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Nonideality in the composition dependence of viscosity in binary mixtures

Goundla Srinivas, Arnab Mukherjee, and Biman Bagchi*
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-12, India

In this work we introduce two models to understand the anomalous composition dependence of
viscosity of binary mixtures. Both models consist of a mixture of two molecular spétiasd B)

with the same diameter and mass but varying solute—solvent Lennard-Jones interaction. In model |,
the two different species are strongly attractive while in model 11, the attraction is weaker than that
between the pure components. We have carried out extensive computer simulations of the two
models. In addition, we study mode coupling theory for the viscosity of binary mixtBiah.the
molecular dynamics simulations and the microscopic theory show the emergensiong
nonideality even in such simple systems. Model | shows a positive departure from ideality while
model Il shows the reverse behavior. The reason can be traced to the enhanced mean square stress
fluctuations (MSSPH in the model | but decreased MSSF in the model Il. The models show
deviations(from ideality) very similar to the ones observed in experiments.

I. INTRODUCTION ring’s theory has been questioned, as this theory is based on

i i the creation of holes of the size of the molecules, which is
Binary mixtures are well known to show a marked de'energetically unfavorable.

parture from the ideal behavior given by the Raoult's fat. There also exist several other empirical expressions
For a given propertyP, the latter predicts the following hich attempt to explain this anomalous dependence of vis-
simple dependence on the composition cosity in binary mixture§.0n the experimental side there are
(1 evidences of the correlation between excess viscosity and

excess volume of the liquid mixture where it has been ob-
wherex;’s are the mole fractions anfg;’s are the values of served for many cases that if excess volume is positive then
the propertyP of the pure(single componentiquids. More ~ €xcess viscosity becomes negative and vice vetsa.

P:X1P1+ X2P2,

often than not, significant deviation from Eg) is observed In recent years several interesting theoretical and com-
which is usually denoted by an excess function puter simulation studies on Lennard-Jorie$) binary mix-
tures have been carried dif These studies have concen-
Pex= P—(X{P1+X2P>). (2)  trated mainly on the glass transition in binary mixtures which

) ) ] ] are known to be good glass formegia contrast to the one
Considerable literature exists on such behavior, wiFecan component LJ liquid which does not form computer glass

be volume, free energy, or viscosity. The last quantity is theyagjly . 1n addition, these studies have considered only one
topic of the present work. particular composition and a unique interaction stredgth.

The deviation from ideality appears to have a correlation:ongjgerable research has also been carried out by using the

with the solute—solvent mutual interaction. Despite the im'equilibrium molecular dynamic simulation method to deter-

portance an_d the Ion_g interest in this problem, t_here c!oes _”(?ﬁine the transport properties such as ¥elf and mutual
seem to exist a satisfactory explanation of this nonidealityyit sjon coefficients*1in binary mixtures. Nonequilibrium
(or nonadditivity in binary mixtures. In fact, we are not p5jecylar dynami¢MD) simulation methods have also been

aware of any microscopic studpased on the time correla- omjoved to determine the shear viscosity and thermal con-
tion function approachof the anomalougor nonmonoto- gy ctivity of binary soft-sphere mixturd&® Heyes carried

nous composition dependence of viscosity. This is, how-qt the extensive equilibrium MD simulations of Lennard-
ever, not surprising because a microscopic calculation ofj,nag binary mixtures by using both the microcanonical
viscosity is quite difficult. In the absence of any microscopic(N V B and canonicalN V T) ensemble methods to study

theory, the experimental results have often been fitted to seypq partial properties of mixing and transport coefficients by

eral empirical forms. Prominent among them is EYNing's 3qoniing the time correlation function approdéhApart
theory of viscosit§ extended to treat binary mixtures. This from the bulk viscosity, these simulations seem to have sat-

theory can correlatéwith the help of one adjustable param- js¢actorily reproduced the experimentally determined trans-

eten several aspects of the composition dependence of ViSsort coefficients for the Ar—Kr mixturé

cosity of many liquid mixtures(like benzene-methanol, However, the strong nonideality in the composition de-
toluenermethanol, etg.” However, the very basis of Ey- pendence of viscosity, observed in many experiments, has
not been addressed to in the work of Heyesr by others.
*Electronic mail: bbagchi@sscu.iisc.ernet.in The nonideality in the case of inert gas mixtures is small,
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since their mutual interaction strengthe fg) follows the N

Berthelot mixing rule. To capture this strong nonideality we o= E [(p}‘pjz/m)Jr szxj], 4
introduce and study two mode(eeferred to as model | and =1

model 1)) of binary mixtures in which the solute—solvent whereFjZ is the z component of the force acting on thth
interaction strength is varied by keepialjthe other param-  particle and the corresponding position Xs, pjz is the z
eters unchanged. All the three interactiorisolute—solute, component of the momentum ¢th particle, m being the
solvent—solvent, and solute—solvertre described by the mass of the particle. To map the stress tensor for the binary
Lennard-Jones potential. Among the two models, @nedel  mixture, the total number of particle¥ is divided intoN,

I) promotes the structure formation between solute and soknumber of solvent particlésand N, (number of solute par-
vent molecules due to strong solute—solvent attractive intetticles) such thatN;+N,=N. Thus,o*? can be written as
action. The second modémodel 1) leads to the opposite Ny

scenario by promotm_g the _structure breaking, because of szzz [(pjxpjz/m)+|:jzxj]

weak solute—solvent interaction. These two models are per- =1

haps the simplest models to mimic the structure making and
structure breaking in binary mixtures. For convenience, we
denote the solvent molecules Asand the solute molecules
asB. Note thatA andB have the same radius and the same
mass.

In the work reported here, extensive MD simulations an
detailed mode coupling theorfMCT) calculations of the
composition dependence of viscosity have been carried out G..=(VkgT) X (*40))?). (6)
f_or bOIh. m.odels : a_nd ”'. Model | §hows a pronounqmis_l—_ Finally, the frequency dependent viscosity is obtained by
tive deviation from ideality at the intermediate composition, Lapl ;

. X ) . place transforming(t),
precisely of the type observed in many experimental situa-
tions. Further analysis shows that this nonideality is driven *
by the enhancement in the value of the mean square stress 7(2)= JO dtexp(—zn(t). @)
fluctuation. We found that a simple mode coupling theory ] ) S
provides a good agreement of the qualitative features. ModdfXPerimentally observed viscosity is given by the zero fre-
Il shows anegativedeviation from ideality—the signature of dueéncy limit of 7(z).
the structure breaking—Ileading to an enhancement of fluid-

N
+ 2 [(plpim)+FiXx]. (5)
j=Np+1

Note that the solvent particles are labeled from Ntoand
ds.olute particles fromN,;+1) to N. High frequency shear
modulus is given by

Uij:46ij

ity and lowering of viscosity. The agreement between com-
puter simulation and the mode coupling theory calculationd!! SIMULATION DETAILS
suggest that one can indeed propose a quantitative explana- e have carried out a series of molecular dynamic simu-
tion of the nonideality in the composition dependence Ofjations of binary mixture by varying the solute mole fraction
viscqsity in terms of interaction among and between the tWG;om 0 to 1. Our model binary system consists of a total of
Species. 500 [solventA)+solutgB)] particles. We have dealt with
One should note that any microscopic calculation of Vis-the microcanonical ensembleonstantN V B), by applying
cosity (or any transport properfyof a binary mixture has 10 the ysual periodic boundary conditions. Interaction between
deal with a broad phase separation region when the two speny two particles is given by the Lennard-Jones 12—6 poten-
cies “dislike” each other. In this limit, one is restricted to {4
high temperatures. 1 5
Organization of the rest of the article is as follows. In the (i) _ i) ®)
next section we describe the basic definitions and the main rij rij) |’
equations that have been used in the present mo_de COUpI'Wﬁerei andj represent any two different particles. We set the
theory. In Sec. Ill, we present the simulation details and th%iameter(a) and masgm) of both the solute and the solvent
models used in this study. Detailed description of the microy, unity, for simplicity. The solvent—solute interaction
scopic theory Is gi\_/en in Sec. IV. Secti.on V.contains thestrength,lies in the potential well depth g, whereA andB
resqlts af‘d discussion. We close the article with a few ConFepresents the solvent and solute particles, respectively.
clusions in Sec. VI. Throughout this study we keep the interaction strength
=1.0, (solvent—solvent egg=0.5 (solute—solute To ac-
Il BASIC DEEINITIONS count fqr the two models.introduced in this study, we hgve
dealt with the two very different solvent—solute interaction
Microscopic expression for the time-dependent sheastrength values, namebjg=2.0 in model | andepg=0.3 in
viscosity is formulated in terms of stress autocorrelationmodel Il. While the former accounts for the situation in
function and is given by which the solute and solvent attract each other stronger than
_ they do their species, the latter describes the opposite sce-
7(0)=(VksT) " (o 40)a™(1)), ®) nar?/o. In otherpwords, the models in whiahg= ng and
where ¢** is the off-diagonal element of the stress tensor,eag=0.3 refer to theattractive and repulsivesituations, re-
defined as spectively.



We set the reduced temperatuFé(=kgT/€) equal to  terms contribute approximately equally to the total viscosity.
unity in model | and 1.24 in model Il. The reduced density This is true at normal temperature and density, away from
(p* =pa?) is 0.85 in both the models. After many trial runs phase separation or glass transition points.
to verify the existing results on viscostyof one component Any calculation of the MC part of viscosity needs the
liquids, we have selected a time st&p* =0.002r for model  construction of the binary product of slow variables. The
I, and At* =0.001r for model Il for the integration of New- natural choice in case of a one component system is three
tonian equations of motion. The scaled time has been desurrent termgtwo transverse and one longitudipand the
noted asr=a+/m/e. We have dealt with six different solute density variable. At high density the decay of the current
compositions, namely 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. Fomodes is fast and the dominant contribution comes from the
each solute composition we have equilibrated the system ugensity modé?~?*Therefore, we neglect the contributions of
to 1.5x10° steps. Simulations carried out for another 2 the current modes to the mode coupling term and retain only
X 10° steps after the equilibration during which the stressthe density mode contribution.
tensor has been calculated. We have also calculated the par- In the case of a binary mixture, the construction of bi-
tial radial distribution functions in each case to make surenary products is a bit difficult. The natural choice of slow
that the clustering or phase separation is avoided. density variables is the two partial densities, and p,. In
this there is one ambiguity though. What really plays an
important role in the mode coupling theory calculation is the
local density. These partial densities can be changed by an
exchange mechanism and therefore, may not be regarded as
“good”slow variables. However, this exchange should be-

Any formulation of the MCT starts by separating the come slow at high densities. Another possible choice is to
fast, short time decay from the slow, long time decay of theretain the total densityp+p,) as the slow variable and
relevant time correlation functioftcf). The short time decay choose the compositiaiy), wherex=p,—p,, as the second
is assumed to occur from a few bodyainly binary inter-  slow variable. According to the demand of MCy js made
actions whereas the long time decay is assumed to occ@rthogonal top. We denote the orthogonal form gfas x4,
from coupling of the tcf to the binary product of the slow thus
collective modes. Thus, the expression for the viscosity can
be decomposed into two parts and writteR°&S

7(1) = Nshod ) + 7cotectivd 1) - 9

Thus, central to the mode coupling theory development offhe mode coupling contribution to viscosity can be written
any time correlation function is this assumption of the sepaas
ration of time scales between the fast initial decay and the
slow long time decay. The robustness of a mode coupling
theory calculation actually depends critically on the accurate
evaluation of the short time part. Not only does the short
time part(often called the “bare” term often contributes There are situations wherg,, can play an important, even
about 50% to the value of the transport coeffiCiTére vis-  gominant, role. This happens near the phase separation.
cosity), but also determines the magnitude of the contributjgyever, in the high density limit that we have considered,
tion of the long time part. In fact, a central ingredient of both yaticularly for the models studied, this composition term

the short and the long time contributions is the static correypes not appear to be important as shown by our preliminary
lation functions. calculations.

The short time contribution, often referred to as the bi- In the present work, we have considerbdth ap-
nary term, is assumed to be given by a Gaussian functionygaches to the mode coupling theory and found that they
The rational for this assumption comes from the observatiorbrovide comparable results in both the attractivendel )
that only the even powers of tini§ appear in the shorttime  anq repulsivemodel Il) cases. We refer to the set of MCT
expansion ofp(t) and cc_>||ec_tive term contri.butio.n starts as cgjculation in whichp, and p, are the slow variables as
t*. So .thetz term contribution to binary viscosity can beé gcheme | and scheme i for the set in which the total density
ap[grzolxmated as a Gaussian function and can be writte(}) considered as the slow variable. Note that the total den-
as” sity term contains equilibrium and dynamic cross correla-

7PN =G., exp(—tzlrf]), (10) tions_bet_ween the two species, in addition to the pure term

contributions.
where 7, , appearing in the above expression, can be deter- .
mined t;ly the second derivative ef(t). The calculation of A. The binary term
G.. and 7, shall be described in Sec. IV A. As shown later, Here we describe the formulation of the binary term. In
even thet? term requires three particle static correlationthis direction the first step is the calculation of the stress
function. For pure liquids, calculations of binary terms haveautocorrelation function, that is the value of the infinite fre-
been reported by Balucaiial?® and also by Bhattacharrya quency shear modulu@,, given by Eq.(6). With the help of
and Bagch?® In one component system, binary and MCT Eq. (5), Eq. (6) can be reduced to the following exact form:

IV. FORMULATION OF THE MODE COUPLING
THEORY

Xog=X—({xp)pl{pp))- (11

Neollectivd 1) = 77pp(t) + nXogXOg(t)- (12



G.=(p1tpa)ksT B. The mode coupling term

om 2 . d dv;i(r) The mode coupling contribution to viscosity can be
T pipif drg;j(r) — 4#}, (13)  evaluated by using the general approach initiated by Bosse
15i7=1 0 dr dr et al?* and further developed by GestZiln this approach

one starts with the general time correlation function expres-
sion for the shear viscosity in terms of the transverse current.
vent particles andh, denotes the same for the solute par-One starts with a Mori-type rephrasing of the Green—Kubo
ticles. g;;(r) is the partial radial distribution function of the formula for the shear viscosity. Thus, the expression for the

particles labeled andj. Note thatv;; includes three different viscosity can be written as

wherei,j=1 indicate solvent particles andj=2 denote
solute particles. Thug, is the number density for the sol-

interaction potentials present between the solute and the sol- m2 [
vent particles. By using Eq10), the expression for, can n=lim lim —rf dt(QLj*(q)|
be written as c—0q-0 a4V Jo
_ [-2G, ” XexpiQLQT—et)|QLj*(a)). (21)
"~ V=0 1 - - -

In the above equatiog has been considered to be aligned

In the ||qu|d region,n(t) is mosﬂy dominated by its poten- anngZ direction..'_ is the l‘!ermitian Liouville OPeratOfQ
tial part. Thus, using Eq$3) and(5), the expression for time  =1—P, whereP is the projection operator which projects

dependent viscosity can be reduced to the following form: on to the chosen dynamical varial#ié. A“ is the set of slow
variables which consists of three current densities and two

2 F2y particle densities for both the components which constitute
i% the binary mixtureA®, A%, andA2 are the commonly used
N three current densiti€d.A* and A% are choosen as the slow
1 )> (15 variables for densities of two different particles and defined

n(t)=(VkgT)~ 1<(2 Fix "

=N;+1

2 FAOX(O+ 2 | FOx(0)

as
The second derivative of the total short timpét) is sepa- . N1 _
rated into contributions from two, three, and four particle A =P1(Q):21 exp(—ig-r;), (22
correlation terms by using the proper choices of atomic .
labels??23 N
. . . . AS= = 23
#(0)=i2(0)+ 7%(0)+ 7*(0). (16) pAQ)= 2| eXRiaTy) &

In the above expression of viscosity, the contribution of the
four particle correlation terni(*)(0) is exactly zeré? The
final expressions of the remaining two termg?)(0) and
73)(0), aregiven as

pi(q) is the number density of thah species(A and B).
SpeciesA andB are not to be confused with the dynamical
variablesA* andB,(q) (introduced latex. The final expres-
sion for the mode coupling part of viscosity can be obtained

—oq 2 by following the method outlined in Refs. 24 and 25 and is
= (2 — 2ry2 2 H .
i )(o)—m”z:l ,p]j drr2[r2(v)?+ 2rvfv]] given by:
Y kgT SIS (q)
+7(vi,-) 19i;(r), 17 Moo, = 60#[ q4 S “ thZ(q t). (29
E P.P;Pkf dacthy(q) Note that the lower limit of the time integration has been
changed from zero te, to take out all the contributions of
X[3T?(Q)Tilk(Q)JFZTizj(Q)Tizk(Q)], (18  the ordert? as the collective contributions are expected to
start ast*. 7 » Is the characteristic time for Gaussian decay

where the subscripts,j,k=1 denote the corresponding appeared in the expression of binary viscosity in @6). In
properties of solvent particles aimg,k=2 denote the same the apbove expressions, the dynamical input parameters are
for the solute particles;y(q) is the FOU”EI” transforml ofthe the partial intermediate scattering functioRg(q,t). The
pair correlation function. The integral{(q) and T3(q) expressions of these functions are given in detail in the Ap-
[appearing in Eq(18)] are defined as pendix.

. o The total mode coupling contribution to the viscosity is
Ti(q)= fo drrZJ3(qr)[rvi’}(r)—vi’j(r)]gij(r), (199  obtained by summing together all thv,n,ipj terms(scheme),

Tg(q)—J drr2J qr)[rv r)+4v|](r)]g”(r) (20 77p,,=_2 Dpip;- (25

whereJ (qr) andJs(qr) are the spherical Bessel functions. As discussed earlier, an alternative MCT approach is to
vij=doj(r)/dr andv{]=d2vij(r)/dr2. treat the total densityp=p;+p, as the slow variable



(scheme I). In this approach the mode coupling contribution 3
of p to the viscosity can be shown to be given by the follow-

ing expression: 251
kBT * , 2 F
m—gr | dadiSi@s(@? :
‘3 15 -
) o0
Xf dt{F+(q,t)/Sr(a)]%, (26) 1}
Tn
where thetotal intermediate scattering functiof(q,t) is 0.5
expressed as the sum of the partial intermediate scattering
functionsF;;(q,t) weighted by their mole fractions ° 1 2 N 4
2 r/c
FT(QJ):”Zl VXixjFij(a,t) (27 FIG. 1. Thesolventsolventpartial radial distribution functiofgaa(r)]

obtained from MD simulationgrepresented by symbglss compared with
that obtained from the SMSA schen(fell line) for a 0.4 solute composi-

and the total static structure factor is defined as tion, for model 1. HereT* =1.0 andp* =0.85.
2
Sr(a)= 2 VxiX;Sj(q). (28)
ihj=1 V. RESULTS AND DISCUSSION
First derivative of the total static structure fact8f(q) is In Figs. 1 and 2, the solvent—solvenA<{A) and
given by solvent—solute A—B) partial radial distribution functions
) are plotted for model | € ,g=2.0) for 0.4 solute composi-
b9 _d — tion. In both figures the full line represents the theory and the
Sr(q)= aq Sr(a)= aq-zl XiXiS;(Q). (29 symbols represent the simulation results. The theoretical

lines are obtained by solving the Ornstein—Zernike equations

Preliminary calculations have shown that the contribu-for mixtures by using the soft mean spherical approximation
tion of the ComDOSition fluctuation term is much smaller than(SMSA)28 SMSA is known to provide a reasonab|y accurate
the total density term. We have, therefore, neglected th@escription of radial distribution functions in dense liquids.
composition term. In fact, most of the calculations reported=or model I, both theory and simulations show a large first
here have been performed with scheme I. We found that thgeak ingAB(r) (as shown in F|g P Compared to the respec-
total density term alone gives results quite similar to the onegve one component neat liquids. For model Il, we have ob-
obtained withp,(q) and p,(q) as the slow variables. This served the opposite effect—the first peakgigs(r) is now
aspect will be discussed later. reduced compared to neat liquids. While these are expected,

MCT calculation with binary mixture requires determi- the agreement between theory and simulation is by no means
nation of partial intermediate Scattering functions. For angerfect_ This is cause for some concern because we have

component system at density—temperature conditions awaysed SMSA to obtaily;;(r) used in MCT calculations. How-
from the glass transition, we found that the continued frac-

tion representatiorfbased on the short time expansids
quite adequate for the calculation of viscosity and friction, as
discussed many years ago by Sjogren and Sjolattdeor
binary mixtures, however, such a continued fraction calcula-
tion turns out to be quite difficult, because the second deriva- 3l
tive of F15(q,t) is zero and the sign of the fourth derivative
is oscillatory. We have, therefore, used an alternative ap-
proach to obtainF;;(q,t). Fi;j(q,t) is calculated from the
time dependent density functional thedfyExpressions for
Fij(q,t) are presented in the Appendix. For neat liquids,
Munakata and lgarishi developed a self-consistent scheme to 1y
calculate dynamical correlation functions and applied it to

calculation of the incoherent scattering functfdnSelf- j
consistent calculation of partial intermediate scattering func- 0
tion in the case of binary mixtures is rather difficult. There-

fore, we have used a zero frequency binary diffusion

coefficient as an input parameter ﬁh(q,t), obtained by FIG. 2. Thesolvent-solutepartial radial distribution functiofigag(r)] ob-

using 77bin in the Stokes—Einstein law. Expressions of all thetalned from MD simulations is compared with the}t obtame_d from the SMSA
cheme, for model | for the 0.4 solute composition. Full line represents the

relative basic _quar_1tities, _n_ecessary for '_[he calculation O?heory while the simulation result shown by symbdl$. and p* are the
Fij(g,t), are given in detail in the Appendix. same as in Fig. 1.

gan(r)

0 1 2 3 4
r/c



ever, we find that despite this limitation, MCT can describe 4 .
the basic features quite well. We shall come back to this
point later. 351 $ .
As solute—solvent interaction strength affects the struc-
ture surrounding a solute/solvent to a great exteff the
above observed featuresgr (r) can be understood in terms
of the solute—solvent interaction strength. While the en-
hanced attractive interaction between solute and solvent
(model ) brings them closer together, the repulsive interac-
tion forces the solute and solvent away from each other. In 2 |
the former case as the solute—solvent interaction is favored
over the relatively moderate solvent—solvent interaction and sl ‘ ‘ ‘ ‘
even weaker solute—solute interaction. The formation of "o 02 0.4 0.6 0.8 1
solute—solvent nearest neighboring pair dominates. As a re- solute composition
sult the two adjacent shells of solute/solvent tend to be oc-
lJG. 3. The composition dependence of viscosity obtained from MD simu-

cupied by the opposite species. In other words, over a Sholfations is compared with the mode coupling theory predictions for model I.

diStanceA__B_A an(_j B-A-B repeating_ units shall be pre-  sympols show the simulation results while the full line represents the MCT
ferred. This feature is clearly reflected in the solvent—soluterediction.T* andp* are the same as in Fig. 1.

partial radial distribution functionFig. 2. On the other

hand, in the repulsive cas@nodel Il) solute and solvent

molecules “dislike” each other. In this case, the solvent—Fig. 7, we have plotted the high frequency shear modulus
solvent interaction is the strongest and the solute—solverigiven by Eq.(5)], obtained both from MD simulations and
interaction is the weakest. Due to this hierarchy of interacthe microscopic method, for various solute compositions, for
tion, the probability of finding the opposite species in themodel I. Despite the differences in the magnitu@s, ob-
vicinity of a solute/solvent is very small. This explains the tained from the two different approachésimulation and
diminishing of first and second peaks @ng(r) when the theory shows similar behavior, over the entire composition
specific interaction is repulsive. In other words, the localrange. The same is true for different interaction strengths.
structure around a solute/solvent is almost evacuated ifhis is an important result which suggests that the significant

viscosity (1)

25 [
.

terms of the opposite species. contribution to the nonideal behavior of viscosity originates
In simulations, viscosity#) is calculated by using the from the nonideality in the zero time stress correlation func-
following expression: tion.
1 . As mentioned earlier, the viscosity values calculated ac-
n= ﬁj (o(0)a(t))dt, (30) cording to the scheme Il by using total dengip(q)] as the
3kgT*V* Jo slow variable[with Eq. (26) as the MCT expressidnagrees

where V* is the volume of the simulation box in reduced Well With the ones obtained by using the scheme I. A com-

units andkg is the Boltzmann constant. The remaining quan-parlson betwee_zn th_e rgsults obtalne_d by using the two
tities appearing in the above expression are already describ&‘fhemes are given in Fig. 8. Comparison between the two
in the previous sections. Viscosity values obtained from
simulation, as well as MCT, are plotted against the solute
composition for the model | in Fig. 3 and for the model Il in
Fig. 4. In both the figures, simulation results are shown by
symbols while the full line represents MCT prediction.
Agreement between the theory and simulation is satisfactory
for both the models over the entire composition range. The
results presented in Figs. 3 and 4 are in qualitative agreement
with the experimentally observed excess viscosity in binary
mixtures®

The stress autocorrelation functiodSACF obtained
from simulations are plotted in Figs. 5 and 6 against reduced
time at various solute compositions, for models | and II,
respectively. The respective stress auto correlation functions
(without normalization are plotted in the inset of each fig- .
ure. Interestingly(as observed in both the modetbe short solute composition
time behavior of normalized SACF did not alter much eitI"erFIG. 4. The composition dependence of viscosity obtained from MD simu-
with the composition or with the specific interactidas lations is compared with the mode coupling theory predictions for model I1.

shown in main figures We found that the major part of the Symbols show the simulation results while the full line represents the MCT

; P ; o ediction. HereT* =1.24 andp* =0.85. This figure together with Fig. 3
observed difference in viscosity for these systems O”gmateg;ows that the agreement between the theory and simulation is good for

from thezero t_ime value of SACh—Nhi(?h is j[he mean Square most of the composition range for both the strofmgodel ) and weak
stress fluctuatiodMSSH. To make this point more clear, in (model 1)) solute—solvent interactions.

viscosity (1)

0 0.2 0.4 0.6 0.8 1
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FIG. 5. The normalized stress auto correlation function obtained from MDgig 7. High frequency shear moldulus values obtained from MCT and MD

simulations is plotted against the reduced time at various solute compOSkimyjation are plotted against the solute composition for the model I. The
tions for model I. Inset shows the same without normalization. For the sakgy|| |ine shows the MCT result while the symbols represent that of the

of clarity, we have plotted only 0.(full line), 0.4 (large dashed line and
0.6 (small dashed linesolute compositions in the main figure. In the inset,
curves from top to bottom represent 0.0, 0.4, 0.6, 0.8, and 1.0 solute com-

positions. As shown in the main figure, short time behavior of normalized

SACF remains unchanged with the composition. A large decrease in sacV!. CONCLUSION
is observed by increasing the solute composif@mshown in the insgtT*
andp* are the same as in Fig. 1.

simulations.T* andp* are the same as in Fig. 1.

In this article we have presented molecular dynamics
simulations and mode coupling theory calculations of the
composition dependence of viscosity of binary mixtures. We

schemes for model | is shown in Fig(aB while Fig. 8b)
shows that for the model Il. The reason for this close prox-
imity is that the partial intermediate scattering functions are
not only small but also tend to cancel each other in {he
contribution.

As discussed earlier, the partial radial distribution func- €
tions obtained from SMSA are not in very good agreement =y
with simulations. While this could be partly responsible for ¢
the lack of very good agreement between theory and simu- £

lation, the general features seem to be captured even by us-
ing SMSA.
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FIG. 6. The normalized stress auto correlation function obtained from MD 0 0.2 04 06 08 1
simulations is plotted against the reduced time at various solute composi- solute composition

tions for model Il. The inset shows the same without normalization. Results

for the solute compositions 0@ull line), 0.4 (large dashed lingand 0.6  FIG. 8. The viscosities obtained from MCT by using two different mode
(small dashed lineare shown in the main figure, while the inset shows the coupling schemes are plotted as a function of solute composition. The full
results for solute compositions 0.0, 0.4, 0.6, 0.8, and 1.0. A&rel.24 and line shows the viscosity obtained by using scheme | while the result for
p*=0.85. Figures 5 and 6, together depict that the short time behavior ofcheme Il is shown by the dashed lii€or the description of scheme | and
normalized SACF remains unchanged both with the composition and thecheme I, please see the t¢xh) represents the results for model | affl
interaction strength. shows the same for model II.
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is quite good, although not fully satisfactory. However, it is
satisfying to note that both the theory and the simulations
can capture the qualitative aspects of the composition depeppENDIX
dence of viscosity.
The main reason for the anomalous composition depen- Partia_l static structure fz_ictors are calculated according to
dence seems rather easy to understand. It arises from a sintft® following formula by using SMSA closure:
lar dependence of the MSSF on the composition of the mix- Sij(a)= &+ \/rpjhij(q)- (A1)
:Z;(ha.e:-thhl;sr; g Ey?;rn:ﬁ: Sg?/i;::]at_rtsg j;r?g:?ilgsh?)? foitr;u:tg:[fhe intermediate scat_tering fgnction is defined as the density
, o ” ’ ' P8 uto correlation function as given as
an important role in augmenting the effect. The reason for
the nonmonotonous composition dependence of MSSF arises  Fij (4:t) = (NiN}) ™~ "X pi(q,t) p;(—,0)). (A2)
from its dependence on the force acting on each molecule.\e denoteF;(q,2) [Laplace transform of;;(q,t)] as the
It is worth emphasizing that in both models the compo-partial dynamic structure factor. Using time dependent den-
nents have the same radius and the same mass. In additiondity functional theory, the four coupled equations that are
the emergence of significant nonideality, we found an impor-obtained for the dynamic structure factors are given as
tant result that nonideality in both the models is driven by the Di(2)q?
zero time value of the shear stress autocorrelation function  Fj;(q,z)=[z+ Di(z)qz]‘lsij(q)Jr :
which is proportional to the infinite frequency shear bulk
modulus G,,. Dynamical correlation seems to follow the 2
lead given by the static correlations, as is most often the case szl VpipkCik(Q)Fii(a.2). (A3)

at normal liquid temperatures far above the glass transition o
temperature. The four coupled equations,{=1,2) are solved to get

the following expressions for partial dynamic structure fac-
tors:

z+Di(2)g°

In this work we have not explored the composition de-
pendence that can arise from the difference in sizes arfid
B. Work in this direction is under progress. 1 bin -~ 2

We have already stressed that the MCT calculations pre-11(d:2) = m[{H D2"(z=0)9(1~ p2C22(a));
sented here are not self-consistent. The reason for this is that .
an accurate short time description of the partial intermediate X S13(0)) + D3"(2=0)0?\p1p2C12(0) Sp1(a) ],
scattering functiorf ;5(q,t) is not available. Thus, we could (A4)
not proceed via the usual route of constructing continued
fraction representation d¥;;(q,t) and then solve the mode Fi(q,2)=
coupling theory expression for friction consistently with the 2(9,2)

viscosity. Earlier experience has shown that nonself- ><812(q)+Dl{i“(z=0)q2 /_P1P2012(Q)322(Q)],
consistent theories provide reasonably accurate estimate

[{z+D5"(z=0)q%(1— p,c.Aq))}

(within 10%—-20% of the zero frequency value of the fric- (AS)
tion and viscosity, so long one is far above the glass transi- bin 5
tion temperature, as is the case here. F21(0,2)= 2(0,2) [{z+D1"(z=0)q°(1—p1c11(a));

The present study suggests many future problems. A ,
more detailed study of the density and temperature depen- X Sy(0)) +D5"(2=0)4?\p1p2C21(q) S1a(A) ],
dence of nonideality is required. The present simulations (AB)
have been carried out in the microcanoni¢sl V E) en-
semble. We need to carry out similar simulations at constar]t;zz(q,z)= [{z+ D?i“(z=0)q2(1—p1c11(q))}
pressurgN P T). The present calculations clearly show the Z(9,2)
need for more accurate description of the partial radial dis- ><Szg(q)+Dgi”(2=0)q2@021(q)512(q)],
tribution function of binary mixtures. We need also to con-
sider the case where the constituents have different radii. (A7)

Work in these directions is under progress. andZ(q,z) defined as
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