infinitely conducting, inviscid,
incompressible and the displacement current is neglected. We have applied
the normal mode technique and find that the resulting perturbation equations,
which are recorded in sections 3 and 4 for the axisymmetric and azimuthal
disturbances respectively, cannot be solved to get dispersion relations for a
general type of helical field. In order to simplify the analysis, we have con-
sidered a particular case of the helical field which has a uniform axial com-
ponent and the azimuthal component produced by a line current. Such a
field has already been discussed by Bhatnagar and Bhat (1968) in context
with the production of high magnetic fields. We have mentioned the field
in section 2 and the resulting solutions of the perturbation equations, which
are obtained by using Picard’s approximate method of solution, are recorded
in sections 3 and 4 for the two types of disturbances. The dispersion relations
obtained after using the required boundary conditions for this particular
helical field have been discussed in sections 5 and 6.

The fundamental aim of stability problems is to find out magnetic field
configuration which will stabilize a plasma over time intervals necessary for
the onset of thermonuclear reactions in laboratories. The magnetic field
configurations studied have been used in some laboratory devices and, there-
fore, we have studied the stability of plasma in the presence of these fields.

2. STEADY STATE

The mégnetic field inside the plasma in the steady state is given by

B=[0, Bs(r), B()). .- .. .. .. @

We will see in the next two sections that it will be extremely difficult to
solve the equations governing the perturbed quantities for the field (2.1).
We, therefore, consider a particular case in which a uniform axial magnetic
field is present due to the absence of azimuthal current density and an azi-
muthal magnetic field is present due to a constant line current. The magnetic
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field in the dimensionless form is given by

N (O,%,A) m<<r<l1
B= .. .. .. (22)
(O,g,IL) r>1

where C is related with the strength of the line current. A and H, are uni-
form fields inside and outside the plasma respectively. A4, has been chosen as
unity due to non-dimensionalization in our discussion. We also choose
the inner boundary r = m to be rigid, non-conducting and non-magnetic. In
the steady state, we assume that the entire system is at rest. Hence, we can
show that the electric field and current density are zero everywhere. Further,
we will have an azimuthal surface current density given by

T*=(0, H—A4,0) .. .. .. .. (23
and the plasma pressure will be constant and will be given by
po=$(H>—4?). .. .. .. .. (24)

3. AXISYMMETRIC DISTURBANCES

We perturb the steady state described in section 2 in an axisymmetric
manner and assume that these disturbances are so small that we can linearize
the governing equations. We assume that the perturbed quantities vary
exponentially with time and axial coordinate. Thus the disturbance is of the
type X' = X exp (twt-+-ilz), where » is the angular frequency and [ is the
axial wavenumber. Let us denote the amplitude of the perturbed quantities

-

as v, P, _I; and e, the velocity, pressure, magnetic field and electric field re-
spectively. Using the momentum equation and Maxwell’s equation, we get the
following equation for the radial component of the velocity for the field (2.1):

2\ o, dB, B2\ dv, > 4By
(B;.. %) —v+( ot 2B, +T) Ev7+[“’2+i_ =

ar? B2 12(0?—1%F)
+2B4 _ppay 2 05 BL 2P %%]v;o (3.1)
and all other perturbed quantities are related to v, by the foliowing relations:
vg = rr(%‘%é—) (3.2)
vz=li:;—(rv,) R .

IB, :
b=""v, Y - )
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9w By 1 d
b¢ = [m — m a;(r B¢)]’U,~ .. .. (35)
i d :
bz = E‘ E;(?'U,-Bz) .. .o N .. . (36)
_B,dB, , w d
“w @ "t dr( or)
2Bs2w By d
- [(T_z—g—) tar @ B“} 3.7
iBs d 21 B4B.?
€y = lT dr( ,- m’(]r . . .. (38)
es = By, T £ X))
and -
es = — By, O - S (1)

Equation (3.1) could be solved to obtain v, if we specify the type of
magnetic field. We, therefore, use the type of field given by eqn. (2.2) and
thus eqn. (3.1) reduces to

%, 1 dv, 1 402w
et et [ T Rt EEE o ]”’= 0

If we assume that the strength of the line current (C) is small, we can
approximately solve the above equation by the method of variation of para-
meter. The resulting solution will be an integral equation in v, as in the case
of Picard’s method. ¥or simplicity, we will consider the solution up to first
iteration. Thus we have

. (311

o -Bo[zl ")+ f L) apk,an— Il(ml(lf)}ds]

+D0[K1 Ir)+a f Bll8) (1 g Ky (tr)— L(n) K lg)}dg] . (3.12)

where
. 4C*w®?
o = e,
(lz 42— w2)2
The other perturbed quantities in terms of v, for the field of type (2.2) are
21 AC
Y= R —raAn) " - @13)
dv,
v, = l—r( —+v,) .. .. .. .. .. (3.14)
bo="4,, € 2 653}
w
b¢=———ﬂw——-% .. .. .. .. . (3.16)

P (w— A7)
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b _;—r(r%’i-;-p,) N € 3 1)
p=5’é %?+[%‘w§}‘—f"m]” ~ (3.18)
2
paiCtn [0, sou ) 519
eg=Avr .. . e (3.20)
and
ez=—gv,-. N X1 )
The solutions for the electromagnetic field in vacuum are
b, = B K,(Ir), .. .. - .. (3.22)
by = 0, R %2
b, = —iE K\Ir), .. .. .. .. (3.29)
er = M Ky(lr), .. .. .. .. (3.25)
€p = “7’ EEK(") .. .. .. ..(320
and
= —iMEolr) .. .. .. .. (327

where By, Dy, E and M are constants of integration. Iy, K, and I,, K, are
the modified Bessel functions of zeroth and first order.

4. AzmvuTHAL DISTURBANCES

In this section, we consider the equations of the perturbed quantities
due to azimuthal disturbances. Starting with the steady state, we apply the
perturbation of the type exp (twf--ing), where » is the azimuthal wavenumber

and o is the frequency. Denoting by ;;, p, b and (Z the perturbed velocity,
pressure, magnetic field, electric field respectively, and using the momentum
and electromagnetic field equations, we get the following equation for the
radial component of velocity for the field (2.1):

( w2 By? ) d*v, (__ 8rw , 2By dBy | By )dv,+(1—n2) o B&\ o
n? art W dr dr e L=

7R)
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The equations governing other perturbed quantities are

i d

"I).ﬁ—_—‘-’-b'd—'r(r’l)r) .. . .e s .o . (42)

v, =0 - . .. .. .. .. .o (4.3)
nB.,;

b,_wrv, - .. .. .. . .. o (44)
i d '

b¢=;$‘(B¢’l)r) .o . .o “e < e .o (4.5)
1 dB,

b,__; U .. . .. .. .e .. (4.6)

_wrd . [BdB, BS B dB,

P dr(m')—l_[iw r Tior i:,‘dT]”' a 7
B, d

e,=%d—r(rv,) .. .. .. . .o .. (4.8)

e = B, .. .. .. .. .o .. .. (4.9)

and
e, = —Bgv,. .. .. .. - .. . .. (4.10)

As in section 3, we note that the solution of (4.1) could be obtained if
we postulate the type of magnetic field. Thus we make use of the particular
field given by (2.2) to get the following equation for v,:

2 2
do 1) 4o  |de (=0 .. (@411

Ty ( Cznz) dr ' 1

In this case also, if we assume that the strength of the line current is
small and expand the coefficient of the second highest derivative, we get
Cauchy-Euler type of equation in zeroth order. If we assume that C is so
small that C* and higher powers can be neglected, we can build up an
approximate solution using the method of variation of parameter. Further,
the resulting solution will be an integral equation in v, as in the Picard’s
method. We can build up the set of solutions in various order of approxima-
tions which will be convergent. We thus consider the solution to be at first
iteration for our convenience,

_y , N (m—=1)r"5(2 1 n%n+1)C*
vy =A.,[r" 1+__m_] B°[r"+1Tw"(2n+4)r"+5] .. (412)
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The solutions of other perturbed quantities in terms of v, are

i d

v¢=%%(rv,) .. .. . .. (4.13)

v, =0 .. .. .. . .. (4.14)
nC

b,—mv, .o . .. .. .o (4.15)
10 d [vr

b¢=:u— Er(-;) . .. . .. (416)

b.=0 .. .. .. .. .. (4.17)
r d

p=§z—%(rv,) N 7 S 1))
A d

e = %(rv,-) .. .. .. .. (4.19)

eg = Av, .. .. .. .- .. {4.20)

and
ez=—-gv,. .. .. .. .. (421

We also write the solutions in vacuum for this type of disturbance using
Maxwell’s equation

F

br=r”+1 .- . .o .. “. (4.22)
F

by = T .. (4.23)

b,=0 .. .. .. .. .. (4.24)
N

Cp = ey . (425)
N

€= - .. . . .. (4.26)

and
e = —‘;—; f—; . (4.27)

where 4y, By, F and N are constants of integration.

5. DiSPERSION RELATION FOR AXISYMMETRIC DISTURBANCE AND
1Ts DIscussioNn

We apply the boundary conditions at the perturbed surface r =
1+0r exp (iwt+ilz). The inner boundary r = m is ‘taken to be rigid, non-
magnetic and non-conducting.

3B
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The dispersion relation in this case will be

w®[Lo(1) Ky (ml)+ Ko(DI 1(ml)]+w412[—2A2{Io(l)K 1(ml)+Ko(D)Iy(ml)}

+4CH— X (1) Ko() Ka(ml) + Y ([ Ly(md) K o(1) ~ Lo(D K (mi)]+ Z(1) 11 (mi) Lo(1)}

(H2K (mD) K o(D14 (D) }]
K,

+{ (2 A2 L (ml) K o(1) = APL(0) K y(ml) —

+ ot [A4{Io(l>K1(mz>+Ko<l>11<m1>}—2A2{(Hf—Az)Il(ml)K.,a)

Hy? K3 (m) K o()I1(7)

() }+402 {X(I)Ko(l)Kl(ml)(Az—le)

— ALKy (ml)—

+Y() [A%IomKl(ml) +2 12]"’"‘%’1{(%”’”1 10 +(H12—A2>Ko(1>11(1m>]

_zm[A211<ml>lo<l)+H‘2K°<g?z(fdw)] ?]

f

H12K1(ml)Ko(l)Il(l)] —0

£:0) G-1)

41644 [(H L= A3 Ko(D) I, (ml) — AL () Ky (ml)—
where

X(r) = [Il(;f)]z ¢ .. . . .. (52)

m

Y(r)=f ﬂ%@df .. .. .. (5.3

and

Z(r)=f' [Kléff)]zdg. R - P

The lower limit to these integrals have been taken to be m, the ratio of
outer to inner radius. If we put o’ = «?, we reduce (5.1) to a cubic
aw®+3bw243cw’+d =0 .. .. .. (6.5)
where @, 3b, 3¢ and d are the coefficients of w®, w?, «? and «° of eqn. (5.1).
The above cubic could be reduced to
(aw' +b)3-+3H (aw'+b)4+G = 0 .. .. .. (b.6)

where H = ac—b2 and G = a?d—3abc+2¢3. We have following cases:

(i) when G2--4H3 is negative, the roots of the cubic are all real. For
this H should necessarily be negative. Further, if »’ is 4 ve real, the system
will be stable as w will also be real. Nevertheless, the system will be unstable
if »’ is negative implying that w is imaginary.
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(ii) when G24-4H3 is positive, the cubic has a pair of complex conjugate

roots.

The system will be unstable in this case.
(iii) If G>+4H3 = 0, the cubic has two equal roots.

Further, if the

equal roots are positive, the system is stable and unstable if the equal roots

are negative.

(iv) If @ = 0, H == 0, the cubic has its three roots equal.
also, the system will be stable if roots are positive and unstable if the roots are

negative.

In this case

Tables I to IV give the roots of the cubic for some specified values of

parameters. We note the following points from the numerical results.
Tapre 1
Hy=10,C=04,m =09
Lsb 100t of Real part of Imaginary Real part of Imaginary
l cubic 2nd root of part of 2nd 3rd root of part of 3rd
cubic root of cubic cubic root of cubic
1 0-109639 x 10 0-101958 X 10 0 0-953831 0
2 0-461945%x 10 0-404784 x 10 0 0-394564 0
3 0:111617 x 102 0-906166 x 10 0 0-893579 x 10 0
4 0-211820 x 102 0-160711 x 102 0 0-159276 x 102 0
5 0-351092 x 102 0-250802 x 102 0 0-249191 x 102 0
6 0536931 x 102 0-360852 x 102 0 0-359143 x 102 0
7 0-891598 x 102 0-491024 % 102 0 0-488975 % 102 0
8 0-253444 x 103 0:641225 % 102 0 0-638776 x 102 (1}
9 0-147697 x 10 0-809998 x 102 0-168523 0-809998 x 102 —0-168523
10 0-474879 x 102 0-999987 x 102 0-229347 0-999987x 102  —0-229347
Tasre IT
H=10,m=071=10
Imaginary Imaginary
c 1st root Real part of part of Real part of part of
2nd root and root 3rd root 3rd roob
0-4 0-408802 x 102 0-999943 x 102 0-880738 0999943 x 102~ —0-880738
0-8 0:408847x 102 0-999771 x 102 1.762697 0-999771x 102 —1-762697

(i) For the fixed value of magnetic field outside vacuum, strength of the
current and the plasma thickness, we note that the system becomes unstable
for large values of wavenumber. Table I represents that for I = 9 and 10,
we have four complex roots for the dispersion relation (5.1). Moreover, we

note that for asymptotically large values of I, the dispersion relation (5.1)
degenerates.
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TasrLe IIT
C=04,m=05,1=10
Real part of Imaginary Real part of Imaginary
H;  lst root of cubic 2nd root of part of 2nd 3rd root of part of 3rd
cubic . root of cubic cubic root of cubic
1-0 0-119210 x 103 0-620670 x 102 0 0-610902 x 102 0
3.0 0-272901 x 103 —0-245284 x 108 0 —0-246316 x 103 0
5-0 0-580279 x 1038 —0-860007 x 103 0 —0-861103 x 103 0
7-0 0-104135 x 104 —0-178174 % 10¢ 0 —0-178364 x 10% 0
9-0 0-165100 x 104 —0-301106 x 10+ 0 —0-301334 x 10% 0
Tasre IV
1=9,H;=10,C =04
Imaginary Imaginary
m 1st root Realdpa,rt of part of Real part of part of
2nd root 2nd root 3rd root 3rd root
0-5 0-113102 x 103 0:177505 x 102 0 0-158778 x 102 0
0-7 0-112721 x 103 . 0-182225x 102 0 0-169104 x 102 0
09 0-147697 x 10 0-809998 < 102 0-168523 0-809998 x 102  —0-168523

(it) For fixed value of H,, m and I, the system becomes more unstable-by
increasing the strength of the current. This is exhibited in Table IIL.

(iii) The instability of the system increases due to increase in the external
magnetic field (outside the plasma in vacuum). The value of w? is negative
for the field greater than equal to 3 and thus the system is unstable.

(iv) Table IV shows the dependence of the plasma thickness on the in-
stability of the system. We conclude that the system becomes unstable if
the plasma thickness is appreciably small.

6. DispersiON RELATION FOR AZIMUTHAL DISTURBANCE
AND 1Ts DIScuUssioN

We apply the boundary conditions at the perturbed surface r = 1--8r exp
(twt+ing) and the inner boundary r =m to be the same as in the previous
section. The dispersion relation in this type of disturbance is

1 "m n(n4-1) | n(n—1)m"°
wz(nT-H"‘m 1)’”‘“2[2(n+2)m»+6' 2mn—2)

(n—1)(3n—4) (n2+n—4)m"‘1:| —o
2(n—2)m** 2(n+2) =

6.1)

or

wi=A. .- .. .. .. (6.2)
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If A < 0, the system is unstable and if A > 0, the system is stable. The
increase in the strength of the line current increases the growth rate of in-
stability or adds to the stability of the system according as

& = m2t4(n24-n—4)(n—2) +n(n—1)(n42)m*"
—(n42)(n—1)(Bn—4)m*+n(n+1)(n—2)
is greater than zero or less than zero respectively. The mneutral stability
curve has been plotted in Fig. 1.

UNSTABLE STABLE

—(N)

I i 1 1 1 1
05 0.6 0.7 08 09 1.0
—eT

F1e. 1. Neutral stability curve.

We note that the stability of the system for this type of disturbance very
strongly depends on the thickness of the plasma shell. The region to the
right of the curve is stable and to the left is unstable.
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