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Thermal Stabilization of Thymidylate Synthase by Engineering 
Two Disulfide Bridges Across the Dimer Interface 
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Thermal inactivation of oligomeric enzymes is most often irreversible and is frequently 
accompanied by precipitation. We have engineered two symmetry related disulfide bridges 
(155-188' and 188-155') across the subunit interface of Lactobacillus camel thymidylate 
synthase, at sites chosen on the basis of an algorithm for the introduction of 
stereochemically unstrained bridges into proteins. In this communication, we demonstrate a 
remarkable enhancement in the thermal stability of the covalently cross-linked double 
disulfide containing dimeric enzyme. The mutant enzyme remains soluble and retains 
secondary structure even at 90 °C, in contrast to the wild-type enzyme which precipitates at 
52°C. Furthermore, the mutant enzyme has a temperature optimum of 55°C and possesses 
appreciable enzymatic activity at 65°C. Cooling restores complete activity, in the mutant 
protein, demonstrating reversible thermal unfolding. The results suggest that inter-subunit 
crosslinks can impart appreciable thermal stability in multimeric enzymes. 
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The engineering of disulfide bonds has been 
explored as a means of imparting thermal stability 
to globular protein structures (Wetzel, 1987; 
Creighton, 1988) and also as a probe of protein 
folding pathways {Clarke & Fersht, 1993) and 
internal motions in proteins (Careaga & Falke, 
1992). In the case of monomeric proteins or in 
situations where intrasubunit disulfides have been 
introduced in multimers, modest stabilization has 
been achieved, with more appreciable gains 
observed for multiple disulfide bonded mutants 
(Sowdhamini & Balaram, 1993; Matsumura et al., 
1989). Ironically, in some cases crosslinking has led 
to decreases in thermal stability (Agarwalla et al., 
unpublished results; Mitchison & Wells, 1989; 
Villafranca et al., 1987). Rationalization of the 
effects of engineered disulfide bonds on protein 
stability has been obscured by the difficulties of 
separating the influences of the crosslink on the 
native and unfolded states and assessing the relative 
importance of enthalpic and entropic contributions 
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made by the disulfide to these states (Doig & 
Williams, 1991; Tidor & Karplus, 1993). The 
thermal denaturation of multimeric proteins 
generally involves the concomitant processes of 
polypeptide chain unfolding and subunit dissocia- 
tion (Jaenicke, 1987). Thermal inactivation of oligo- 
meric enzymes is most often irreversible and 
frequently accompanied by precipitation (Wetzel, 
1992). 

Thermal stabilization can, in principle, be 
achieved by reinforcing the subunit contact inter- 
face, rendering it more "sticky", by the introduc- 
tion of additional interactions. Covalent bridging by 
means of multiple, engineered disulfide bonds 
should impede subunit dissociation. There have 
been few attempts at analyzing the effect of disul- 
fide crosslinks across protein-protein interfaces 
(Shirakawa et al., 1991; Scrutton et al., 1988; Sauer 
et al., 1986). We have engineered two disulfide 
bridges across the dimer interface of the enzyme, 
Lactobacillus casei thymidylate synthase (TSt) 

t Abbreviations used: TS, thymidylate synthase; 
WT, wild-type; TSM, thymidylate synthase mutant. 
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Figure 1. Ribbon drawing of the L. casei thymidylate synthase dimer viewed perpendicular to the 2-fold axis 
generated using the program Ribbons 2.0 (Carson, 1987) on a Silicon Graphics IRIS4D/310VGX. The 2 monomers are 
identified by the blue and cyan colors of the polypeptide backbone. The modeled disulfide bonds between residues 155- 
188' and 188-155' are indicated. C ~ and C B atoms are shown in green and S atoms in yellow. Disulfide bridges were 
generated using the MODIP program (Sowdhamini el al., 1989) and have the following stereochemical parameters: 

zs_ s = 1"87 A, Xss = 114°,  X~ = - - 9 4 ° ,  ~ = -  150°,  X~ = -  97°,  X~ = 98°- 

In the ribbon representation residues 91 to 118 are deleted, as these are disordered in the structure. 

(E.C.2.1.1.45), leading to a considerable enhance- 
ment in thermal stability. Such intersubunit cross- 
links might be expected to impede dissociation and 

,promote the maintenance of interfacial interactions 
at  higher temperatures. 

An examination of the 2-3 A resolution crystal 
structure of L. casei TS (Hardy et ai., 1987) using 
the disulfide modeling program MODIP 
(Sowdhamini et al., 1989) revealed that  stereo- 
chemically unstrained disulfide bridges could be 
constructed across positions 155 (Thr)-188'(Glu) 
and the symmetry-related positions (across the 2- 
fold axis of the dimer) 188(Glu)-155' (Thr). 
Alternative disulfide pairing patterns retaining the 
native dimer structure are ruled out by excessively 
large interresidue distances. Figure 1 shows a view 
of the dimeric enzyme with the modeled disulfide 
bridges. 

A triple mutant  containing Cys residues at posi- 
tions 155 and 188 and a Thr residue at position 244 
was constructed. The wild-type thymidylate 
synthase (TSWT) contains two Cys residues at posi- 
tions 198 and 244. The former is an essential thiol 
which is the active site nucleophile. Cys244 is at  a 
peripheral position and is non-essential for activity. 
The enzymatic activity of the C244T mutant  is 
indistinguishable from TSWT, while mutations at 
Cys198 lead to a complete loss of activity (Climie et 
al., 1990). The mutant  protein T155C/E188C/C244T 

obtained by expression of the corresponding gene in 
Escherichia coli, was isolated in the reduced form 
(TSMred), as judged by thiol estimation (Ellman, 
1959) and mobility on SDS-PAGE. Oxidation to the 
double disulfide form (TSMox) could be effected by 
aerial oxidation at pH 8"8 or by a 5,5'-dithiobis(2- 
nitrobenzoic acid) (DTNB) catalyzed process at  pH 
8"0. Figure 2 compares the electrophoretic mobility 
of the oxidized and reduced mutants. The anoma- 
lous mobility of the crosslinked dimer, prompted an 
independent determination of tile molecular weight. 
Electrospray mass spectrometry, gel filtration and 
analytical ultracentrifugation confirmed the dimeric 
nature of the protein. In the presence of reducing 
agents like dithiothreitol (DTT), the mobility on 
SDS-PAGE was identical for TSWT and TSMre a. 

The temperature dependence of the specific 
activities of TSWT, and reduced (TSMred) and 
oxidized (TSMox) forms of the mutant  
T155C/E188C/C244T are compared in Figure 3. 
A sharp fall in activity is observed for TSWT at 
temperatures above 40°C, with the complete aboli- 
tion of activity at 52°C. In the reduced mutant  
(TSMred), the loss of activity is more gradual, with 
residual activity being obtained at 55°C. The 
oxidized mutant  (TSMo.) differs dramatically from 
its reduced counterpart and TSWT. Enhancement 
of activity is observed up to 60°C and appreciable 
activity is retained at 65°C. Indeed the temperature 
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Figure 2. Mobility of the TI55C/E188C/C244T mutant 
protein on 10% (w/v) SDS-PAGE using Laemmli's disso- 
ciating buffer system (Laemmli, 1970). Samples (10 /~g) 
were loaded on the gel in sample buffer in the presence 
and absence of a reducing agent 2-mercaptoethanol (5o/o). 
Lane l. mutant, non-reducing conditions. Lane 2, 
mutant, reducing conditions. Lane 3, molecular mass 
markers: 200 kDa, myosin; 94 kDa, phosphorylase b; 69 
kDa, bovine serum albumin; 46 kDa, ovalbumin; 30 kDa, 
carbonic anhydrase. Protein bands were visualized by 
staining with Coomassie brilliant blue. 

Mutagenesis a~ut protein purification: Plasmid pSCTS9 
(synthetic TS gene in pUCl8) DNA was restricted with 
the appropriate restriction endonucleases and the linear 
DNA purified by gel electrophoresis on 1% (w/v) low 
melting agarose. The oligonucleotides used were annealed 
by mixing equimolar amounts of the respective synthetic 
oligonucleotides. E188C mutations were obtained by 
excising the segment limited by SalI and NcoI, followed 
by replacement of the synthetic DNA duplex having a 
Cys codon (TGT) at position 188. Cysl55 and Cysl88 were 
constructed by replacing the fragment containing the 
BssHII and ClaI sites with a synthetic DNA duplex that 
had a Cys codon (TGT) at positions 155 on a Cysl88 
mutant. C244T mutations in the double mutants were 
made by removal of the segment limited by NciI and 
XhoI and inserting a synthetic duplex DNA that  
contained a Thr codon (ACT) at this position. The ligation 
product was transformed into E. coli DH5ct cells. The 
mutations were confirmed by sequencing double-stranded 
DNA. DNA from such transformants was used to trans- 
form E. coli X 291a (thy-). All the protocols were as used 
by Climie & Santi (1990). Cells were grown in 1 litre of 
Luria broth containing 50 p/ml ampicillin at 37 °C for l0 h 
and then harvested by centrifugation. Cells were resus- 
pended in 20 ml of 100 mM Tris" HCI, EDTA (pH 7"4) and 
lysed using a French press. The supernatant after centri- 
fugation was loaded onto a hydroxyapatite column, which 
was eluted with a linear gradient from 25 mM potassium 
phosphate (pH 6"9) to 350 mM potassium phosphate 
(pH6"9). TS-containing fractions were identified by 
SDS-PAGE, pooled and precipitated by 43% (w/v) 
ammonium sulfate. This was further purified by gel filtra- 
tion on a G-100 column. TS was dialyzed against distilled 
water and lyophilized. The double disulfide dimer is 
obtained by incubating the protein at 25°C in 1"5 M 
Tris" HCI (pH 8"8) for 3 days. Disulfide crosslinks can be 
formed in 25 mM Tris- HCI (pH 8"0) in 6 h in the presence 
of DTNB. Slow oxidation gives a single band on 
SDS-PAGE. Electrospray mass spectrometry of TSMo. 
was carried out at the UCSF mass spectrometry facility 
yielding a molecular mass of 72 kDa (The calculated 
molecular mass of monomeric L. easel TS based on the 
sequence is 36,618 Da). Analytical gel filtration was per- 
formed on a LKB 2135-360 pre-packed column (7"5 mm 
x 600 mm) using 25 mM potassium phosphate buffer (pH 
6"9) and a flow rate of 0"l ml/min, using an LKB 2150 
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Figure 3. Temperature dependence of enzymatic 
activity of wild-type and mutant thymidylate synthase. 
Specific activities (/Jmol dTMP formed min - l  mg 
protein -1) were determined in the presence of 600 pm 
deoxyuridine monophosphate (dUMP) and 150 pM 5,10- 
methylenetetrahydrofolate (CH2-H 4 folate) after enzymes 
were incubated in the assay buffer (without 2-mercapto- 
ethanol) for 15 min. 2-mercaptoethanol used in the pre- 
paration of CH2-H 4 folate was removed by lyophilization. 
This CH2-H 4 folate was used immediately for the assay. 
(l-I) TSWT; (/k) TSMre d (O) TSMo,. The activity at 30°C 
was taken as 100°/o . TS activity was assayed spectro- 
photometrically by continuously monitoring the increase 
in absorbance at 340 nm due to the conversion of 
methylene tetrahydrofolate to dihydrofolate (ea4o = 6400 
M - l  cm -1) (Santi & Sakai, 1971). The specific activity of 
TSMox is approximately 15 % of the activity of TSWT (see 
the text). 

o p t i m u m  for TSMox is abou t  55°C, whereas  a value 
of 40°C is observed for the o ther  two. I t  m a y  be 
noted t h a t  the specific ac t iv i ty  of  TSMo, is approxi -  
ma te ly  15% of  the specific ac t iv i ty  of  T S W T  a t  
30°C. The specific ac t iv i ty  of  T S W T  and TSMrc d are 
a lmos t  identical  a t  30°C. The diminished ac t iv i ty  of  
the covalen t ly  br idged m u t a n t  m a y  be a conse- 
quence of the restr ict ions placed on the  m o v e m e n t s  
of  the po lypept ide  chains dur ing catalysis.  Large  
conformat ional  changes have  been suggested to 
a c c o m p a n y  subs t ra te  and cofactor  binding in the 
case of  t h y m i d y l a t e  synthase .  These changes have  
been observed in the crysta l  s t ruc ture  of  a t e rna ry  
complex of E. coil TS (Montfor t  et al., 1990). 
A t t e m p t s  to oxidize the TSMre d m u t a n t  in the pre- 
sence of the  subs t ra t e  deoxyur id ine  monophospha t e  
(dUMP) failed (da ta  not  shown), suggest ing t h a t  
subs t ra te  binding results in the m o v e m e n t  of  thiol 
groups  to posit ions which are s tereochemical ly  
unsui table  for disulfide format ion .  

Figure  4 shows the fa r -UV CD spec t ra  of  T S W T  
and TSMo,. A d rama t i c  loss in el l ipt ici ty is observed 
between 50 and  55 °C for TSWT,  whereas  the  inten- 
s i ty  of  the CD bands  of TSMo, remain  largely unal- 
tered up to 90°C. A notable  change a t  90°C is the  
enhancemen t  of  ellipticities a t  2]8  nm and 209 nm 

HPLC pump. The WT non-covalent dimer and TSMo, 
eluted at identical positions. Analytical ultracentrifuga- 
tion performed in 25 mM potassium phosphate buffer (pH 
6"9) yielded a molecular mass of 71 kDa for TSMox. 
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Figure 4. CD spectra of TSWT (left) and TSMox (right). 
Measurements were made in 25 mM potassium phosphate 
buffer (pH 6"9), 1 mM EDTA using a JASCO J500A and 
thermostatted cells over the temperature range 30 to 
90 °C. Spectra shown here are recorded at 30 °C ( ), 
50°C ( . . . .  ), 55°C ( . . . . .  ), 900C (-e-e-). 
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Figure 5. (Top). Dependence of CD ellipticity at 
208 nm as a function of temperature. Protein concentra- 
tions were 3 ~M in 25 mM potassium phosphate buffer (pH 
6"9), 1 mM EDTA. ([-1) TSWT; (/k) TSMr=d; (O) TSMox. 
The ellipticity at 30°C is taken as 100O/o . (Bottom). 
Dependence of the Rayleigh scattering intensity on 
temperature. Samples were equilibrated at the desired 
temperatures for 15 min in 25 mM potassium phosphate 
buffer (pH 6"9), l mM EDTA. Measurements were made 
on a Hitachi 650-60 fluorimeter using a 90 ° geometry. 
Samples were excited at 400 nm and scattering intensity 
recorded at 400 nm, using a band-pass of 5 nm for both 
monochromators. ([-1) TSWT; (/k) TSMr=d; (C)) TSMox. 

resulting in a flattening out  of the spectrum. This 
m a y  correspond to a retention of secondary struc- 
ture a t  the crosslinked fl-sheet interface, while 
melt ing out  of  helices m a y  occur. The reduced pro- 
tein TSMr= d shows a loss of  CD ellipticity a t  60 to 
65°C. The change in percentage molar  ellipticities a t  
208 nm as a function of t empera tu re  is plot ted in 
Figure 5 (top panel) for all the three proteins. In  the 
case of T S W T  and TSMrc d, visible precipitat ion 
occurs a t  the melt ing temperatures ,  whereas clear 
solutions of TSMox were obtained even a t  90°C. 
Figure 5 (bot tom panel) shows a plot of  light scat- 
tering intensi ty versus t empera tu re  for the three 
proteins, clearly demonst ra t ing  t ha t  TSMox remains 
soluble even a t  high tempera tures  in contras t  to its 
non-crosslinked analogs. 

The format ion of two disulfide crosslinks across 
the subunit  interface in TS has resulted in dramat ic  
stabilization of the overall s t ructure  of the protein, 
with CD studies providing evidence for the reten- 
tion of secondary s t ructure  a t  t empera tures  as high 
as 90°C. In  two previous studies of  engineered inter- 
subu.nit disulfides involving the DNA-binding pro- 
teins ;t-repressor (Sauer et al., 1986) and ;t-cro 
(Shirakawa et al., 1991) proteins, stabilization of 
s t ructure  has been demons t ra ted  by  CD/NMR 
studies. In  both  cases a loss of secondary and 
te r t ia ry  s t ructure  is observed by 65°C. Funct ional  
ac t iv i ty  a t  higher tempera tures  has not been 
reported,  p resumably  because of the problem of 
double-s tranded DNA melting. In the case of the 
dimeric enzyme glutathione reductase,  engineering 
of an intersubuni t  erosslink (75-75') yielded a fully 
act ive enzyme (Scrutton et al., 1988). However ,  no 
changes were observed in the melt ing tempera ture .  
The absence of any  thermal  stabilization m a y  be a 
consequence of the fact  tha t  appreciable conforma- 
tional flexibility is possible a t  the dimer interface. 
The lone covalent  crosslink acts as a flexible te ther  
and is p resumably  unable to restrict  interdomain 
movements .  

The covalent  intersubuni t  links engineered in the 
m u t a n t  T155C/E188C/C244T completely abolished 
the heat-induced aggregation process tha t  is 
observed in TSWT.  While appreciable enzymat ic  
act ivi ty  is observed in the m u t a n t  enzyme even at  
65°C, the loss of act iv i ty  a t  higher t empera tures  
may  be a consequence of local s t ructural  disorgani- 
zation of the active site, a l though diminished 
subst ra te  binding cannot  be ruled out. 
Fur thermore ,  in TSMox, total  ac t iv i ty  is regained 
upon cooling from 70°C to 30°C, suggesting tha t  the 
thermal  unfolding transit ion is reversible, in marked 
contras t  to T S W T  and TSMr= d, where thermal  
denatura t ion  is irreversible. 

The crystal  s t ructure  of L. casei TS shows tha t  
monomers  form dimer contacts  pr imari ly  between 
two five-stranded be ta  sheets tha t  are related by a 
unique r ight-handed twist, with a dihedral angle of 
28 ° between s t rand directions (Hardy  et al., 1987). 
A similar a r rangement  has also been observed in 
E. coli TS (Matthews et al., 1989). Analysis of  the 
interresidue contacts  (using a contact  limit of  3"5 A) 
a t  the dimer interface in L. casei TS reveals four 
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distinct, interact ing regions. The segments  18 to 37, 
153 to 188, 201 to 220 and 252 to 261 from each 
monomer  contr ibute  to the interface. Based on the 
number  of interracial interactions, the s t ructure  can 
be divided into two defined areas. The " lower"  par t  
of the s t ructure  (see Fig. l) accommodates  a much 
greater  proport ion of the contacts  and may  be 
expected to contr ibute  significantly to the binding 
energy. The " u p p e r "  contact  region between the 
two molecules contains only the 153 to 188 region. 
I t  is in this "weaker"  region of the protein t ha t  we 
have engineered two intersubuni t  disulfide cross- 
links. Presumably ,  covalent  bridging of an intrinsi- 
cally fragile region of the interface confers 
appreciable thermal  stabilization, as evidenced by  
studies on the triple m u t a n t  T155C/E188C/C244T. 
The results suggest t ha t  covalent  crosslinking across 
protein-protein contac t  surfaces may  provide an 
a t t rac t ive  means of stabilizing mult imeric  struc- 
tures in general. In the case of a dimeric protein like 
TS, unfolding and dissociation presumably  precede 
thermal ly  induced precipitat ion,  which is a conse- 
quence of aggregation of non-nat ive structures.  
Structural  reinforcement of the dimer  interface m a y  
thus provide a useful s t ra tegy for avoiding irrevers- 
ible precipitation,  a desirable goal of m a n y  protein 
engineering studies. Interest ingly,  symmetr ica l  
disulfide bridging of a dimeric s t ructure  has been 
observed in the case of human  interleukin-5 
(Milburn et al., 1993). 
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