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SUMMARY

In this paper we study the progress of a bore, produced by the sudden break of a
,. dam, when there is a flow of water ahead of the dam and the bed has a mild slope

and offers resistance, employing Whitham's rule. We first derive certain interesting
results from the general discussion of the differential equation, expressing the varia-
tion of the bore strength with the undisturbed Froude number, M 0, ratio of bed slope

*• to bed resistance, grtjR = a2 and the bore strength M(x) = -\/{h(x)lho(x)} where
h(x) and ho(x) are the bore height and the undisturbed height of the water imme-
diately ahead of the bore, the horizontal distance x being measured from the dam.
The parameters M„ and a2 combine to influence the bore strength in a very special
way. We also examine the asymptotic cases when the bore strength M -*• oo and

,. M -*• 1. The intermediate cases are investigated numerically to bring out the effects
of the parameters, a, a2, Mo and the dam height on the strength of the bore, its
velocity and the fluid velocity behind it.

* 1. Introduction

* IN this paper we consider the production and propagation of a bore when
_v a dam suddenly breaks. The problem is essentially the same as was

considered by Craya (1) and Re' (2) and which has also been reported by
' Stoker (3). I t may be stated as follows: There is water of certain height
Y behind the dam, while ahead of it there is an established steady flow of

,. water. The bed ahead of the dam has a mild slope and also offers resistance
to flow which varies empirically as the square of the flow velocity. No

-+ steady-state solution of the existing flow ahead of the dam was, however,
r considered in (1) or (2). As pointed out by Stoker (3), the numerical

solution given by Re' through step-by-step integration is too approximate.
* Stoker (3) has also discussed the solution of this problem in the idealized

k' form when there is no resistance of the bed and bed-slope is zero, so that
the solution corresponds to the well-known 'simple wave' solution in
gas-dynamics. Of course the entire work, referred to above, has been

r done in the framework of shallow water theory whose equations can be
Y transformed in such a way that they become one-dimensional gas-

dynamics equations (the well known gas-dynamic analogy) so that all the
techniques employed in gas-dynamics can be readily made use of. The

V [Quart. Journ. Mccfa. uul Appllad M.rti.. Vol. XXII, Pt, 4. 1969]
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502 P. L. SACHDEV AND P. L. BHATNAGAR

above stated problem with the difference that there is not water ahead of
the dam has been considered by Dressier (4) and Whitham (5). Indeed,
the problem then becomes entirely analogous to the expansion of a gas into
vacuum in gas-dynamics as discussed by Greenspan and Butler (6).
Incidentally the expansion for the solution used in (4) and (6) are in
essence exactly the same, though there is no mention of this fact in (6).

Keller et ai. (7) have discussed the climb of a bore above a sloping beach
using an approximate method of Whitham (8). We have also made use
of Whitham's technique (8) in the present paper. Its extreme simplicity
and a good accuracy have led to its use in a large number of investigations,
particularly in astrophysics (see, for example, (9), (10)). The rule consists
in substituting the shock conditions on the forward characteristic if the
shock or bore diverges and on the negative characteristic if they converge.
The result is a first-order non-linear differential equation in one of the
shock (bore) strength parameters and distance from a reference point and
hence the entire course and strength of the shock (bore) can be found,
using the initial condition from the physical situation. The approximation
in this theory arises from the neglect of disturbances that come from
behind the shock (bore), but generally they have been found to be
negligible. For example, Whitham's rule and the exact numerical
methods (7), (8) yield nearly the same results in the case of a bore climbing
up a sloping beach referred to above.

In the present paper, we have first studied the established steady now
when the resistance coefficient is taken according to Che'zy's formula
assuming the bed-slope to be constant as has been done by Dressier (11).
This equation expresses the relation between Froude number M^ =
tto/V'(ff^o) a n ( i distance from the original site of the dam. Then the
'shallow water' equations with the Ch6zy resistance formula and the
bed-slope are combined with the bore conditions according to Whitham's
rule to obtain a differential equation in bore strength M = \/(hlh0) and
Mo. This equation and the equation forMo are simultaneously solved. The
initial bore strength is obtained from the simple-wave solution of Stoker
(3) without bed-resistance and bed-slope. Then we consider some general
results from the equations concerning the effects of bed-slope, ratio of
bed-slope to bed-resistance and the undisturbed Froude number on the
bore-strength. We have also studied analytically the asymptotic forms
of this equation when M —»- oo and M —*• 1. We have numerically inte-
grated these equations to study the above effects. The results reveal a
very intimate relation between the ratio of bed-slope and resistance
coefficient and the undisturbed Froude number in influencing the propa-
gation of the bore. We finally remark that our mathematical analysis is
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PROPAGATION OF A BORE 503

similar to that of Bird (10) in his investigation on the heating of the outer
solar atmosphere.

2. Equations of motion and boundary conditions
We denote the depth of water by h(x, t) = ho(x)+T)(x, t), ho(x) being the

depth of water in the steady flow ahead of the dam and rj(x, t) being the
height of water in the disturbed region behind the bore above the ho(x)
level, where x and t are the distance from the dam site, and time, respec-
tively. The equation of shallow water theory are:

] . = O, (2.1)

ut+uux+ma+R^\ = 0, (2.2)

where c is the 'sound speed'
c = igh)* (2.3)

and R{ujcY is the Che'zy resistance term, R having the dimensions of
acceleration. In terms of c, equations (2.1) and (2.2) become

2ct+2uca+cux = 0, (2.4)

-gd^R(-i = 0. (2.5)
dx \c/

Along the positive characteristic

dx/dt = u+c, (2.6)

with the corresponding compatibility condition

= 0. (2.7)g+
u-\-c \c/u-\-c

In terms of the bore strength
-W = c/c0 = V(*/Ao), (2-8)

the bore conditions are given by

f MjV - c[*^*±»f Mj (210,

where u and U are the particle velocity just behind the bore and bore
velocity respectively and M^ is the Froude number of the undisturbed flow

Mo = «0/c0. (2.11)
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504 P. L. SACKDEV AND P. L. BHATNAGAR

The steady flow ahead of the bore is given by

M o = K> <2-12)

dho = a-(Rlg)Ml

dx 1-Ml '

2*LMp*Ml
dx 2a2 K' l-Ml

where a is the constant bed slope, a2 = gra/i2 and K' = Kig~i has the
dimension of a length and depends on the initial conditions only. Though
equation (2.14) can be integrated in a closed form, it is more convenient
in the present problem to use it in its differential form.

Following Whitham's rule (8), we substitute the bore conditions (2.9)
and (2.10) along the positive characteristic (2.7), making use of the
undisturbed steady flow equation (2.14) to obtain

dM _/1(M,M1))+UM,M0,a
i)

dM D

where
MM,M,,) =

MM, Mo, a
2) =

and
T. 3

'+l)2+Jlf2(Jf2-l)].

Equation (2.15) reveals some interesting results. The denominator D
is always positive. The numerator consists of two terms: fx(M,M0) gives
the effect of bore strength and undisturbed Froude number Mo on the
change of bore strength, while ft{M, Mo, a

2) gives the interaction of bore
strength, undisturbed Froude number and the ratio of bed-slope to resist-
ance coefficient, a2 = ga./R. I t is interesting to note that this equation
contains these two effects only in the ratio ga-jR and not a and R/g
separately.
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PROPAGATION OF A BORE 505

We note the following:

(i) f1(M,M0)>0 if

JU. < i
Ml 32 \ \ 2 ) jj 4M \ 2

(2.17)

which follows easily after some algebra. We have calculated bounds of Mo

as given by this inequality when M = 1-5, 2, 3, 5:

Mo < 1.75, 3.05, 5.98, 13.44, respectively.

If, for a given value of M, MQ exceeds the value given in the table, the bore
strength decreases withMg. However, since the undisturbed flow is usually
sub-critical or mildly supercritical, the bore strength will be generally
amplified, due to this term.

(ii) fz(M, Mo, a2) —*• oo if MQ —*• a% and a =£ 1

(we shall presently consider the case a = 1). This is the only singularity
of the differential equation (2.15). The differential equation (2.15) shows
that the bore strength increases beyond limit, when the undisturbed
FTOude number Mo -*• a3.

The following cases need special mention and discussion:
(a) When a* < 1, the resistance effect is more important than the

gravitational acceleration due to bed slope. It can be easily seen from the
expression for ft(M, Mo, a2) that

f%(M, Mo,a?)>O if 3fo < a1 or J£ > 1,]
(2.18)

fi(M,M0,a
2)<0 if at<M0<l. J

Thus, the bore strength increases with MQ if the undisturbed flow is super-
critical or the undisturbed Froude number is less than a2, while it decreases
with increasing MQ if the undisturbed Froude number lies between a1 and
1, implying that it is less than one so that the flow is subcritical.

(b) When a1 > 1, the resistance effect is less important than the
gravitational effect and

f%(M, M0,a
i)>0 if Mo < 1 or M. > a*,)

(2.19)
fi(M,M0,a

i)<0 if KMo<ai, J

showing that the bore strength increases with Mo if the undisturbed flow is
sub-critical or if the flow is supercritical such that the undisturbed Froude
number is greater than o2 > 1 and the bore strength diminishes with
increasing M^ if the undisturbed Froude number lies between 1 and o2.
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506 P. L. SACBDEV AND P. L. BHATNAGAR

As pointed out earlier, the strengthening or attenuation of the bore
strongly depends on the relative magnitude of a2 and Mo as is very neatly
brought out by the above discussion.

Before considering some numerical results, we discuss the two asymp-
totic cases, that is, when the bore is very strong and when the bore is very
weak. Whitham's rule is known to give extremely good results in these
asymptotic cases (8).

3. Asymptotic cases

(A) When the height of the dam, hu is very large and, correspondingly,
the initial bore height A > Ao so that M —*• <x>, we obtain from equation
(2.15), after some simplification,

so that

1 dh0 _ _ 4
hodM~ ~M

h0

or } (3.1)

and we recover the formula obtained earlier by Keller et al. (7). The
above result shows that when the strength of the bore is very large, the bed
resistance has no effect on its strength. Also, as was concluded in (7),
the bore height tends to zero as Ao —»• 0, while the bore strength M —•- oo.
It is interesting to compare these remarks with those made by Greenspan
and Butler (6) while discussing the expansion of gas into vacuum which is
exactly analogous to the present problem when h0 —»• 0, i.e. the bed is dry
and the dam breaks instantaneously. In fact, in this case, there is no
genuine shock or bore. The bore speed becomes infinitely large, as can be
easily seen from the bore conditions, and so does the particle velocity
behind the bore, so that the water rushes with a great speed but the
'bore regime' is meaningless as there is no water ahead of this 'virtual bore'.
Indeed, the head of the disturbance is a characteristic and not a bore.
The solution of the problem is a centred simple wave (and a somewhat
distorted form of it, if the resistance and slope are significant) (4).

(B) We also discuss the case when M—1 is small so that the bore is
weak, though this case is not relevant to the dam-break problem. If we
substitute

M=l+z, (3.2)
where z is small, in equation (2.15), then to first order in z, we obtain

dz_ _ 1 at(5+4Jd1)+2M%
0)+M0(2]Lft

o-M
3
o-10Ml-6Mo+4:)::

dM^ 6 ifo(l+.il£0)
2(a2—M\)

(3-3)
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PROPAGATION OF A BORE 507

To study the behaviour of this equation in the neighbourhood of the
singularity Mo = a, we put ^

(3.4)

where f is small so that equation (3.3) becomes, to first order in f,

dz / 2a 3 -a 2 -5a+41 , 6o4+o3-14a2-37o-4\ a - 1 1 (a-1)2

—+ — -+- V-~
/2a3-a1!

12a f ' 24a2(l+a) / 12 f 24a(l+a)
(3.5)

This equation can be integrated to give

= constant-
24a(l+o)n

a-14a4-a'-9a2-14a-4 f
6 24a*(l+a)n J

where

m = (2a3-a2-5a+4)/12a, n = (6a4+a3-14a2-37a-4)/24a2(l+a).

We find that 6a4+a3 — 14a2 — 37a — 4 = 0 has only one positive root,
namely a = 2-211, so that z —*• oo when a —*• 2-211 and the bore strength
increases beyond limit and, in fact, the approximation which assumes z
to be small breaks down. I t is interesting to note that this critical value
of a (whose magnitude was however found to be exactly 2), appears in
different contexts, for example in the formation of roll-waves (11) which
cannot be produced unless a* > 4. This condition is necessary for the
instability of the steady flow and the formation of roll waves. This also
arises in the discussion of kinematic waves (12), which cannot describe the
phenomenon of flood waves when a2 > 4.

4. Numerical results and discussion '
We have studied numerically the cases listed in Table 1.
Our choice of parameters was motivated by two considerations, namely,

to study the effect of variation of a, a2, Mo and ht and to bring out numer-
ically the significance of our conclusions that we arrived at in section 2.

Case (1) is the same as considered by Re' (2), so that h0 and Ax are in
metres and u0 = 1-6 m/sec. To obtain the initial bore height, we consider

TABLE 1

Case a. a8 MQ h0 (metres) Tij (metres)

1 0-9 1-5 0-3808 1-8 10-8
2 9 1-5 0-3808 1-8 10-8
3 0-9 10 0-3808 1-8 10-8
4 0-9 0-25 0-3808 1-8 10-8
5 0-9 1-5 1-2494 1-8 10-8
6 0-9 1-5 0-3808 1-8 300
7 0-9 1-5 2000 1-8 10-8
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508 P. L. SACHDEV AND P. L. BHATNAGAR

the simple wave solution of the problem (3):

uo+u+[(uo-u)t+2g(ho+h))i =
h-K

(4.1)

u = 2y(ghl)-y/(gh)}+uoh0lh1. (4.2)

These equations are easily deduced from the simple wave solution by
eliminating the sound speed c behind the bore and the bore velocity U
so that knowing the data hlt h0, u0, we can solve equations (4.1) and (4.2)
simultaneously for h and u. Thus, the initial height of the bore becomes
known.

Before discussing the numerical results, we remark that we have carried
out our integration from x = 0 to x = 15 for case (1) and to x = 10 for
other cases except when the singularity appeared or the solution became a
constant. From (2.14) we note that3f0 is, in fact, a function of x<x and not
of a; and a separately so that our actual length scale is XCL. A given value
of xa. can be obtained by a suitable combination of values of x and a in
infinitely many ways. While interpreting the solution we shall keep this
fact in mind. Moreover, since K' has been measured in metres, xa. has also
been expressed in the same unit. In Figures 1 to 3, we have, for conven-
ience, taken x in metres, while a has been taken to be either 0-9 or 9,
representing two extreme cases.

We give in Table 2 below the sample results for one of the cases (1)
which corresponds to the problem of Re' (2).

TABLE 2

Case (1): a = 0-9, a* = 1-25, Mo = 0-3808, h0 = l-8m, = 10-8m

X

0 0
1 0
2-0
3-0
4-0
5-0
6 0
7-0
8-0
9 0

100
1 1 0
1 2 0
1 3 0
14-0
154)

MQ

0-3808
0-2043
01327
00961
00725
0-0576
0-0472
00396
00338
00293
00257
00228
00205
00184
00167
00153

M

1-618
1-408
1-299
1-233
1190
1-158
1136
1118
1104
1093
1084
1076
1069
1064
1059
1055

&o

1-8
2-726
3-635
4-538
5-440
6-342
7-243
8143
9044
9-944

10-84
11-74
12-64
13-54
14-45
15-35

h

4-713
5-408
6137
6-904
7-698
8-512
9-339

1018
11 02
11-88
12-73
13-60
14-46
15-33
16-20
1707

/

1-618
1-490
1-390
1-314
1-254
1-206
1165
1130
1100
1074
1050
1029
1009
0-992
0-975
0-961

U
(mis)

10-75
9-951
9-788
9-874

1008
10-34
10-64
10-95
11-27
11-60
11-92
12-24
12-50
12-87
1318
13-49

u
{mis)

7-253
5-467
4-460
3-800
3-330
2-975
2-697
2-472
2-286
2129
1-995
1-879
1-777
1-687
1-607
1-534
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PROPAGATION OF A BORE 509

The variation of bore strength / (= (h — A0)/̂ oo). D o r e velocity U
and particle velocity u, behind the bore are shown in Figures 1 to 3.

Cases 4, 5, and 7 merit separate discussion. Case (4) differs from case (1)
in that a* = 0-25 instead of 1-5, that is, bed resistance is more important.
The bore strength increases continuously up to x ~ 0-97, where MQ has
diminished to 0-25 approximately from its initial value 0-3808 and the
singularity in equation (2.15), Mo = a1, is approached. The strength of the
bore increases beyond limit at this point and further progress of the bore
cannot be followed.

In case (5), the initial undisturbed Froude number, Mw, is taken to be
1-249 instead of 0-3808 as in case (1), to study the effect of supercritical
undisturbed flow on the bore propagation. The bore strength very
gradually increases from its initial value 1-1098 to 1-1348 at x c± 2-5
where M^ —>- a1 (so that dMJdx = 0) and, in fact, the variable solution of
the equation of undisturbed flow (2.14) merges with its constant solution
Mo = a. Therefore, after x ~ 2-5, M^ remains constant and hence the bore
strength (equation (2.15)) and bore velocity remain constant throughout
the later course of the bore.

In case (7), Moo = 2-00 as against Moo = 0-3808 for case (1), a bore of
small strength, 0-701 (70 = 1-618 for case (1)), is produced. We find that

FIG. 1. Variation of bore strength with distance for different parameters
(Table 1).
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FIG. 2. Variation of bore velocity with distance for different parameters
(Table 1).

30

20

6 8
xfmetrm)

10 12 14 16

FIG. 3. Variation of particle velocity behind the bore with distance for
different parameters (Table 1).
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PROPAGATION OF A BORE 511

the bore strength rapidly decreases so that the bore is completely dissipated
near x ~ 0-6.

Now we turn to other cases to study the effect of variation of other
parameters, namely, dam height hlt bed slope a, ratio of bed slope to bed
resistance coefficient a1. We find that the results in case (3) with a* = 10
are not very different from those of case (1) with a2 = 1-5, showing that if
the slope of the bed and other parameters are kept constant while a2

is changed to a large value (which means that resistance coefficient is much
smaller than the bed slope), the bore propagation is hardly affected. In
case (2), the bed slope, a = 9, is 10 times that in case (1). One could, of
course, also look at this case to be case (1) if a is taken to be 0-9 and the
distance 10 times the corresponding distance of case (1). However, here
we want to study the effect of the change of slope on the bore propagation.
When the slope of the bed increases, the bore strength / decreases much
more rapidly so that when x = 10, / = 0-612 for a = 9 and I = 1-05 for
<x = 0-9, both showing, however, that the rate of decay of the bore be-
comes very small in the later stages of propagation. The bore velocity U
first decreases up to x c± 2-2 and then continuously increases for case (1)
when slope is smaller while for case (2), this reversal takes place much
earlier (x ~ 0-75). This trend is in conformity with that obtained by
Keller etal. (7), if we allow for the change of the sign of the slope. Particle
velocity behind the bore continuously decreases as the bore propagates,
but the decrease is very large when the slope is large, for example at
x = 10-00, u = 1-995 for a = 0-9 and u = 0-390 for a = 9 compared to the
initial value u = 7-25, at x = 0. This decrease is particularly significant
in the early stages of propagation of the bore as is readily noted from
Figure 3.

Finally, we discuss the effect of the change of the dam-height to 30 m,
case (6), which gives the initial bore height as 8-924 m compared to 4-71 m
for case (1). In this case the bore strength decreases from its initial value
4-203 to 2-711 at x = 10, while the bore velocity decreases (unlike case
(1)) right up to x = 7-0 where it begins to increase, though very gradually.
The particle velocity behind the bore continuously decreases.

In all these cases, the bore settles down to nearly constant strength at
x c± 10 and its decay afterwards becomes very slow. One would have to
carry out the integration over a very large interval to locate the point
where the bore finally decays completely. This was not possible due to
lack of requisite computational facilities.

Stoker (3) has given the solution of Re' (2) to a distance of about 1-8 km,
but perhaps it is difficult to make any useful comparison, considering the
very approximate nature of Re's solution.
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