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The BGK collision model for a one-component assembly of neutral particles has
been extended to two-component assemblies by Gross and Kroox. They have eval-
uated only six phenomenological constants out of the fourteen introduced in the
definition of the model. In this note, the relaxation problem has been completely
solved and all but two constants have been evaluated. These remaining two con-
stants must be determined by invoking other physical considerations like JEANS’
relation for collisional momentum transfer and NEwToN’s law of heat transfer be-
tween the two components. The resulting equations of transfer and the expressions
for collisional momentum and energy transfer between the two components have
been evaluated explicitly.

1. Introduction

BrATNAGAR, GrOss and Krook [1] introduced a collision-model
— called BGK model — which was generalized later on by Gross and
Krook [4] for a two-component assembly. In the latter work, the
authors have proceeded up to a certain stage in evaluating the pheno-
menalogical constants introduced in the theory by the consideration of
the relaxation problem. It appears that their arguments require deeper
analysis and justification. In the present paper, we have worked out the
relaxation problem completely and shown that it is possible to determine
all the constants introduced from phenomenalogical considerations
except two. If we further accept JEANS’ [5] relation for the collisional
momentum transfer and NEwToN’s law of heat transfer between the
components, we can fix also the other two constants. We have evaluated
all these constants and deduced the corresponding transport equations.
The form of the contributions of the collisions to the equations of transfer
seem to justify the proposed model. In a subsequent paper we utilize a
similar model for studying the small amplitude oscillations of an assembly
consisting of positive ions, electrons and neutral particles.

2. Collision Model
Let us denote the two components of the assembly by the suffixes
1 and 2. The distribution functions f, (&, 7, £) and f,( 52, 7, t) for these
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components are determined by the Boltzmann equations
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in terms of the standard notation of CxapmMAN and CowrING [2].
Interpreting the first integral in (1) as the number of particles of the

@)

—> —-
first type removed from a given velocity range (&;, d§;) due to collisions
with the second type of particles, Gross and Krook [4], following the
suggestion of [1], approximated it by

NZ (-; t) .
— =, I (3)
Similarly the third term, being the number of particles of the first type
brought into that range by collisions with particles of the second type,
is approximated by
Ny (7, t) Ny (7, t e
D000 0,6, 7,0). @
In the absence of any knowledge of the distribution of the first type of
particles after collision we assume a local Maxwellian distribution

e 3/2 . >
Po1 (61,7, 1) = (2—7%%:) exp {* T];mﬂ: (51_u21)2}~ (5)

Similar assumptions are made for @, (£,,7,t), Dy (&5, 7, ) and Dy, (£,,7, £),
in the other collision terms in (1) and (2). According to the present
collision model, the kinetic equations then reduce to

31‘1 af1 1 P 9 N, N
‘1‘512 my 3g1;:_(01 )f1 611 11+ At Doy, (6)
and
afg ofs , Foi 3, (N, | N, N, N N3
+ &24 a; My ag:':—(a—z‘['a) fat ; L Dyt ;Z Dy, (7)
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where
leff1d§1> szff2d§2> (8)
N N 1 > >
Uy = N f1§1d§1: uzzzﬁ"ffzfzdfz > 9)
3T N > 3]{:T2
—ml—n=71ff1(§1—uu)2d$1 > 2 = /fz uzz d§2 (10)

It is usually stated than these equatlons are linear partial differential
equations. But this is so only apparently. When we substitute for the
particle density N; and N, and for the selfconsistent electromagnetic
field, the nonlinearity and the integral terms become explicit. The
assumed mean velocities and the temperatures o, %y, Tya Ty of the
scattered particles should satisfy the conservation laws of mass, momen-
tum and energy in addition to yielding the correct initial and asymptotic
behaviour of the assembly.

In order to study the implications of the conservation laws, we deduce
the following transfer equations in the usual manner:

0 >
Nl + div (N;2%;4) =0, (11)
aN N
1V (Npthys) =0, (12)
2 o NE NN, .
7 Waily) + AV (Ny Ty Tigy) — 215 = T2 ), (13)
NN s NE N1
1 Watiag) + AWV (Nolhy o) — =20 = T (fy— ), (14)
? (3kN,T,, > >
ot (T) + div (NlQl)—f{grad(El— )%} §1f1d§1
(15)
_ N2N1 3k T > > 2
—6—21[71( 01— T11) + (%o —%1q)? |,
9 (3kN,T, : > > N
7 (2520 1 aiv (V.0 — [ {grad (— e} - E1add,
. N]Ng 3k T T N N (16)
“Tl;—[%;( 127 22)+(u12——u22)],
where

— 1 > o > >
Ql_ ffl un §1d§1> szﬁ;ffz(fz_uu)zfzdfz , (A7)
The self-consistent electric field is given by
&ivE — 47(e, N+ e, N,) . (18)

The equations (11) and (12) show that the mass of each component is
separately conserved during collision, as it should be, since we are
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considering only the elastic processes. The application of this law does
not provide any relation between Uy 9 521, T,, and T,. The right hand
sides of equations (13) and (14) represent the change in momentum per
unit mass of the first component due to collisions with the second com-
ponent and the change in the momentum per unit mass of the second
component due to its collision with the first component. The total
momentum change of the assembly due to collision must vanish. This
yields the relation

My (Ugy— Ty1) + My (U 5— Uigg) = 0 . (19)
We now multiply the right hand sides of (6) and (7) by 45 and 2%

respectively and add. Equating the resulting expression to zero we get
the condition for the conservation of energy:

B3k(Ty1—T11) + 3k (Tyg— Tyo) + my (31— U3 1) + my (Ud—Z2)=0. (20)

The equations (19) and (20) provide 4 relations among the 8 unknowns
Uy g» gy Th s and T',,. Hence we have to supply 4 more equations between
them from other physical considerations.

From (5) it is clear that %,, and 7T',, are the mean velocities and
temperatures near which the first type of scattered particles are dis-
tributed after collisions with particles of type two. We may, therefore,
assume that %,, is some function of %, , and %, , while 7', is some function
of T1y, Ty, Uy and Uy,. Following IT, we assume the following pheno-
menological relations:

Uy = QpyUyy+ Byailys (21)
Toy=bay Thy+ by Tan+ KilZp+ L—ﬁu'?‘zz‘i‘ M3, . (22)
and similarly
Upo= Gy ¥yy+ Byl » (23)
Typ=byy Tyy+ by Top+ Dﬁ%z““E&n"ﬁn‘*‘Fa%l: (24)

containing altogether fourteen unknown constants. The assumption
of linearity is apparently very restrictive, but these terms may be con-
sidered as the first two terms of the expansion of %y, Uy, T'5; and T ,.
Additional support in favour of these assumptions is obtained when we
calculate the rate of transfer of momentum and energy from one com-
ponent to another after evaluating these constants.

3. Relaxation Problem

To determine the unknown constants, we consider the relaxation (non-
equilibrium) problem. We shall neglect the spatial derivatives and ex-
ternal forces. Thus

N,

dN,
a =0 -

dt

0, (25)
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so that
N,= constant and N,= constant.

Finally the whole assembly is bound to be neutral and

o N+ e Ny=0,

so that for all times ¢,
—

E=0.
The rest of the transfer equations can be reduced to
o, N R
atu = TZ (Bigy— Uyy) = — Hartiy + fhatls
Qe _ Ny » > >
5t = o (Uia—Ugs) = MUy flholsy
oT M3\ >
5r- = VTt v Tast 2y [(K+ ?}ﬁ) u3s +
2my p3\ > myus\ >
(B B e (0 5 ) )
T Mo 3\ >
6:2 =—vp T+ 1T+ 4 [(D+ ﬁ%) s+
> 2m. ‘uz N N Mo a2\ >
(B ) e+ (7 + ) )
where
g N, N
0=01=0y, 4= g ’ 22—7’
pra= A (1 —ays), por= A3 (1 — ayy) ,
vip=A(1—b,), va1= A2 (1 —by1) ,

= Ay, o= Ao@ss, V1= Abiy, vy= Ayby, .

We solve these equations under the following conditions:
Initial conditions. For ¢ = 0,

N — N -
U= A, Uyy=B, T\, =T, Ty=T,.
Final eonditions. For ¢+ oo,
7{’/117 a22_>aoos Ty, Ty T,
Qyy Uy 3Ty, 8Ty

T TR TR TR
The equations determining #,, and %, , are
02 0 o
[W + (o1 + o) 37 + (Mz#zl_ﬂlﬂz)]z: =0.

These have solutions
@711 } 1

_ — — Ua —»_ — _art 2)t]
&22 My s I:‘ulA T ‘u2B+ (—ﬂ1) (A B) et ’

27)

(28)

(29)

(30)

(35)

(37)

(38)
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which tend to non-zero finite values as ¢ oo, satisfy the prescribed

initial and final conditions and have the relaxation time e
1 2

provided
Pro=py and  fioy = s - (39)
Substituting these in to equation (19) for the conservation of momentum

and equating the independent term and the coefficient of e~ (w1 +us)t
separately to zero, we have

My Ay _ My Ay

4
t U2 (40)

Thus out of the four constants u;, s, s, Her, Only one remains to be
fixed. From (39) and (40) we obtain
1 Agg

y=1—ay,, Gyp=1—ay, my . my (41)

If in addition, we invoke the Jeans relation that

M1 m Y o My

0,112,1—1: my+ my ’ @22~ Ay o my+ my

(42)
we have
Mgy my

Aio=——" =@ Ao1— — = Uqq -
12 mq‘l‘mz 22 21 m1“|‘m2 11

(43)

‘We can now write down the rate of transfer of momentum to “1”’ due to
collision with “2”’,

m NN, N N,N, mm,

P (Ugy— Up;) = p — (Ugp— "711) ) (44)

My My

while the rate of momentum transfer to “2’’ due to collision with 1’ is

N,N, mm,

o Tt omy (G Usza) - (45)

These appear to be reasonable expressions, supporting our assumptions
about %, , and 7,,. Similar assumptions have been made by CowLING [3]
and SPITZER [6] in connection with other considerations. Also

N My Uy - Mo U >

11 2 Y22
Py .S WLt . R S 46
12 my -+ my 21 (46)

Therefore, the particles after collision are distributed about the mean
flow velocity.
We now consider the temperature equations
92 ] Ty,
27 T (2t Va1) FTIRE (V12¥21— ¥1%2) Tar %o’
Zq + x, e— (mtp2)t + Zo e_2(ul+'ug)t’
Yo Y Y
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where
-> >
wmA + #2B>2
pat e ’
> >
A+ l‘zB)z
Pat e ’

To= [Mvo(D + E + F) + v,A,(K + L +M)](
Yo= [Aen (K + L+ M) + vy (D + E +F)](

= [Avo{—2m, D + (po— ;) E + 2, F} +
+}“2"’12{_2H1K+ (ﬂz—M)L+2ﬂ2M}+ N NN
' (w4 + pa B) - (4 — B)

+}'2(:u’1+ /"2) {2//51K— (ﬂz_ﬂl)L_zluzM}] TPESAE ’

h= [12”1{—2;“1]{ + (pa— ) L + 2/‘2M} +
+ 217’2{_2/“11) + (Uo— ) £ + 2!‘2F} +

: ( 1Z+ uzﬁ)(Z—ﬁ)
+ A+ ) 2 D — (uy— ) B —2p, FY] -2

Ly= [21"’2 {;ulD taps B+ 3 F + 3]2‘,‘;; (g + 1“2)2} +

Yy
+szlz{u1K tapa L+ us M+ 3;53 (ﬂ1+ﬂz)}+

+ Ao (pi+ o) {~ 203K + 2y L — 23 M —
_ 2m ] (d— B
gEay (Pt | G e

LoV
Yo= [lzvl{u%K—/szvLu%MJr 3,0’;2 (#1+u2)2}+

+ /11”21{/‘11) ﬂl/‘zE+/‘ F+ 3;20';&21 (/‘1‘]":“2)}‘}“

(48)
+ A (pa + o) {~2u?D + 20 ps B — 23 F +

My Ui (Z'— g)2
*gpay (at ”2)2}] PESALE

The solutions of (31) and (32) satisfying the initial and final conditions
and tending to a non-zero finite temperature 7', as t — co are

T4 T — i)t e +
T, ~ R Q ¢ +y y1 (1t pe)® — (a4 p2) (v1+ ) (49)
xz e 2(u1 +ua)t
T Y (gt U2)*—2(ps+ po) (14 v2)°
provided
Vie= V1, VYo1= V3
and (50)
Y2 M
Ay A0
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where
— Ot 0= G Ly S e T T Tt
+ Ay [KJ_§Z+ Lﬁ-2+ MZH— g‘i";g (5—2)2, (51)
= Out ) = G Gy T St G T Tt

- > - R —
+ A [DB2+ EE-4+Fdr+ 3 (B—A)z]-

Out of the four +’s, only one, say, »; remains to be determined. To
determine the rest of the constants D, E, F, K, L and M, we proceed as
follows:

From the initial conditions 7';;,= T; and T,,= T, at t = 0 and making
use of the equations (49)—(51), 7' is calculated from 7', and also from
T,,. Since the system relaxes to equilibrium, these two values of 7
must be the same. That yields the condition

(A K — 2, D) + (AL — 4 B) + (M — 1 F) = 0. (52)

This relation holds good whatever the values of the mean flow velocities
of the two components be. Also, 7', and 7,; should tend to 7 as
¢t — co irrespective of the values of the mean flow velocities ; hence by (50)
we have

K——gL-M (53)
and
D-——1E-F. (54)

In view of (53) and (54), the condition (52) is automatically satisfied.
Substituting the expressions for 7', ,, T'; and the solutions for 7', and 7',,
in the energy conservation equation (20) and equating the term in-
dependent of #, coefficient of e~ (#+#2t and that of e-2(m+m)t to zero
separately, we have

(K+ D)+ (L+E)+(M+F)=0,

—2u (K + D) + (o— ) (L + B) +2pu, (M + F) =0,  (55)

143 (K + D)— pypo (L + E) + p3 (M + F) = glilz‘: (”1“‘2)2[ ‘%_%]’

Solving these equations, we get

M P H HMs
K+ D=3 (2_71"”72)‘ (56)

Z. Astrophysik, Bd. 54 18
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Since
3k
E{Tm_ T11—;—11 (Toe— Tn)}

= (T K) 3 T

(56a)

the factor ( 6k K

mEm,
used up to heat the scattered particles of type 1. Hence we can evaluate
K by finding out the average of

1 > >

5 m(Ee — &

) represents the fraction of kinetic energy that has been

1 mm, -~ >

E‘m (‘Sz - El)2

When the law of interaction is CouromB’s law this average value is
. 1 . .
approximately 1o - Knowing K, (56) determines D.

The factor [ — % — &] would reduce to unity on using Jeans’ relations
1

Ay
My Us
for A and —12.

Substituting the values of the constants, the expressions (24) and (22)
for T, and T',, become

4 > >
Tyo= Tyy+ T:(Tu_ Tys) + D (thgy— uy,)?,

) (57)
T21: T11+Ti(T22‘— T11) + K(7711—522)2 .

In order to understand the physical significance of these terms, consider
the energy change in component “1”’ due to collisions with particles of
component “2”’ given by

m,N,N, 3k m
% my [ (o1 911+3—Iz (@5 — a%1)] (58)
m,N,N, 3k [» Moo

= T S G (Tay— Ty) + K (g — Ty + g (i — 880

The first term can be considered as arising from the temperature difference
between the two components as determined by NEwToN’s law of heat
"
Ay
The second term is that proportion of the kinetic energy of the relative
motion of the two components which is retained in component “1”. As
the model assumes that after collision the particles of component “1”
are distributed around %,, and that they are distributed around 7, , before
collision, the third term represents simply the change in kinetic energy
of the scattered particles of component “1”’. Since radiation and other
types of inelastic processes are neglected, these are the only processes by

transfer. Hence, from experimental results the factor = can be fixed.
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which energy can be gained and the theory adequately takes account of
these mechanisms. This justifies the assumption of the particular form
of T, and T,,. Let us write down the values of the constants that have
been used in (49) and (51) after simplification:

Zy=Yo= 1= 1,=0,

_ 2mp, " LYY
to= g, Ut ) | K= | (A B (59)
o 2my g Vs 3k4, 12 s
Yo= 3k, (;u’l_}‘ 1u2) '11 [,u1+ Us —D My U -_Tl] (A—B)Z
LY Ayvy _»__ P2
Too= 3kAy (i pg) (v + v,) (4—B)?,

These values of the constants give us the complete expressions for the
temperatures for all times ¢.

If we now consider linearized problems such as plasma oscillations,
we may neglect the terms containing the squares and products of the
velocities. In that case

v | 7"
T12= T22+ TZ(T11_ Tzz) s T21= T11+71(T22_ Tn)a

and the right hand sides of (31) and (32) become (60)
NN, 3k » N, N, 3k v,
10 ETl(Tzz“Tn): TETE(TH_TM):

respectively. Thus we find that the transfer equations are simple and
physically meaningful. Knowing the values of %, ,, s, T}, and T, we
can write down the Boltzmann equations which can be solved for
specific (given) initial distributions and microscopic boundary conditions.
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