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Cellular signaling circuits handle an enormous range of

computations. Beyond the housekeeping, replicating and

other functions of individual cells, signaling circuits must

implement the immensely complex logic of development and

function of multicellular organisms. Computer models are

useful tools to understand this complexity. Recent studies

have extended such models to include electrical, mechanical

and spatial details of signaling, and to address the stochastic

effects that arise when small numbers of molecules interact.

Increasing numbers of models have been developed in

close conjunction with experiments, and this interplay gives a

deeper and more reliable insight into signaling function.
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Introduction
Modeling biology, especially development, is a hazardous

undertaking [1]. It is an enormous task to assemble

diverse kinds of biological data into a form that a com-

puter can digest. At the end of this process, it is natural to

ask, what is the model worth? Unfortunately, biological

model predictability is specific, and highly dependent on

the parameters applicable to a given system. Evolution

has layered so much complexity over the underlying

physical laws that models are apt to run aground on

simplifying assumptions. The availability of outrageous

amounts of high-throughput biological data finally

endorses the reductionist approach for tackling biological

questions [2,3]. In this review, I focus on intracellular

signaling rather than communication between cells. I first

introduce different kinds of signaling models and con-

sider what current modeling tools can do. I then turn to

some specific signaling phenomena that are particularly

interesting for development: growth factor pathways,

cellular rhythms, and cytoskeletal mechanics. I neglect

many additional modeling efforts in this brief review,

which is only able to give a glimpse of the diversity of

cellular signaling processes now amenable to modeling.

Modeling
Scope

Cell signaling is, loosely, the interface between genes and

everything else in the cell. Often the term is restricted to

the biochemical events that convey cellular information.

The vast majority of current signaling models fall into this

category. However, the correspondence between biology

and the model should, in principle, improve as models

take more biological features into account. A broader

interpretation of signaling could include almost any form

of information flow, including many cell biological and

structural events that shape signaling (Figure 1). A central

issue in all forms of modeling is that of how much

biological detail to include. This detail could be in the

form of complexity of the pathway circuit, or in terms of

greater precision in specifying what happens within each

pathway.

Complexity

In cell signaling and developmental models it is partic-

ularly difficult to decide how many pathways to include in

the model. The major receptors and outputs may be

known, but crosstalk and regulatory inputs are often

critical in determining pathway function. At a qualitative

level, there are attempts to represent this complexity by

generating comprehensive signaling pathway diagrams

[4] and molecule interaction databases [5]. However,

predictive models of signaling need more detail than

just connectivity information. A reaction-level signaling

model, for example, requires system-specific parameters

such as rate constants in addition to the general reaction

diagram. Interestingly, current quantitative modeling

efforts appear to have hit a ceiling of �200 molecular

species (e.g. [6]). This apparent barrier indicates that

another level of interface may be needed to scale model-

ing efforts further.

Model detail

The other challenge, limited by experiments as well as by

programming ingenuity and computer power, is the hand-

ling of ever-finer levels of molecular detail. Consider the

simulation of ligand–receptor interactions (Figure 2). At

the simplest level, this is simply an exercise in mass-

action kinetics, and the response is smooth and determi-

nistic (Figure 2a). If we now consider that ligands and

receptors may be present in only a few tens of copies on a

www.sciencedirect.com Current Opinion in Genetics & Development 2004, 14:375–381

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Publications of the IAS Fellows

https://core.ac.uk/display/291496796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


given cell, then the reaction should be treated as the

probabilistic (stochastic) collision of individual mole-

cules. The response is noisy and its outcome is no longer

deterministic.

In the real world, the position of ligand and receptor

matters. Here we again can choose to model effects either

deterministically or stochastically (Figure 2b). Biochem-

ical fluctuations due to stochasticity introduce issues of

noise tolerance in signaling (see review by Kerszberg, this

issue). Several studies (e.g. [7]) have analyzed diffusive

effects on ligand–receptor interaction, and indeed, the

formation of ligand/receptor gradients is an essential

Figure 1
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Interrelated forms of cellular signaling. Biochemical signaling involves a complex network of pathways that link together different functions

of the cell. Electrical inputs contribute via calcium influx to the chemical network, and the ion channels are, in turn, modulated by phosphorylation

and turnover. Trafficking controls receptor availability and the compartmentalization of many signaling events, and is, in turn, biochemically

regulated. Mechanical signals lead to formation of biochemical and mechanical signaling complexes. The whole network is tightly coupled to

transcriptional and translational events.
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Representing ligand–receptor coupling at mass-action (deterministic)

and individual-molecule (stochastic) levels of detail. L represents ligand,

R represents receptor, and L.R is the ligand–receptor complex.

(a) Time-course of ligand–receptor binding reaction where there

is a limiting amount of receptor. In the deterministic situation, the

amount of bound receptor (L.R) smoothly increases and settles to

a final state where most of the receptor is complexed with the ligand.

In many cellular reactions, very small numbers of molecules interact

and it is more correct to represent this using probabilistic (stochastic)

events for the binding reactions. In this situation, the individual binding

and unbinding reactions occur in a chance manner. These fluctuations

continue even after the deterministic system reaches equilibrium and

are a source of molecular noise. (b) Ligand–receptor binding in a

developmental situation where the ligand is present in a gradient. The

deterministic calculations give a smooth decrease of ligand–receptor

(L.R) complex with distance from the ligand source. If there are small
numbers of molecules then there is again noise as a result of

stochasticity. If the developmental program uses a threshold of L.R

levels to determine cell fate, then the stochastic case can lead to

noisy decisions when very small numbers of molecules are involved.

Biochemical noise is therefore an important aspect of cellular

signaling and may need to be modeled explicitly.
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component of many theories of morphogenesis [8] (see

review by Eldar, Shilo and Barkai, this issue).

At an even finer level, the physical organization of the

receptors on the surface of the cell may be important in

determining signal propagation [9] and assembly of sig-

naling complexes [10]. There are still further levels of

molecular detail relevant to cellular signaling, including

attempts to utilize Brownian dynamics and protein struc-

ture prediction to estimate key interaction parameters

[11�]. These are largely unsolved problems, and it seems a

very long way from protein structure to analyzing signal-

ing networks.

In principle, a similar series of ever-finer levels of analysis

could be followed with other aspects of cellular signaling.

For example, the mechanical outcomes of signaling are

critical in development [12]. There are increasingly

sophisticated experiments and simulation tools to analyze

the details of how cells deform and move [13].

Signaling pathway models and
developmental mechanisms
Development involves many forms of biological interac-

tions. Many completely different kinds of models have

been proposed for each of these domains, including the

mechanical interactions of gastrulation [14], the formation

of morphogen gradients [8], and the genetic circuits that

specify the developmental program [15]. Signaling path-

ways are the glue that link all these phenomena together,

and the models are correspondingly diverse. There are

some clusters of modeling efforts on pathways in systems

where there is a fortuitous combination of data availability

and biological significance. However, there are many

models that defy categorization. On the basis of their

relevance to development, I focus here on three broad

areas of signaling models: growth factor pathways, cellular

rhythms, and on the emerging area of cytoskeletal inter-

actions with signaling.

Growth factor pathways

Growth factors are particularly interesting both from the

biological viewpoint and in terms of the diversity of

computational roles they play. Many growth factors feed

into the mitogen activated protein kinase (MAPK) cas-

cade and its variants. One of the long-standing issues

about MAPK signaling has been how a single pathway can

give rise to distinct kinds of response. These include the

functions of switching, oscillation, high amplification, and

thresholding. From a systems biology viewpoint, all are

interesting and related, and from a developmental view-

point each may be a useful module. With the appropriate

assumptions, the MAPK cascade can be persuaded to do

all these things (Table 1).

Differential receptor trafficking and subsequent com-

partmentalization has been analyzed as an upstream

mechanism for diverse responses [16,17��,18]. A range

of responses can also be elicited from the kinase cascade

depending on inhibitory phosphatase feedback via

MAPK phosphatase transcriptional regulation [19�]
and on expression of kinases and phosphatases [20,21].

It is worth noting that several of these studies combine

simulations and experiments, so the versatility of the

pathway is not entirely a figment of the modeler’s

imagination.

The flip side of versatility is robustness under a range of

conditions, which is important for reliable development

(see review by Kerszberg, this issue). The architecture of

the pathway contributes to this with redundant activation

mechanisms [22]. Additionally, the kinetic rates of key

pathway steps have been shown by a combination of

simulations and experiments to lead to stable behavior

Table 1

Multiple properties of the MAPK pathway.

Function Possible mechanisms

Amplification - Multiple enzymatic amplification stages: at the receptor, then dual phosphorylation steps for MAPK

kinase and MAPK.

- Positive feedback from MAPK back to its upstream activators.
Alternative responses - Selective receptor/adaptor trafficking depending on different ligand–receptor binding properties.

- Stimulus-duration-dependent switching into active state.

Ultrasensitivity/thresholding - Positive feedback.

- High-order multiple amplification stages.

Sustained activation - Positive feedback loop. Activated MAPK increases activity of upstream enzymes, and under

restricted conditions this can be self-sustaining.

Transient activation - Receptor internalization.

- Negative feedback onto adaptor proteins from receptor.

- Negative feedback via transcriptional activation of inhibitory phosphatase.

Oscillation - Negative feedback with phase delay.

Robustness in response - Redundant activation mechanisms.

- Saturation of internal enzyme steps.
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over a wide stimulus range [23]. A similar combined

approach has addressed the temperature dependence

of activation of different downstream pathways of MAPK

[24�].

Recent simulations based on high-resolution imaging

methods have brought spatial considerations to the anal-

ysis of MAPK signaling [17��,25]. Spatial effects across

multiple cells have clear implications for developmental

patterning. One of the interesting findings is that the

EGFR/MAPK system can lead to signal propagation

either at the level of the receptor [26��] or at the level

of multiple cells in autocrine relays [27].

The control of nuclear cycling is an important end-point

of several growth factor pathways. Studies combining

experiments and simulations show that this cycling

may be a means for calibrating expression to receptor

activation levels through the Janus family of kinases

[28,29].

Cellular rhythms

A fruitful area of model–experiment collaboration has

been in the study of cellular rhythms [30]. The cell cycle

is perhaps the most important of these periodic events

from the genetics and development viewpoint. Although

many of the key players of the cell-cycle network are

known, the specific rate constants have been difficult to

obtain. Therefore several studies have studied the beha-

vior of cell-cycle networks of known architecture using

techniques that explore wide ranges of parameters and

identify ranges in which interesting effects occur. There

are several stable states that mark different stages of the

cell cycle, and the transitions between these states have

been shown to occur as the cell-cycle control signals build

up ([31–33,34�]; reviewed in [35]). A common node

between the processes of cell cycling and apoptosis

suggests mechanisms for interaction between these phe-

nomena [36]. At a more detailed level, it has been possible

to relate the kinetics of DNA replication to experimental

data [37�].

The circadian rhythm is another major cellular oscillator

that has long been a subject for modeling ([38,39];

reviewed in [30]). A central aspect of such oscillators is

their entrainment to the light–dark cycle, and multiple

feedback loops may contribute to the robustness of this

entrainment [40,41]. As another manifestation of robust-

ness, this phase-locking may persist even in the presence

of stochastic noise [42–44]. Entrainment may also occur

with respect to temperature, especially in plants [45,46].

The clock is a very complex system, involving transcrip-

tional/translational feedback and influencing cellular

functions from development to metabolism. Evolutionary

arguments are valuable in considering how the effect of

the clock is propagated to control these different cellular

functions [47–49].

The somitogenesis clock is an interesting combination

of timing and spatial effects that has been suggested to

form the basis for vertebrate segmentation (reviewed in

[50] and by Giudicelli and Lewis in this issue). Here a

periodic clock is present in a series of synchronously

oscillating cells. The state of the clock is frozen in

response to a wave of cell determination propagating

along the cells. Differentiation then proceeds according

to the state specified by clock signals, giving rise to

periodic patterns in space.

Mechanics

Mechanical aspects of morphogenesis represent a major

subfield of simulations in development [14]. Here, I only

consider intracellular mechanical simulations, especially

with a view to understanding how the intricate cytoske-

letal architecture may self-organize in the context of

cellular signals and forces. Cell division is one example

of dynamic assembly and breakdown of mechanical stru-

tures. The mitotic spindle self-organizes, is resistant to

many mechanical perturbations, and is dependent on

motor function. The formation of microtubule asters

can be described by the stochastic binding and movement

of motor complexes that can bind to and traverse pairs of

microtubules, one from each aster [51]. The feedback

between cellular stresses and externally applied forces

can lead to alignment of the mitotic plane that, in turn,

influences the shape of developing epithelium [52]. A

similar feedback has been analyzed for neutrophils in a

detailed mechanical model that addresses several experi-

mental situations [53]. An extremely detailed stochastic

simulation of the formation of the intermediate filament

network in the epithelial cell following mitosis shows

how stress-induced local synthesis of proteins can lead to

appropriate formation of the cytokeratin network [54��].
Stochasticity may also play a key role in the specifics of

cell polarization. Actin polymerization through local sto-

chastic activation of Cdc42 can lead to formation of cell

polarity without any other physical cues [55�].

Testing model predictions
A critical step in model development is to go from

explaining observations to making predictions. I conclude

with two examples of predictive roles for modeling:

bistability in signaling, and synthetic biological oscilla-

tors. One of the interesting hypotheses regarding the

MAPK cascade as well as other signaling systems is that

they might function in the manner of a bistable switch.

Similar to a light switch, bistable systems have two stable

states: one of low activity and one of high activity. A

common way to achieve bistability in a signaling circuit is

to have positive feedback. Here the output of the cascade

connects either directly or indirectly back to the input, to

activate itself. At least two models have proposed this

kind of bistability in the MAPK cascade [6,56]. It has also

been postulated for EGFR activation [26��] and for

several steps of the cell cycle [35]. There are several
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predictions from such models which have influenced the

design of subsequent experiments, and have gained

experimental support. These predictions include the

following. First, the response of the pathway should have

a very sharp threshold with respect to a stimulus such as

EGF [19�,26��,56] and should exhibit hysteresis [34�].
Second, the system should generate a sustained response

to brief stimuli [19�,56]. Third, the blockage of any of the

steps of the feedback loop should abolish the first and

second properties [19�,26��]. Fourth, a measurement of

local activity across a number of samples with local

bistable loops should be bimodal, as some samples would

be in the low-activity state, and others in the high-activity

state [26��,56]. A more impressive prediction from the

bistability hypothesis comes from model behavior in

space. If a sheet of tissue exhibits local bistability, and

if some molecules in the bistable circuit can diffuse, then

activity in one region should be able to propagate through

the sheet. This occurs because activated molecules from

the first region diffuse to their surround, and switch the

neighboring regions to the active state. This propagating

behaviour has also been observed [26��].

A particularly clear illustration of the power of modeling

in understanding signaling circuits comes through the

design of oscillatory circuits based on models, and then

testing these designs in engineered organisms [57,58].

Although these studies are not related to development

directly, the ability to design desired circuit functions

systematically is a good indication that modeling has

abstracted at least some of the fundamental principles.

Conclusions
An encouraging shift has taken place in signaling models

as they evolve from their initial phase of novelty and

speculative design into a powerful tool generally available

to biologists. One of the striking trends of work in recent

years has been the close coupling between model and

experiment, as evidenced by several interdisciplinary

studies. With the closer ties to experiment have come

more stringent demands on biological realism, and

another clear direction is the expansion from simple

chemical models to include space, stochasticity, and even

mechanical effects. Models are very demanding of experi-

mental input for quantitative data, and the recent flood of

high-throughput data and high-resolution imaging should

return the favor, to the benefit of the field as a whole.
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