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A simple and direct procedure for evaluating the properties of dense gases has been attempted
based on the BBGKY hierarchy of equations. The basic idea of Enskog, namely that in-
creasing the density affects the behaviour of the assembly, mainly by reducing the specific
volume and by providing a certain amount of shielding to molecular interactions, has been
developed at length in this investigation. The decrease in specific volume allows one to
approximate the three-particle distribution function in terms of one-particle and two-
particle distribution functions. These distribution functions are expanded in terms of
generalized Hermite polynomials to study small departures from equilibrium. In the simple
Couette flow and one-dimensional heat flux problems, explicit expressions for viscosity and
heat conductivity have been obtained. This enables one to study the variation of these with
density and temperature. Numerical results are compared with experimental values for simple
gases like argon, neon and helium. The values for the inverse-power-law forces behave mono-
tonically and approach the Enskog curve. The Lennard—Jones potential shows, as density in-
creases, an increase of viscosity and heat conductivity that is less rapid than for other power
laws. The experimental values agrees well for the force laws studied here, as seen from the
figures.

1. INTRODUCTION

The classical theory of gases founded by Maxwell and Boltzmann has been exten-
sively studied by Chapman and Enskog and explains the behaviour and properties
of dilute gases in the density range of 10'6-1018 particles/ml. and in the pressure
range of 10-2— 1 atm (Chapman & Cowling 1939; Hirschfelder, Curtiss & Bird 1954).
Critical analysis of the foundations of Maxwell-Boltzmann equation and Chapman—
Enskog solution by Grad (1949), Uhlenbeck (1960) and others has established that
the following assumptions were made tacitly: (i) The statistics of the assembly is
adequately represented by the single particle distribution function so that the
particles could move freely except for occasional encounters with other particles.
(ii) The interaction between the particles is purely binary and takes place in a period
of time much less than the duration of the mean free flight. So, the average volume
of the inter-particle interaction is much smaller than the specific volume of the
assembly. One important consequence of these basic assumptions is that the trans-
port properties of the gases brought about by collisions are independent of the
specific volume or the density of the gas. In dense gases as in combustion engines,
operating at high temperature and pressure, considerable difference has been noticed
from the classical values. In dense gases, the duration of mean free flight is compar-
able to the duration of collision itself so that complete randomness of the molecular
[ 245 ]
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velocities does not prevail. This necessitates the introduction of simultaneous dis-
tributions and single-particle distribution is inadequate to represent the basic
statistics of the assembly. Moreover, the specific volume also becomes comparable
to the interaction volume and hence the transport process and transport properties
depend on the density as well.

The simple effect of increasing density is to make the probability of binary col-
lisions smaller owing to the fact that the third molecule interferes and partly shields
the target molecule. Based on this simple assumption, Enskog (1921) modified
the probability of collisions and obtained the density variation of transport pro-
cesses. Since the above argument is valid only so long as the increased density could
be treated as a correction to collisions, the expressions obtained by Enskog are not
valid for very dense gases. This has been borne out by experimental results (Wald-
man 1958), the discrepancy becoming marked when the density increases beyond
10 times the original atmospheric value. Moreover, the expressions of correction
obtained by Enskog are independent of temperature and accordingly have restricted
applicability.

Recently, based on BBGKY heirarchy of equations (Green 1952) for liquids,
Cohen (1966), Green (1958), Mazo (1967), and others, have worked out theories of
dense gases. Essentially, it depends on including the two-particle distribution
functions f;, along with the one-particle distribution function f; to describe the
statistics of the assembly. The first and second equations of the hierarchy are
used to deduce transport equations and the transport coefficients. In all these
approaches some approximate expression has to be used to express the three-
particle distribution fi,5 in terms of the single particle and two-particle distributions.
Following Bogoliubov (1962), in general, f;, f;, and f,3 are expanded in a power
series of the parameter which is the ratio of the interaction volume to the specific
volume. Even though, theoretically one establishes the existence of transport
equations, these approaches are extremely complicated owing to the fact that the
distributions are expressed as functions and functional derivatives. Explicit simple
expansions describing the transport process and transport equations are difficult to
obtain.

A simple and straightforward method can be obtained as follows. The increase
in density primarily affects the simple binary collisions and the most important
molecular process then is the successive incomplete binary collisions. These are well
represented by the introduction of the correlation function f;,: however, the evolu-
tion of f; and f;, depends on f;,5. The specific volume of the gas decreases at the same
time owing to increased density; consequently, f;,3 and higher order particle dis-
tributions evolve relatively very little, which suggests that one may approximate
f12s from those appropriate to liquids having almost vanishing specific volume, such
as Kirkwood superposition approximation (1946), or Tchen’s quasilinear approxi-
mation (1959). Such an approximation, which does not take into account the details
of three-particle collisions, is valid provided the density is high enough but not
exceeding the limit when the mean free time becomes equal to the time scale of the
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order of collision time itself. If o denotes the effective molecular diameter and 7, the
range of molecular forces, we can express the above condition in the form

1 1
KN <K —5.
7 702

Another instance, where the basic assumptions of Maxwell-Boltzmann are
violated, is in plasmas, especially at high temperatures and high densities. Because
of the long-range Coulomb force, the volume of the Debye sphere is much greater
than the specific volume and the collisions are no longer binary. For, under the
conditions of relatively low density in plasmas, deflexion of a particle due to inter-
action with most others is small and the effect of different deflexions is as if they
occurred simultaneously and successively and considered linearly; large repulsive
deflexions are rarer. Since this is not possible at higher temperatures or densities,
one must introduce correlation between particles. Since plasmas have at least two
components, the mathematics becomes extremely complex and in this paper, we
shall, for the sake of clarity, consider only one component gas and study gas mix-
tures separately.

Secondly, the primary object of this investigation is to study the transport
processes and the transport properties of dense gases, we shall consider simple gases
like argon, neon, and helium with inverse power law for molecular interaction and
Lennard-Jones (6:12) potential. Also to simplify the analysis, we shall suppose
that there are no external forces acting on the system. We shall adopt, for transport
processes, Grad’s (1949) procedure for solving the resulting kinetic equations. The
advantage of this procedure is the explicit expression of the distribution function in
terms of its macroscopic quantities and the direct evaluation of the transport
equations in the neighbourhood of the thermodynamic equilibrium state. We
have obtained explicit density and temperature-dependent expressions for the
properties of simple assemblies and the results are compared with the experimental
observations for helium, argon and neon in figures 1 and 2. These show reasonably
good agreement justifying the present procedure.

2. FORMULATION AND BASIC EQUATIONS

Consider an assembly of N similar neutral particles contained in the volume V.
If q and p denote the position and momentum of the particle and fy(1), f12(1,2) and
f123(1, 2, 3) denote 1, 2 and 3 particle distributions respectively, then the correspond-
ing hierarchy of equations is given by

of, 0H, ofy 0oH, ofy N—lff 0P12 Of 12
G _PhOh T T || TR i2gg,.q 1
ot 0qy 0p; 9Py 04y |4 oq; 0P, 92CPe M
12 OH, ofyy 0H, Ofy N -2 f f 0P:5 103 ]
%2 _ 0Hy 0f1y 0%y N=2 [ 9Pz Ghas g 2
and ot 1<i<2[3‘h’ p; oP; 99, Ty oq; op; 45.Ps @)
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where the Hamiltonian H, for i-particles in the absence of external forces is given by
1
H; = =— P} e 3
' 15@' 2mjp7+1§<zk<i¢]h ®)

In order to obtain a closed set of equations we shall use the approximation of Tchen
for f,5; given by

Jrzs = i) fo(2,3) +£1(2).f5(3, 1) +./1(3) fo(1. 2) = 2/1(1) /2(2) £1(3). (4)

Two restrictions imposed by the above approximation should be noted. By express-
ing f193 in terms of f; and f;, alone, the non-Markovian behaviour of the system is
lost. This is not a very serious error since most of the observed phenomena in liquids
require only pair correlation function and hence behave like a Markovian system.
However, in the limiting case of vanishing specific volume, the Markovian processes
are governed by Kirkwood’s superposition principle.

fz(l’ 2)f2(2’ 3)
A2

However, this is highly nonlinear in correlation functions and incorporates the
large time effects of the evolution of the independent triple correlation. By neglect-
ing this effect and assuming that the triple correlations decay faster, one obtains
Tchen’s approximation (4) which is quasilinear in double correlations. If one is
interested in long time effect approximation (5) has to be considered. But limiting
oneself to systems not far from thermodynamic equilibrium state, such as the
transport processes, approximation (4) is more convenient to handle. Further, in
order to have tractable kinetic equations, we shall use Bogoliubov’s modified
expression (Bogoliubov 1946) for the collisional contributions in (1) and (2).
Bogoliubov’s modification merely consists in the proper evaluation of the space
integration in the collisional contribution

0915 f 12
fJE-a—mdQ2dP2-

Since this is no more than the number of particles scattered per unit time from the
unit phase element through molecular interactions, integration over space is
equivalent to summing over all scattered particles over all impact parameters of
collision. Hence, it reduces to an operator having the same form as the Boltzmann
collision operator. Thus, we have the collisional terms

f123 = (5)

N-1 , , p
v ff[flz — 121912012615 de;, AP, (1)

N-2 , ) ,
and v Jf[f 123 —f123] 943043 A3 de;3 AP, (2

respectively in the notations of Chapman & Cowling (1939).
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To facilitate the derivation of the transport equations, we non-dimensionalize
the momentum with the help of local sound speed a, = [k7T'(q,)/m] so that the
non-dimensional momentum is given by

= (7751%:1’7)‘%" = %p, (6)
and the non-dimensional distribution functions by
Py = (ma,)3fy, (7)
Fyy = (mPaya)72 s, (8)
Fio5 = (mPayaya5)73 f o5 (9)

The equations satisfied by ¥, and F}, are then

oF, 0 0 0
ia, Pla—i— 3 [8_15 (na,) +a, Pléa—l (lnal)] F,

ot
N—-1)a ,
d = g—‘ff‘)—l ff(Flz— Fl5) 915b15dbypde,dPy,  (10)
an
3F12 0F, 1 0¢, 0F, 0 0 }
¥ +1<§1]<2[a@- P"E_M %, W_ :a{(lna )+aiPi-aE(lnai) 17’12]
_ (V—2)

72 5 o[ [(Pia= P Fabisdbudesdpy, ()
1<1,< 2

with the approximation (5) taking the form
Fiog = Fy Fyg+ Fy Fyy + Fy 1y — 2F, F, F, (12)

In order to obtain the transport equations, we introduce the kernal w(P) in momen-

tum space defined by 1
o(P) = —exp[—$P?] (13)
(2m)t
and expand F; and Fj, in terms of the generalized Hermite polynomials H™(P)
(Grad 1949): Fy(@y, Py, t) = 0(Py) 3 A™(qy,t) HO(P)), (14)
n

and
Fi5(qy, 9o, Py, Py, 1) = 0(Py) 0(Py) XX B™™(qy, qq, 1) H™(P;) H™(Py), (15)
m n

in the Cartesian tensor product notation. Using the orthogonality property of
Hermite polynomials one has

A® = )—(1(7) J‘H(")(PD Fdp,,
(16)

Bmn) — )%}Tm)f H(Py) HO(P,) F,dP, dP,,

where X® = r,17,! 75!, (r) being the set of indices (ry, 75, r3) in the directions 1, 2, 3 of
H®"gsuch that r, + r,+r3 = 7. It is evident from the relations (16) that the coefficients
A™ and B™™ are nothing but linear combinations of the moments of distribution
functions.
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Multiplying the equation (10) by H®(P,) and integrating over the momentum
space, we obtain the coefficient equation

Xma% (A7) + % (Inay) [rXOAP +26@X -2 4721

{X(7‘+l)a (A(r+1))+8(2)X(r—1)8 (A"' 1))

1z QIz

+ -0 (I [+ 1) XEHD 4G 4 260 X0 4¢—D

091
+(r—1) 322) X(r—l)A§r~l) + 23(1,2) 52 X("“3)A{’—3)]}
_ - l)al Z Z(l nlry [AP AP — o). (17)
Here the suffix 1 denotes the position and we have put
Botn = 4O A@ _ G (18)
<l by = [ [ [0y oy @) o e

— HO (Py) H™(P,)] H? (Py) §15b15db,de),dP,dPy. (19)
Similarly, multiplying (11) by H"(P,) H®(P,) and integrating an analogous equa-
tion for B™ 9 is obtained. Using the definition (18) and rearranging, the equation for
C 9 reduces to

X X(S)é% (Cn9) + gi (In ay) {rXOXOCEs) 4 2@ X -2 X002 9

+ gi (In a2) { s X® X, s) + 928@ X X(s—2)(r, 3—2)}

ta, { X+ X(s)a_a_ (CY+1.9) 4 5 X X(s)a

d1; q1c

+ % (Inay) [(r+ 1) X¢+D XO0T+L9 4 980 X0-D XOO0-1,9
1t

+(r—1) 3%2)X(T—I)X(s)0(r—l, ) 4 26‘%2) 5@ X (r—3) X (9)(r—3. s)]}
+ay {X(T)X(is+1) aqi (O(l_r, s+1)) + 3%2) X® X1 _a_ (oo s—l))

24 qa;

(C(r—l, s))

+ aqa (In ay) [(s+1) X® X{L§+l) O/(zr’ s+1) 4 25@ X @) X (s—D(i(r,s—1)
21

+(s=1) 3‘.2)X(T)X(S—1)0 s=1) 1 28 6@ X ) X (5-3) 0(r,3~2)]}

R 1 8¢12 3(2) Xe-DXEOr-18) 4~ 1 8¢12 3§2> X® X 6=D r, s—1)

ma, 6qh Qo 09y
_ (_—f/m & X(s)z 2 {yn|ry ks [AP O 4 A 069
(N—-2)a,

S 2 X(r)z Z(l n|synkF T AP Orm 4 4 ), (20)
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The most significant simplification of using Grad’s procedure of representing the
distribution function in terms of the Hermite polynomials, though complicated, is
the explicit equations (17) and (20). Secondly, all the collisional effects of the
assembly are presented through the integrals (/,n|r). Using the properties of col-
lision terms, we can write (19) in simpler terms, useful for evaluation:

(lnfr) = ” ©(Py) w(Py) [HO(P}) — HO(P))]
x HO(P,) H™(Py) F15b,5db,pde,, dPydPy,  (21)

=XXXS80 1 (21a)
where £, are constants and I,;;, is the integral
I = ﬂﬁfJ‘e‘(p — 192 cos’ Osin! 0 G*bdbd ¥, (21d)

where 0 is the angle through which the relative velocity turns during an encounter
with the impact parameter b. The appropriate coefficients f;;,, are given in the appen-
dix and these integrals are evaluated numerically for inverse power law and for
Lennard-Jones (6 :12) potential.

In most of the physical situations of fluids, the important macrovariables, density,
mean velocity, stresses and heat flux, adequately represent the phenomenon and
higher order moments have a negligible part to play. The skewness and the
deformation brought about in distribution functions by using these variables
adequately take account of the macroscopic situation in the neighbourhood of
thermodynamic equilibrium. So, we further truncate the infinite series (14) at n = 3
and (15) at m+n = 3. Similarly, the collisional terms in (17) and (20) are truncated
at [ +n = 3,50 that one obtains a consistent system of equations for the moments up
to order 3. Converting the moment equations (17) into equations for physical vari-
ables, one obtains the macroscopic equations:

G+t = 0. (22)

o)+ m-wp) = S ey b, (23)
LByt sy =)D s e (24)

L peR) s, = T s nq ) e, (25)
: %(nSm)Jr%b% (1Qy) = L s s B (26)
LS (1) = @—;V”“% " Bon, (27)
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11 10 -1
and ?; Ei (nSrst) +,'_?’ 3_9’1 (nQrsti) = ( ’IL )al E 2 <l 7?,]3> B n) (28)
where {I,n|3Y" =<l,n|3)+3ai{l, n] 1>,} (29
{,nl3Y" = (l,n|3)y+dil, n|l). )

The equations (22) to (28), together with the correlation equation (20), determine
completely the behaviour of the assembly in the non-equilibrium state. The left-
hand side of (20) represents the change produced in the correlation during free
streaming of the particles, while the right-hand side represents the production of
correlations due to molecular interactions. For plasmas, consisting mainly of
charged particles, the intense molecular interactions are of considerably less
importance than the change produced due to streaming, while for the neutral
gases, especially for studying the contribution to transport properties, the mole-
cular interactions are more significant than streaming.

3. SOME SIMPLE APPLICATIONS

The important molecular transport properties are the viscosity, heat conducti-
vity, diffusivity and electrical conductivity. By considering a simple two-dimen-
sional Couette flow and one-dimensional heat flux flow one can obtain, following
Grad, simple expression for viscosity and heat conductivity for a simple gas. How-
ever, diffusivity and electrical conductivity are essentially properties of gas mix-
tures and hence will not be considered here.

For asteady, two-dimensional flow in the absence of external forces, concentrating
on the dependence of the stress term P,, on the rate of strain term

1 (0uy + uy
2\ow, " ox,)”
from (25) in the absence of correlation term we obtain

Qan 14

Py = — 0 42, 0[2)+ (0, 2 2)- 1[ (ZZ@%%)]

This is identical to the expression obtained by Grad, Chapman, and Enskog.
Consequently, the coefficient of viscosity can be taken as

7= 200 12,002 +0, 21251 (30)

Similarly, for the one-dimensional heat flux flow, in the absence of correlations, the
relation between the heat flux and the temperature gradient reduces to result of

Grad:
10 an V]/‘ n " " " aT
8, = S e [<3,0]3) ( 901)’
313> (31)

so that the heat conduction coefficient is given by

15anVk
2(N

"

K= gy =) [ 013+ €0,33)" £¢3,0)
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In the presence of correlations, eliminating the correlations produced by mole-
cular interactions from the equations for physical variables, after rearranging and
concentrating on the relation between P, and e;,, we obtain as before,

Py = —Tjeqs,
where

7o a[1s LD Q0DR L
2,0[25+0,2[2) a?

(KL 12y +<L 1232 n ((2,0]2)4—(0,2]2»2%2]—1 o

(2,0[2)+0,2]2) a*" (2,0]2)+0,2]2) ab

while similar expression for heat flux vector yields

2)

S]_:"‘Ka—xl,

_ (nfa?) ((1,0[3) +<0, 1[3))2+ (nfat) (€0, 1]1)+1, 0] 1)?
(3,0[3)"+ (0, 3[3)"+<3, 03" + (0, 3[3)"
L (2/at) (1, 2[3) 42, 1[3)) + (n¥]a®) (€1, 2] 1) + €2, 1] 1>>T 33)
(3,0]3)" + (0, 3[3)" +(3,0]3)" + (0, 3]3)" '

Once again, the Cartesian tensor product notation has been used to express these.

with K=« 1

4. DISCUSSION OF THE RESULTS

Two important conclusions can be derived immediately from the form of the
expressions (32) and (33). They are similar in structure to Enskog expressions for
rigid spheres which are mainly of the form

g = y[1—constant x n]~1, (34)

but in our case the constants being replaced by functions of temperature as well.
The terms inside the bracket can thus be interpreted as depicting the shielding
effect of the increasing density from the unshielded binary collisions. Secondly,
at very high temperatures these corrections decrease. This might be expected since,
keeping density fixed and increasing the temperature has the effect of increasing
the mean molecular motion and decreasing the shielding effect.

Numerical calculations have been carried out for the case of intermolecular
potentials of the inverse distance from and for Lennard—Jones potential. Keeping
fixed temperature and varying the density, the results are compared against the
Enskog expression for viscosity for rigid spheres, which is the limiting case of power
law of force as the exponent tends to co. From figure 1 it is evident that as the ex-
ponent of the power law increases, gradually the curves approach Enskog curve.
At small increase in density, all power law exponents give almost the same result;
but with increasing density, the power law curves vary much less rapidly than the
Enskog curve. The behaviour of the heat conductivity (figure 2) is almost the same,
even though numerically it varies a little more than the viscosity terms, thereby
indicating an increase of Prandtl number. By properly scaling and superposing

17 Vol. 309. A.
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the experimental results (Waldmann 1958) on the same plot, we find better agree-
ment with data than for the Enskog curve especially at higher densities.

In figure 3, with density kept constant, the typical variation of these correction
factors for the power law exponent s = 9 with temperature is given. From the ex-
pressions (32) and (33), it is clear that as the temperature tends to zero, these cor-
rection factors become very large and show a behaviour, in general, of the form

a a?+b
-7 + ‘Tiz )
where a and b are positive constants Consequently, both 7/7 and ¥/« have a mini-
mum below unity and approach the classical value at high temperatures. This
behaviour is similar for all the force laws.

1
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APPENDIX. TABLE OF THE COEFFICIENTS f;;, OF I, IN EQUATION (21a)
1(2,0,5) I(2,0,7) 1(2,0,9) I(4,0,5) 1(4,0,7) I(4,0,9) I(6,0,5) I(6,0,7) I(6,0,9)

<0, 1{1) 0 — — — — — — —
a, of1) S - - - - - -
(0, 1111) —% i — — — — — — —
G
<0, 1221) —s THT — — — — — — —
(122 0|1) T 55 — — — — — — —
(1, 11]1) ¥ — < — — — — — — _
11, 1{1) -3 —o — — — — — — -
(1, 22[1) i — 135 — — — — — - —
@iy w4 — ==
S
(12, 2[1) i 155 — — — — — — -
(0, 11]11) 1 . — N — B _
(11, 0]11) —3 — 3% — — <5 — — — —
(0, 22|11} — s _ o . - _
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APPENDIX (cont.)
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