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Summary

The problem of the anharmonic pulsations for the homogeneous model (and
also the Roche model) pulsating in the fundamental mode is discussed. The
ratio of specific heats is assumed to be 5/3. The results are compared with those
of Rosseland.

In his George Darwin Lecture * on the Pulsation Theory of Cepheid Variables
Professor Rosseland has developed the general theory of anharmonic pulsations and
has applied it to a homogeneous star pulsating in the fundamental mode, which case is
amenable to a simple mathematical treatment. In this case Rosseland finds that for an
appreciable skewness in the velocity-time curve, the semi-amplitude of pulsation nearly
approaches one-fourth the stellar radius (the observed amplitude is about one-tenth
the radius). However, this and other results obtained by Rosseland are not inherent
in the model, but arise on account of an approximation introduced in the investigation.
The work discussed in the present note is free from this approximation (the value of the
ratio of the specific heats is assumed to be 5/3). As it happens, the exact treatment is
simpler than that of Rosseland. In the following, as far as practicable, we use his
notation.

1. Let 7, p, p, T and g denote radius vector, pressure, density, temperature and
gravity of an element in the Lagrangian sense and a, p,, p,, T, and g, denote these
quantities at a given initial time #,. For a homogeneous star pulsating in the funda-
mental mode we write for the displacement at any point a

r—a=ang, (1)
where 7 is a constant and ¢ is a function of time only. In the sequel we shall identify £,

with the instant when the pulsation velocity is maximum, it being directed outwards.
We note that for the homogeneous model

_y, oM e
Po=32P0 g <I - ﬁ) (2)
and

8o=GMa|R?, (3)
where M is the mass of the star and R its radius at time #,, We shall call R the equilibrium
radius.

The kinetic energy Wy(¢) of radial oscillation is
R
W, =%j 4ma*pyda a*n?¢® = MR ¢ (4)
0

and the work W(f) done against gravitation, measured from the state at time £,, is

W — 3 GM?[ 1 _3GM? ¢q
2" "¢ R I+q7;_I 5 R 1+¢q

* M.N., 103, 233, 1943.

(5)
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Further, the increase in the thermal energy Wy(f), measured again from the state at
time 2, is

yid
W, =j C(T - Ty amapoda,
0

where C, is the constant volume specific heat per unit mass. Substituting the perfect
gas equation :

p=Cyy-1)pT
and the adiabatic relation

1
Plpo=(p/po)* = (Wa

where y is the ratio of the specific heats, we obtain using (2)

1 GM? I
Wy= -1 |. 6
*s(y-1) R [(I +gn)* 8 ] ©
Adding (4), (5) and (6) we have for the total energy W, which does not vary with time,
3o 12 MG By 1 MG j I _
ari [%M TR i ay-n) R\ @
. Expanding to the third power of % we get
W=$MR*n*[$¢® + $0,°¢> - $o:%(y + §)n4°], ®)
and hence we get
. MG
§+o1’g=%(3y + 1)01*1g%; o?=(3y - 4)—R—3’ (9

- which is the equation of motion to the first power of 7 and has been given by Rosseland.

- His discussion of the homogeneous model is based on it.

‘ It is convenient to introduce a new variable x(¢), where Rx represents the displacement
at the surface of the star at time £. We have from (1)

% =1g. A (10)

. Introducing this variable and substituting y = §, we have for W the expression

Sype L MG x (TMG] 1
W—5MR [2x TR Iix 2 RO (1+x)2 il (11)
2. Introducing x and substituting y = § in Rosseland’s equation we have
MG
F= -0 +30,%% o= R (12)
- which on integration gives

‘ %= — 0,22 + 20,23+, (13)

¢ being a constant of integration.
"~ Let x, and x, represent respectively the “outside” and the “inside” amplitudes of
- oscillation, i.e. the stellar radius oscillates between the limits R(1 +x;) and R(1 —x,).
* The semi-amplitude K of oscillation is defined by

%, + %,
2

K

It follows from (12) that for oscillatory motion », cannot exceed 3}, for otherwise &
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would become positive. For x, =1}, equation (13) gives x,—%, and hence the limiting
value for the semi-amplitude K is
K=1.

It is to be observed that the existence of these upper limits for x;, x, and K have no
physical basis; they arise merely because in the equation of motion terms higher than the
second power of x have been ignored. According to the exact equation (11) #; can be
infinitely large. ,

Equation (12) can be solved, as has been done by Rosseland, in terms of elliptic
functions in the usual way. Let P denote the period of oscillation, #; the part of the
period during which the radius of the star exceeds the equilibrium value R (expansion
phase) and #, the part of the period for which the radius is less than R (compression
phase), : :

i P =‘t1 +t2.

~ We shall call § = L/t the skewness of oscillation. In the limit of vanishing amplitude

8 — 1 and P — P,, where
P 2w R3\?
"o FM\MG)

As K — %, x, —> %, »,— % and P/P, and & both tend to infinity.

Table I(a) shows values for #;, x,, K, P/P, and 8 obtained by solving (12) with the
help of tables of the elliptic functions. From the well-known properties of the elliptic
functions the asymptotic expression for P/P, is readily obtained,

P 1 I
P, WlogeZ_SK as K—1. (14)
TasLE I(a) © Tasire I(d)

% X K P/P, ) 2%, 2 K P[P, 6

o o o 1 1 o o o 1 I
0-:0025 0:00249  0-002% 1-00 1-01 0-0025 0:00249  0-0025 1-00 1-01
0-027 0-026 0-0263 1-00 1-07 0-027 0-026 0-0263 1-00 1-07
0-074 0064 - 0-069 1-02 1-20 0-074 0-064 0-069 1-01 1-19
0-163 0-120 0-142 1-09 1-50 0-163 0:123 0-143 1-03 1°43
0:220 0145 0-183 1-19 1-78 0-220 0153 o187 1-05 1-60
0:279 0161  : o0-220 1-39 2-30 0-279 0-179 0-229 1-08 1-76
0-318 0166 : o242 1-74 315 0-318 0194 . o0-256 1-095 1-84
0-330 0-167 " 0248 2-00 377 0-330 0-199 0-265 1-10 1-9I
3 3 3 ] ) 0-333 0-200 0-267 1-10 1-92
o0 0-500 o ) =)

3. We have so far discussed Rosseland’s approximate equation of motion. We now
" take up the exact equation (11) which we rewrite as

I 2 1
52=012[—A+E—§2] (15)
E=1+x
and
1o R w
A=I-—-3* G—WW=I—WO,

where ( — W) represents the total energy for the statical configuration of radius R. 'The
parameter A determines the amplitude of oscillation. If as before x,=§ ~1 and
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xy=1 — &, denote respectively the “outside” and the “inside” amplitude of oscillation,
then, putting £=o in (15), we have

f= G UtG-A,  h= G a-(-4,

xo=2%,/(1 +2%,), (16)
and solving for 4 in terms of x, and x,, |

I+2%; I-2X,

THm)? (1-x)
The ioeriod of oscillation P, and ¢, and ¢, (the parts of the period for which the radius of
the star is greater and less than R respectively) are immediately obtained from (15). We
have ‘

P 1ph _zh _2f = 3
5| e w=g | fode 0=l 0% 1O=—ga

and after integration we get

(T+2)®  (1-%)°
(1 +2%,)3/2 (1 —2x,)3/2’

2| (14 1+%)% f7 . x
t == i 1) + ( 1)3 T o sin-l_1 ’
oy 1T+2%  (1+2%)%2|2 1+%

t2=i[x2(1_x2)+ Sl }],

ol 1—-2x, (1 —2x2)3/212 I—X,

P—
PO

L+t,=P,

x; and x, being related according to (16).

It is to be noted that § =¢,/¢, depends only on x, or x, and is independent of M and R.
Unlike the case of Rosseland, we have obtained here exact expressions for the quantities
of physical interest. To facilitate comparison between his results and those obtained
here Table I(d) has been added.

It will be noticed that for a given skewness of the oscillation the semi-amplitude K must
be much larger than that given by Rosseland’s approximate treatment. Thus, for
example, for 8 ~ 5, K ~ 0-8, which is more than three times the Rosseland value.

4. It may be remarked that the foregoing discussion is equally applicable to the Roche
model, which consists of a central point-mass surrounded by a massless atmosphere and,
as is easily verified, it is only necessary to write (5/2) M in place of M in the equations given
above—AM is the mass of the star which in the Roche model is concentrated at the centre.
Thus it follows that for the Roche and the homogeneous models, both having the same
mean density, for a given skewness of oscillation, Z.e. value of 8, the semi-amplitude K
and so also x; and x, have the same values, but period for the Roche model is (2/5)? times
that for the homogeneous model. This smallness of the period for the Roche model
compared with that for the homogeneous model for all values of the amplitude provides
an illustration of what appears to be a general result *, that, for the stars having the same
mean density and the same ratio of specific heats, the period is largest for the homogeneous
model and decreases as we pass to models in which the mass is more concentrated towards
the centre.

5. From the preceding discussion the conclusion is obvious that the theory of

* T, E. Sterne, M.N., 97, 582, 1937. (Also P. L. Bhatnagar, Proc. Nat. Inst., in press.)
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