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Abstract: A modular approach to synthetic protein design is

being developed using conformationally constrained amino acid

as stereochemical directors of polypeptide chain folding. An

overview of studies aimed at constructing peptide helices using

a,a-dialkyated residues and b-hairpins using D-Pro as a turn

nucleator is presented. The construction of helix-helix motifs and

three- and four-stranded structures has been achieved using

non-protein amino acids to stabilize speci®c elements of

secondary structures.

Abbreviations: Acp, e-aminocaproic acid; Aib, a-aminoisobutyric

acid; Dbg, a,a-di-n-butylglycine; Deg, a,a-diethylglycine; Dpg, a,a-

di-n-propylglycine; HPLC, high-performance liquid

chromatography; L-LAC, L-lactic acid; TASP, template-assembled

synthetic protein.

The design of synthetic sequences that adopt folded

secondary and tertiary structures is a ®rm test of our

understanding of the principles that govern polypeptide

chain folding. Most de novo design strategies are based on

knowledge derived from the growing body of protein crystal

structure data, which provides key information on the

propensities of speci®c amino acids and short sequence

segments to favor particular secondary structures. Further

assembly of supersecondary and tertiary structural motifs,

such as helical bundles and b-sheet `sandwiches', relies on

patterning hydrophobic residues so as to exploit solvent

forces in achieving compaction (1±4). Spatial organization of

secondary structure elements may also be achieved by

covalently clamping designed peptides to a scaffold, as in the

case of template-assisted synthetic proteins (TASPs; 5).

Metal ions which can contribute substantially to energetics
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by interacting with suitably positioned liganding side chains

have also been advanced as structure-organizing templates

(6, 7). A conceptually distinct strategy that has been

developed in our laboratory is based on the construction of

stereochemically rigid modules of de®ned structure using

backbone conformational restraints provided by the incor-

poration of a,a-dialkylated residues, most notably a-ami-

noisobutyric acid (Aib) (8±10). Backbone constraints

imposed by insertion of d-residues, speci®cally d-Pro,

have also been explored (11). Assembly of sequences

containing multiple elements of secondary structure is

being approached using linking segments, which are

conformationally restricted to adopt `irregular' torsion

angles, and by the use of nonprotein residues such as v-

amino acids (12) and the hydroxy acid, lactic acid.

310-/a-Helices

The ability of Aib and related a,a-dialkylglycines to nucleate

and stablize helical structures in oligopeptides is extremely

welldocumented (9,10,13,14).Thestereochemical rigidityof

Aib-containing sequences, promotes crystallinity even in

relatively long peptides, permitting high resolution (, 1.0 AÊ )

characterizationofhelicalconformations,byX-raydiffraction

(10, 15). The stabilization of structures containing as many as

twotothreehelicalturnsmaybeachievedbytheincorporation

of a single nucleating Aib residue (16). While there has been

some debate on the precise nature of the helical conformation

(310/a) formed under different conditions (17), it must be

stressed that conformational variability is widespread even in

the crystalline state (18). Quite often mixed helical structures

have been observed for Aib-containing oligopeptides and

severalexamplesillustratevariationsofstereochemicaldetail

in polymorphic crystal forms (19, 20). However, the most

important point to emerge from these studies is that

incorporation of Aib and related residues permits the rational

designofcylindrical,helicalstructures,whichareparticularly

soluble and stable in apolar solvents that compete ineffec-

tively for hydrogen-bonding sites on the peptide backbone.

Fully Extended Structures

A particularly interesting feature of the higher a,a-dialky-

lated glycine residues (a,a-diethylglycine, Deg; a,a-di-n-

propylglycine, Dpg and a,a-di-n-butylglycine, Dbg) is their

tendency to adopt fully extended C5 (w,1808, y,1808)

conformations. This property was ®rst noted by Toniolo,

Benedetti & Hardy in their studies of oligomers of Deg (21,

22). Theoretical calculations reveal that in these higher

dialkylglycines the minima in the helical (w, u 608,

y, u 308) and fully extended (w,1808, y,1808) regions of

conformational space are energetically comparable (23), in

contrast to Aib, where the minima in the helical region are

substantially deeper (9). Subsequent experimental studies on

synthetic peptides containing Dpg and Dbg residues reveal

that while conformations may be dependent on sequence

content, the choice is limited to C5 or helical conformations

(24, 25). The possibility that fully extended w,y-values can

be stabilized is of importance in designing stereochemically

well-de®ned linking segments, which may be used to

connect prefabricated secondary structure modules.

Helix±Linker±Helix Motifs

Initial attempts to design linked helix motifs by connecting

canonical seven-residue helical segments using linking

sequences, with a tendency to break continuous helix

formation, e.g. Gly-Pro and d-Phe-Pro, were unsuccessful

(26, 27). In these instances the two Aib residues positioned

at the center of the N- and C-terminal segments were

suf®cient to propagate a helical conformation throughout

the length of model 16 residue peptides, despite a central,

potentially helix-breaking segment. It then became apparent

that rational termination of designed helical segments

would require a greater insight into the stereochemistry of

termination signals in proteins (28) or the introduction of

nonprotein residues that are structurally incapable of helix

propogation. With this end in view we examined the use of

v-amino acids (12), particularly e-aminocaproic acid (Acp),

d-Pro and l-lactic acid (l-Lac). A series of 15 residue peptides

containing a central Acp linker yielded NMR evidence, in

organic solvents, for distinct helical segments, although

interhelix orientation could not be determined conclusively

(29). The crystal structure of a 15-residue peptide, Boc-Val-

Ala-Leu-Aib-Val-Ala-Leu-Acp-Val-Ala-Leu-Aib-Val-Ala-

Leu-OMe, revealed an extended arrangement of two helical

segments; a conformation that may be a consequence of

crystal packing, with the staggered helical segments forming

continuous hydrogen-bonded chains with near neighbors in

the crystal lattice (30). Limited evidence for compact

structures was obtained from comparative analysis of

high-performance liquid chromatography (HPLC) retention

times on a C18 column for a series of helices of varying

length (31). Interestingly, despite reversal of helix sense of

the C-terminal segment using a seven-residue sequence
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incorporating d-amino acids, a very similar arrangement of

the two helices was obtained in crystals (32). Direct fusion of

two helices of opposite chiral sense in the peptide Boc-Val-

Ala-Leu-Aib-Val-Ala-Leu-d-Val-d-Ala-d-Leu-Aib-d-Val-

d-Ala-d-Leu-OMe, yielded a novel ambidextrous molecule

in which an N-terminal, seven-residue, right-handed helix

terminates in a Schellman motif, induced by the d-residue at

position 8 adopting an aL conformation. This feature then

propogates a left-handed helix through the C-terminal

segment (33). Recently determined crystal structures of

helices incorporating l-Lac residues, suggest that hydrogen

bond interruption may, in certain sequence contexts,

terminate peptide helix propogation (I.L. Karle, personal

communication). The control of linking segment stereo-

chemistry has also been attempted using Gly and Dpg

residues for promoting nonhelical conformations (24). Thus

far, ambiguous characterization of structures of helix±

linker±helix motifs containing such segments has not

been achieved.

b-Hairpins

The de novo design of all b-sheet proteins has been beset

with problems associated with aggregation and lack of

solubility (34, 35). The simplest target motif is the b-hairpin,

which consists of two antiparallel strands linked by a b-turn

of appropriate stereochemistry. Illuminating analyses of b-

hairpins in proteins revealed that for appropriate strand

registry and interstrand hydrogen bonding, type I' and II' b-

turns were most often preferred (36). The stereochemical

features of the short segments linking two antiparallel

strands have been clearly delineated in a subsequent

analysis, which used a large database of high-resolution

protein structures (37). The requirement of type I'/II' b-turns

as the fulcrum in hairpins places stringent stereochemical

restraints on the backbone conformational angles of the

i + 1/i + 2 residues of the b-turn. The w-values must be

positive (,+608) at both residues in type I' b-turns, while in

the type II' turns the w-value at residue i + 2 must be ,+608.

In proteins, the only residues that adopt positive w-values

with great facility are Gly (achiral) and Asn, which has a

high propensity for aL conformations (38, 39). It is these

residues that are most frequently found in the b-turns at the

center of hairpins (37, 40). The requirement of a positive w-

value restricted to ,+608u 208 is easily achieved in the d-

Pro residue, where w is constrained in the pyrollidine ring.

Several recent b-hairpin design efforts have used suitably

positioned d-Pro-XXX segments to nucleate type I'/II' b-

turns (11, 41±44). A b-hairpin structure has been established

in crystals for an apolar octapeptide, Boc-Leu-Val-Val-d-Pro-

Gly-Leu-Val-Val-OMe (45). NMR studies in solution estab-

lish conformational differences between octapeptides with

central l-Pro-Gly and d-Pro-Gly segments, reiterating the

importance of b-turn stereochemistry in hairpin nucleation

(46). While Asn-Gly segments have been used to design

water-soluble b-hairpins (47, 48), the work of Satnger &

Gellmann (49) points to the superiority of d-Pro-Gly in

promoting hairpin nucleation. Success in b-hairpin con-

struction has stimulated the design of longer sequences,

with recent studies establishing three-stranded b-sheet (or

multiple b-hairpin) structures in both polar, water soluble

and apolar, organic solvent soluble peptides (50±53). In all

these cases aggregation has not been a major impediment.

Figure 1 illustrates a four-stranded b-sheet structure deter-

mined by 500 MHz 1HNMR in a 26-residue synthetic

peptide which contains three internal d-Pro-Gly segments.

The four-stranded structure is stable in methanol and 50%

methanol/H2O, but the backbone is signi®cantly solvated in

water, resulting in a loss of critical cross-strand interactions,

although the three b-turns remain intact (54). Sequence

choices in the design of b-sheet structures are clouded by the

absence of strong cross-strand residue correlations (37).

Covalent reinforcement by disul®de bridging across strands

may be an attractive possibility.

Figure 1. Four-stranded b-sheet structure in a synthetic 26-residue

peptide (b-4,R-G-T-I-K-DP-G-I-T-F-A-DP-A-T-V-L-F-A-V-DP-G-K-T-L-Y-

R). Superposition of 15 structures of the peptide obtained from

simulated annealing calculations using NOE-derived distance

restraints. Only backbone atoms were used for superposition. (mean

global backbone RMSD: 1.2 AÊ ) (54).
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The design of both helices and b-hairpins using backbone

conformational constraints as a nucleating feature has been

achieved. Assembly of these preformed modules in a

`Meccano(Lego) set'approachtolargerprotein likestructures,

requires elaborate stereochemical control over linking pep-

tide segments. Alternatively, designed attractive interactions

between the modules involving side chains, metal ligation or

covalent bridging may result in complex, but predetermined,

tertiary arrangements in synthetic structures. In such

approaches, only limited emphasis is placed on solvophobic

interactions in generating compact polypeptide folds, in

marked contrast with strategies which derive their concep-

tual framework from available knowledge of protein folding

in aqueous solutions. Exploiting nonstandard amino acids to

impose backbone conformational constraints may bridge the

gap between diverse strategies for de novo design of well-

de®ned polypeptide structures; approaches which are more

`biochemical' in relying on protein-like sequences on the one

hand and strategies which are more close to `organic

chemistry' on the other, with the latter often being based

on completely synthetic templates that permit organization

of pendant polypeptide chains.
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