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Nonideality in the composition dependence of viscosity in binary mixtures
Goundla Srinivas, Arnab Mukherjee, and Biman Bagchi*
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-12, India

In this work we introduce two models to understand the anomalous composition dependence of
viscosity of binary mixtures. Both models consist of a mixture of two molecular species~A andB!
with the same diameter and mass but varying solute–solvent Lennard-Jones interaction. In model I,
the two different species are strongly attractive while in model II, the attraction is weaker than that
between the pure components. We have carried out extensive computer simulations of the two
models. In addition, we study mode coupling theory for the viscosity of binary mixtures.Both the
molecular dynamics simulations and the microscopic theory show the emergence ofstrong
nonideality even in such simple systems. Model I shows a positive departure from ideality while
model II shows the reverse behavior. The reason can be traced to the enhanced mean square stress
fluctuations ~MSSF! in the model I but decreased MSSF in the model II. The models show
deviations~from ideality! very similar to the ones observed in experiments.
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I. INTRODUCTION

Binary mixtures are well known to show a marked d
parture from the ideal behavior given by the Raoult’s law.1–4

For a given propertyP, the latter predicts the following
simple dependence on the composition

P5x1P11x2P2 , ~1!

wherexi ’s are the mole fractions andPi ’s are the values of
the propertyP of the pure~single component! liquids. More
often than not, significant deviation from Eq.~1! is observed
which is usually denoted by an excess function

Pex5P2~x1P11x2P2!. ~2!

Considerable literature exists on such behavior, whereP can
be volume, free energy, or viscosity. The last quantity is
topic of the present work.

The deviation from ideality appears to have a correlat
with the solute–solvent mutual interaction. Despite the i
portance and the long interest in this problem, there does
seem to exist a satisfactory explanation of this nonidea
~or nonadditivity! in binary mixtures. In fact, we are no
aware of any microscopic study~based on the time correla
tion function approach! of the anomalous~or nonmonoto-
nous! composition dependence of viscosity. This is, ho
ever, not surprising because a microscopic calculation
viscosity is quite difficult. In the absence of any microscop
theory, the experimental results have often been fitted to
eral empirical forms. Prominent among them is Eyring
theory of viscosity4 extended to treat binary mixtures. Th
theory can correlate~with the help of one adjustable param
eter! several aspects of the composition dependence of
cosity of many liquid mixtures~like benzene1methanol,
toluene1methanol, etc.!.5 However, the very basis of Ey
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ring’s theory has been questioned, as this theory is base
the creation of holes of the size of the molecules, which
energetically unfavorable.

There also exist several other empirical expressi
which attempt to explain this anomalous dependence of
cosity in binary mixtures.6 On the experimental side there a
evidences of the correlation between excess viscosity
excess volume of the liquid mixture where it has been
served for many cases that if excess volume is positive t
excess viscosity becomes negative and vice versa.2,3

In recent years several interesting theoretical and co
puter simulation studies on Lennard-Jones~LJ! binary mix-
tures have been carried out.7–9 These studies have conce
trated mainly on the glass transition in binary mixtures wh
are known to be good glass formers~in contrast to the one
component LJ liquid which does not form computer gla
easily!. In addition, these studies have considered only o
particular composition and a unique interaction strength7–9

Considerable research has also been carried out by usin
equilibrium molecular dynamic simulation method to dete
mine the transport properties such as self10–12 and mutual
diffusion coefficients13,14 in binary mixtures. Nonequilibrium
molecular dynamic~MD! simulation methods have also bee
employed to determine the shear viscosity and thermal c
ductivity of binary soft-sphere mixtures.15,16 Heyes carried
out the extensive equilibrium MD simulations of Lennar
Jones binary mixtures by using both the microcanoni
~N V E! and canonical~N V T! ensemble methods to stud
the partial properties of mixing and transport coefficients
adopting the time correlation function approach.17 Apart
from the bulk viscosity, these simulations seem to have
isfactorily reproduced the experimentally determined tra
port coefficients for the Ar–Kr mixture.18

However, the strong nonideality in the composition d
pendence of viscosity, observed in many experiments,
not been addressed to in the work of Heyes17 or by others.
The nonideality in the case of inert gas mixtures is sm
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since their mutual interaction strength (PAB) follows the
Berthelot mixing rule. To capture this strong nonideality w
introduce and study two models~referred to as model I and
model II! of binary mixtures in which the solute–solve
interaction strength is varied by keepingall the other param-
eters unchanged. All the three interactions~solute–solute,
solvent–solvent, and solute–solvent! are described by the
Lennard-Jones potential. Among the two models, one~model
I! promotes the structure formation between solute and
vent molecules due to strong solute–solvent attractive in
action. The second model~model II! leads to the opposite
scenario by promoting the structure breaking, because
weak solute–solvent interaction. These two models are
haps the simplest models to mimic the structure making
structure breaking in binary mixtures. For convenience,
denote the solvent molecules asA, and the solute molecule
asB. Note thatA andB have the same radius and the sa
mass.

In the work reported here, extensive MD simulations a
detailed mode coupling theory~MCT! calculations of the
composition dependence of viscosity have been carried
for both models I and II. Model I shows a pronouncedposi-
tive deviation from ideality at the intermediate compositio
precisely of the type observed in many experimental sit
tions. Further analysis shows that this nonideality is driv
by the enhancement in the value of the mean square s
fluctuation. We found that a simple mode coupling theo
provides a good agreement of the qualitative features. Mo
II shows anegativedeviation from ideality—the signature o
the structure breaking—leading to an enhancement of fl
ity and lowering of viscosity. The agreement between co
puter simulation and the mode coupling theory calculatio
suggest that one can indeed propose a quantitative exp
tion of the nonideality in the composition dependence
viscosity in terms of interaction among and between the
species.

One should note that any microscopic calculation of v
cosity ~or any transport property! of a binary mixture has to
deal with a broad phase separation region when the two
cies ‘‘dislike’’ each other. In this limit, one is restricted t
high temperatures.

Organization of the rest of the article is as follows. In t
next section we describe the basic definitions and the m
equations that have been used in the present mode cou
theory. In Sec. III, we present the simulation details and
models used in this study. Detailed description of the mic
scopic theory is given in Sec. IV. Section V contains t
results and discussion. We close the article with a few c
clusions in Sec. VI.

II. BASIC DEFINITIONS

Microscopic expression for the time-dependent sh
viscosity is formulated in terms of stress autocorrelat
function and is given by

h~ t !5~VkBT!21^sxz~0!sxz~ t !&, ~3!

where sxz is the off-diagonal element of the stress tens
defined as
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sxz5(
j 51

N

@~pj
xpj

z/m!1F j
zxj #, ~4!

whereF j
z is the z component of the force acting on thej th

particle and the corresponding position isxj , pj
z is the z

component of the momentum ofj th particle, m being the
mass of the particle. To map the stress tensor for the bin
mixture, the total number of particlesN is divided intoN1

~number of solvent particles! andN2 ~number of solute par-
ticles! such that,N11N25N. Thus,sxz can be written as

sxz5(
j 51

N1

@~pj
xpj

z/m!1F j
zxj #

1 (
j 5N111

N

@~pj
xpj

z/m!1F j
zxj #. ~5!

Note that the solvent particles are labeled from 1 toN1 and
solute particles from (N111) to N. High frequency shear
modulus is given by

G`5~VkBT!21^~sxz~0!!2&. ~6!

Finally, the frequency dependent viscosity is obtained
Laplace transformingh(t),

h~z!5E
0

`

dt exp~2zt!h~ t !. ~7!

Experimentally observed viscosity is given by the zero f
quency limit ofh(z).

III. SIMULATION DETAILS

We have carried out a series of molecular dynamic sim
lations of binary mixture by varying the solute mole fractio
from 0 to 1. Our model binary system consists of a total
500 @solvent~A!1solute~B!# particles. We have dealt with
the microcanonical ensemble~constantN V E!, by applying
the usual periodic boundary conditions. Interaction betwe
any two particles is given by the Lennard-Jones 12–6 po
tial

Ui j 54e i j F S s

r i j
D 12

2S s

r i j
D 6G , ~8!

wherei andj represent any two different particles. We set t
diameter~s! and mass~m! of both the solute and the solven
to unity, for simplicity. The solvent–solute interactio
strength lies in the potential well deptheAB , whereA andB
represents the solvent and solute particles, respectiv
Throughout this study we keep the interaction strengtheAA

51.0, ~solvent–solvent!, eBB50.5 ~solute–solute!. To ac-
count for the two models introduced in this study, we ha
dealt with the two very different solvent–solute interacti
strength values, namelyeAB52.0 in model I andeAB50.3 in
model II. While the former accounts for the situation
which the solute and solvent attract each other stronger
they do their species, the latter describes the opposite
nario. In other words, the models in whicheAB52.0 and
eAB50.3 refer to theattractive and repulsivesituations, re-
spectively.
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We set the reduced temperatureT* (5kBT/e) equal to
unity in model I and 1.24 in model II. The reduced dens
(r* 5rs3) is 0.85 in both the models. After many trial run
to verify the existing results on viscosity19 of one component
liquids, we have selected a time stepDt* 50.002t for model
I, andDt* 50.001t for model II for the integration of New-
tonian equations of motion. The scaled time has been
noted ast5sAm/e. We have dealt with six different solut
compositions, namely 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.
each solute composition we have equilibrated the system
to 1.53105 steps. Simulations carried out for another
3105 steps after the equilibration during which the stre
tensor has been calculated. We have also calculated the
tial radial distribution functions in each case to make s
that the clustering or phase separation is avoided.

IV. FORMULATION OF THE MODE COUPLING
THEORY

Any formulation of the MCT starts by separating th
fast, short time decay from the slow, long time decay of
relevant time correlation function~tcf!. The short time decay
is assumed to occur from a few body~mainly binary! inter-
actions whereas the long time decay is assumed to o
from coupling of the tcf to the binary product of the slo
collective modes. Thus, the expression for the viscosity
be decomposed into two parts and written as20,21

h~ t !5hshort~ t !1hcollective~ t !. ~9!

Thus, central to the mode coupling theory developmen
any time correlation function is this assumption of the se
ration of time scales between the fast initial decay and
slow long time decay. The robustness of a mode coup
theory calculation actually depends critically on the accur
evaluation of the short time part. Not only does the sh
time part ~often called the ‘‘bare’’ term! often contributes
about 50% to the value of the transport coefficient~here vis-
cosity!, but also determines the magnitude of the contrib
tion of the long time part. In fact, a central ingredient of bo
the short and the long time contributions is the static co
lation functions.

The short time contribution, often referred to as the
nary term, is assumed to be given by a Gaussian funct
The rational for this assumption comes from the observa
that only the even powers of time~t! appear in the short time
expansion ofh(t) and collective term contribution starts a
t4. So the t2 term contribution to binary viscosity can b
approximated as a Gaussian function and can be wri
as20,21

hbin~ t !5G` exp~2t2/th
2 !, ~10!

whereth , appearing in the above expression, can be de
mined by the second derivative ofh(t). The calculation of
G` andth shall be described in Sec. IV A. As shown late
even thet2 term requires three particle static correlati
function. For pure liquids, calculations of binary terms ha
been reported by Balucaniet al.22 and also by Bhattacharry
and Bagchi.23 In one component system, binary and MC
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terms contribute approximately equally to the total viscos
This is true at normal temperature and density, away fr
phase separation or glass transition points.

Any calculation of the MC part of viscosity needs th
construction of the binary product of slow variables. T
natural choice in case of a one component system is th
current terms~two transverse and one longitudinal! and the
density variable. At high density the decay of the curre
modes is fast and the dominant contribution comes from
density mode.22–25Therefore, we neglect the contributions
the current modes to the mode coupling term and retain o
the density mode contribution.

In the case of a binary mixture, the construction of b
nary products is a bit difficult. The natural choice of slo
density variables is the two partial densities,r1 and r2 . In
this there is one ambiguity though. What really plays
important role in the mode coupling theory calculation is t
local density. These partial densities can be changed by
exchange mechanism and therefore, may not be regarde
‘‘good’’slow variables. However, this exchange should b
come slow at high densities. Another possible choice is
retain the total density (r11r2) as the slow variable and
choose the composition~x!, wherex5r12r2 , as the second
slow variable. According to the demand of MCT,x is made
orthogonal tor. We denote the orthogonal form ofx asxog,
thus

xog5x2~^xr&r/^rr&!. ~11!

The mode coupling contribution to viscosity can be writt
as

hcollective~ t !5hrr~ t !1hxogxog
~ t !. ~12!

There are situations wherexog can play an important, even
dominant, role. This happens near the phase separa
However, in the high density limit that we have considere
particularly for the models studied, this composition te
does not appear to be important as shown by our prelimin
calculations.

In the present work, we have consideredboth ap-
proaches to the mode coupling theory and found that t
provide comparable results in both the attractive~model I!
and repulsive~model II! cases. We refer to the set of MC
calculation in whichr1 and r2 are the slow variables a
scheme I and scheme II for the set in which the total den
~r! considered as the slow variable. Note that the total d
sity term contains equilibrium and dynamic cross corre
tions between the two species, in addition to the pure te
contributions.

A. The binary term

Here we describe the formulation of the binary term.
this direction the first step is the calculation of the stre
autocorrelation function, that is the value of the infinite fr
quency shear modulusG` given by Eq.~6!. With the help of
Eq. ~5!, Eq. ~6! can be reduced to the following exact form
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G`5~r11r2!kBT

1
2p

15 (
i , j 51

2

r ir jE
0

`

drgi j ~r !
d

dr F r 4
dv i j ~r !

dr G , ~13!

where i , j 51 indicate solvent particles andi , j 52 denote
solute particles. Thus,r1 is the number density for the so
vent particles andr2 denotes the same for the solute pa
ticles. gi j (r ) is the partial radial distribution function of th
particles labeledi andj. Note thatv i j includes three differen
interaction potentials present between the solute and the
vent particles. By using Eq.~10!, the expression forth can
be written as

th5A 22G`

ḧ~ t50!
. ~14!

In the liquid region,h(t) is mostly dominated by its poten
tial part. Thus, using Eqs.~3! and~5!, the expression for time
dependent viscosity can be reduced to the following form

h~ t !5~VkBT!21K S (
j 51

N1

F j
zxj1 (

j 5N111

N

F j
zxj D

3S (
k51

N1

Fk
z~ t !xk~ t !1 (

k5N111

N

Fk
z~ t !xk~ t !D L . ~15!

The second derivative of the total short timeh(t) is sepa-
rated into contributions from two, three, and four partic
correlation terms by using the proper choices of atom
labels,22,23

ḧ~0!5ḧ2~0!1ḧ3~0!1ḧ~4!~0!. ~16!

In the above expression of viscosity, the contribution of
four particle correlation termḧ (4)(0) is exactly zero.22 The
final expressions of the remaining two terms,h (2)(0) and
h (3)(0), aregiven as

ḧ~2!~0!5
22p

15m (
i , j 51

2

r ir jE
0

`

drr 2@r 2~v i j9 !212rv i j9 v i j8

17~v i j8 !2#gi j ~r !, ~17!

ḧ~3!~0!5
28

75m (
i j ,k51

2

r ir jrkE
0

`

dqq2hjk~q!

3@3T1
i j ~q!T1

ik~q!12T2
i j ~q!T2

ik~q!#, ~18!

where the subscriptsi , j ,k51 denote the correspondin
properties of solvent particles andi , j ,k52 denote the same
for the solute particles.hjk(q) is the Fourier transform of the
pair correlation function. The integralsT1

i j (q) and T2
i j (q)

@appearing in Eq.~18!# are defined as

T1
i j ~q!5E

0

`

drr 2J3~qr !@rv i j9 ~r !2v i j8 ~r !#gi j ~r !, ~19!

T2
i j ~q!5E

0

`

drr 2J1~qr !@rv i j9 ~r !14v i j8 ~r !#gi j ~r !, ~20!

whereJ1(qr) andJ3(qr) are the spherical Bessel function
v i j8 5dv i j (r )/dr andv i j9 5d2v i j (r )/dr2.
-

ol-

c

e

B. The mode coupling term

The mode coupling contribution to viscosity can b
evaluated by using the general approach initiated by Bo
et al.24 and further developed by Gestzi.25 In this approach
one starts with the general time correlation function expr
sion for the shear viscosity in terms of the transverse curr
One starts with a Mori-type rephrasing of the Green–Ku
formula for the shear viscosity. Thus, the expression for
viscosity can be written as

h5 lim
P→0

lim
q→0

m2

q2V E
0

`

dt~QL jx~q!u

3exp~ iQLQT2et !uQL jx~q!!. ~21!

In the above equationq has been considered to be align
along Z direction.L is the Hermitian Liouville operator.Q
512P, whereP is the projection operator which projec
on to the chosen dynamical variableAa. Aa is the set of slow
variables which consists of three current densities and
particle densities for both the components which constit
the binary mixture.A1, A2, andA3 are the commonly used
three current densities.24 A4 andA5 are choosen as the slow
variables for densities of two different particles and defin
as

A45r1~q!5(
j 51

N1

exp~2 iq"r j !, ~22!

A55r2~q!5 (
j 5N111

N

exp~2 iq"r j !. ~23!

r i(q) is the number density of thei th species~A and B!.
SpeciesA andB are not to be confused with the dynamic
variablesAa andBk

i (q) ~introduced later!. The final expres-
sion for the mode coupling part of viscosity can be obtain
by following the method outlined in Refs. 24 and 25 and
given by:

hr ir j
5

kBT

60p2 E
0

`

dqq4
Sii8 ~q!Sj j8 ~q!

Sii
2 ~q!Sj j

2 ~q!
E

th

`

dtFi j
2 ~q,t !. ~24!

Note that the lower limit of the time integration has be
changed from zero toth to take out all the contributions o
the ordert2 as the collective contributions are expected
start ast4. th is the characteristic time for Gaussian dec
appeared in the expression of binary viscosity in Eq.~10!. In
the above expressions, the dynamical input parameters
the partial intermediate scattering functionsFi j (q,t). The
expressions of these functions are given in detail in the A
pendix.

The total mode coupling contribution to the viscosity
obtained by summing together all thehr ir j

terms~scheme I!,

hrr5 (
i , j 51

2

hr ir j
. ~25!

As discussed earlier, an alternative MCT approach is
treat the total densityr5r11r2 as the slow variable
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~scheme II!. In this approach the mode coupling contributio
of r to the viscosity can be shown to be given by the follo
ing expression:

hrr5
kBT

60p2 E
0

`

dqq4@ST8~q!/ST~q!#2

3E
th

`

dt@FT~q,t !/ST~q!#2, ~26!

where thetotal intermediate scattering functionFT(q,t) is
expressed as the sum of the partial intermediate scatte
functionsFi j (q,t) weighted by their mole fractions

FT~q,t !5 (
i , j 51

2

AxixjFi j ~q,t ! ~27!

and the total static structure factor is defined as

ST~q!5 (
i , j 51

2

AxixjSi j ~q!. ~28!

First derivative of the total static structure factorST(q) is
given by

ST8~q!5
]

]q
ST~q!5

]

]q (
i , j 51

2

AxixjSi j ~q!. ~29!

Preliminary calculations have shown that the contrib
tion of the composition fluctuation term is much smaller th
the total density term. We have, therefore, neglected
composition term. In fact, most of the calculations repor
here have been performed with scheme I. We found that
total density term alone gives results quite similar to the o
obtained withr1(q) and r2(q) as the slow variables. Thi
aspect will be discussed later.

MCT calculation with binary mixture requires determ
nation of partial intermediate scattering functions. For o
component system at density–temperature conditions a
from the glass transition, we found that the continued fr
tion representation~based on the short time expansion! is
quite adequate for the calculation of viscosity and friction,
discussed many years ago by Sjogren and Sjolander.21 For
binary mixtures, however, such a continued fraction calcu
tion turns out to be quite difficult, because the second der
tive of F12(q,t) is zero and the sign of the fourth derivativ
is oscillatory. We have, therefore, used an alternative
proach to obtainFi j (q,t). Fi j (q,t) is calculated from the
time dependent density functional theory.26 Expressions for
Fi j (q,t) are presented in the Appendix. For neat liquid
Munakata and Igarishi developed a self-consistent schem
calculate dynamical correlation functions and applied it
calculation of the incoherent scattering function.27 Self-
consistent calculation of partial intermediate scattering fu
tion in the case of binary mixtures is rather difficult. Ther
fore, we have used a zero frequency binary diffus
coefficient as an input parameter inFi j (q,t), obtained by
usinghbin in the Stokes–Einstein law. Expressions of all t
relative basic quantities, necessary for the calculation
Fi j (q,t), are given in detail in the Appendix.
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V. RESULTS AND DISCUSSION

In Figs. 1 and 2, the solvent–solvent (A–A) and
solvent–solute (A–B) partial radial distribution functions
are plotted for model I (PAB52.0) for 0.4 solute composi
tion. In both figures the full line represents the theory and
symbols represent the simulation results. The theoret
lines are obtained by solving the Ornstein–Zernike equati
for mixtures by using the soft mean spherical approximat
~SMSA!.28 SMSA is known to provide a reasonably accura
description of radial distribution functions in dense liquid
For model I, both theory and simulations show a large fi
peak ingAB(r ) ~as shown in Fig. 2!, compared to the respec
tive one component neat liquids. For model II, we have o
served the opposite effect—the first peak ingAB(r ) is now
reduced compared to neat liquids. While these are expec
the agreement between theory and simulation is by no me
perfect. This is cause for some concern because we h
used SMSA to obtaingi j (r ) used in MCT calculations. How-

FIG. 1. Thesolvent–solventpartial radial distribution function@gAA(r )#
obtained from MD simulations~represented by symbols! is compared with
that obtained from the SMSA scheme~full line! for a 0.4 solute composi-
tion, for model I. HereT* 51.0 andr* 50.85.

FIG. 2. Thesolvent–solutepartial radial distribution function@gAB(r )# ob-
tained from MD simulations is compared with that obtained from the SM
scheme, for model I for the 0.4 solute composition. Full line represents
theory while the simulation result shown by symbols.T* and r* are the
same as in Fig. 1.
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ever, we find that despite this limitation, MCT can descr
the basic features quite well. We shall come back to t
point later.

As solute–solvent interaction strength affects the str
ture surrounding a solute/solvent to a great extent,29,30 the
above observed features ingi j (r ) can be understood in term
of the solute–solvent interaction strength. While the e
hanced attractive interaction between solute and solv
~model I! brings them closer together, the repulsive inter
tion forces the solute and solvent away from each other
the former case as the solute–solvent interaction is favo
over the relatively moderate solvent–solvent interaction
even weaker solute–solute interaction. The formation
solute–solvent nearest neighboring pair dominates. As a
sult the two adjacent shells of solute/solvent tend to be
cupied by the opposite species. In other words, over a s
distance,A–B–A andB–A–B repeating units shall be pre
ferred. This feature is clearly reflected in the solvent–sol
partial radial distribution function~Fig. 2!. On the other
hand, in the repulsive case~model II! solute and solven
molecules ‘‘dislike’’ each other. In this case, the solven
solvent interaction is the strongest and the solute–solv
interaction is the weakest. Due to this hierarchy of inter
tion, the probability of finding the opposite species in t
vicinity of a solute/solvent is very small. This explains th
diminishing of first and second peaks ingAB(r ) when the
specific interaction is repulsive. In other words, the lo
structure around a solute/solvent is almost evacuated
terms of the opposite species.

In simulations, viscosity~h! is calculated by using the
following expression:

h5
1

3kBT* V* E0

`

^s~0!s~ t !&dt, ~30!

where V* is the volume of the simulation box in reduce
units andkB is the Boltzmann constant. The remaining qua
tities appearing in the above expression are already desc
in the previous sections. Viscosity values obtained fr
simulation, as well as MCT, are plotted against the sol
composition for the model I in Fig. 3 and for the model II
Fig. 4. In both the figures, simulation results are shown
symbols while the full line represents MCT predictio
Agreement between the theory and simulation is satisfac
for both the models over the entire composition range. T
results presented in Figs. 3 and 4 are in qualitative agreem
with the experimentally observed excess viscosity in bin
mixtures.5

The stress autocorrelation functions~SACF! obtained
from simulations are plotted in Figs. 5 and 6 against redu
time at various solute compositions, for models I and
respectively. The respective stress auto correlation funct
~without normalization! are plotted in the inset of each fig
ure. Interestingly~as observed in both the models! the short
time behavior of normalized SACF did not alter much eith
with the composition or with the specific interaction~as
shown in main figures!. We found that the major part of th
observed difference in viscosity for these systems origina
from thezero time value of SACF, which is the mean squar
stress fluctuation~MSSF!. To make this point more clear, i
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Fig. 7, we have plotted the high frequency shear modu
@given by Eq.~5!#, obtained both from MD simulations an
the microscopic method, for various solute compositions,
model I. Despite the differences in the magnitude,G` ob-
tained from the two different approaches~simulation and
theory! shows similar behavior, over the entire compositi
range. The same is true for different interaction streng
This is an important result which suggests that the signific
contribution to the nonideal behavior of viscosity originat
from the nonideality in the zero time stress correlation fun
tion.

As mentioned earlier, the viscosity values calculated
cording to the scheme II by using total density@r(q)# as the
slow variable@with Eq. ~26! as the MCT expression#, agrees
well with the ones obtained by using the scheme I. A co
parison between the results obtained by using the
schemes are given in Fig. 8. Comparison between the

FIG. 3. The composition dependence of viscosity obtained from MD sim
lations is compared with the mode coupling theory predictions for mode
Symbols show the simulation results while the full line represents the M
prediction.T* andr* are the same as in Fig. 1.

FIG. 4. The composition dependence of viscosity obtained from MD sim
lations is compared with the mode coupling theory predictions for mode
Symbols show the simulation results while the full line represents the M
prediction. HereT* 51.24 andr* 50.85. This figure together with Fig. 3
shows that the agreement between the theory and simulation is goo
most of the composition range for both the strong~model I! and weak
~model II! solute–solvent interactions.
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schemes for model I is shown in Fig. 8~a! while Fig. 8~b!
shows that for the model II. The reason for this close pr
imity is that the partial intermediate scattering functions
not only small but also tend to cancel each other in thexog

contribution.
As discussed earlier, the partial radial distribution fun

tions obtained from SMSA are not in very good agreem
with simulations. While this could be partly responsible f
the lack of very good agreement between theory and si
lation, the general features seem to be captured even by
ing SMSA.

FIG. 5. The normalized stress auto correlation function obtained from
simulations is plotted against the reduced time at various solute com
tions for model I. Inset shows the same without normalization. For the s
of clarity, we have plotted only 0.0~full line!, 0.4 ~large dashed line!, and
0.6 ~small dashed line! solute compositions in the main figure. In the inse
curves from top to bottom represent 0.0, 0.4, 0.6, 0.8, and 1.0 solute c
positions. As shown in the main figure, short time behavior of normali
SACF remains unchanged with the composition. A large decrease in S
is observed by increasing the solute composition~as shown in the inset!. T*
andr* are the same as in Fig. 1.

FIG. 6. The normalized stress auto correlation function obtained from
simulations is plotted against the reduced time at various solute com
tions for model II. The inset shows the same without normalization. Res
for the solute compositions 0.0~full line!, 0.4 ~large dashed line!, and 0.6
~small dashed line! are shown in the main figure, while the inset shows t
results for solute compositions 0.0, 0.4, 0.6, 0.8, and 1.0. HereT* 51.24 and
r* 50.85. Figures 5 and 6, together depict that the short time behavio
normalized SACF remains unchanged both with the composition and
interaction strength.
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VI. CONCLUSION

In this article we have presented molecular dynam
simulations and mode coupling theory calculations of
composition dependence of viscosity of binary mixtures. W
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FIG. 7. High frequency shear moldulus values obtained from MCT and M
simulation are plotted against the solute composition for the model I.
full line shows the MCT result while the symbols represent that of
simulations.T* andr* are the same as in Fig. 1.

FIG. 8. The viscosities obtained from MCT by using two different mo
coupling schemes are plotted as a function of solute composition. The
line shows the viscosity obtained by using scheme I while the result
scheme II is shown by the dashed line.~For the description of scheme I an
scheme II, please see the text.! ~a! represents the results for model I and~b!
shows the same for model II.
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have proposed two models to capture the essence of
wealth of experimental results that exist in the literature.
model I, the two components like each other more than t
like themselves. In this case, we find nonideality in the po
tive direction. In model II, the two components dislike ea
other. This model is delicate because it often shows ph
separation. We have studied this model at somewhat hig
temperature. This model shows nonideality of the nega
kind. In both cases agreement between theory and simula
is quite good, although not fully satisfactory. However, it
satisfying to note that both the theory and the simulatio
can capture the qualitative aspects of the composition de
dence of viscosity.

The main reason for the anomalous composition dep
dence seems rather easy to understand. It arises from a
lar dependence of the MSSF on the composition of the m
ture. Thus, it is fair to say that the anomaly has a structu
rather than a dynamic, origin. The dynamics, of course, p
an important role in augmenting the effect. The reason
the nonmonotonous composition dependence of MSSF a
from its dependence on the force acting on each molecu

It is worth emphasizing that in both models the comp
nents have the same radius and the same mass. In additi
the emergence of significant nonideality, we found an imp
tant result that nonideality in both the models is driven by
zero time value of the shear stress autocorrelation func
which is proportional to the infinite frequency shear bu
modulus G` . Dynamical correlation seems to follow th
lead given by the static correlations, as is most often the c
at normal liquid temperatures far above the glass transi
temperature.

In this work we have not explored the composition d
pendence that can arise from the difference in sizes ofA and
B. Work in this direction is under progress.

We have already stressed that the MCT calculations
sented here are not self-consistent. The reason for this is
an accurate short time description of the partial intermed
scattering functionF12(q,t) is not available. Thus, we coul
not proceed via the usual route of constructing continu
fraction representation ofFi j (q,t) and then solve the mod
coupling theory expression for friction consistently with t
viscosity. Earlier experience has shown that nons
consistent theories provide reasonably accurate estim
~within 10%–20%! of the zero frequency value of the fric
tion and viscosity, so long one is far above the glass tra
tion temperature, as is the case here.

The present study suggests many future problems
more detailed study of the density and temperature dep
dence of nonideality is required. The present simulatio
have been carried out in the microcanonical~N V E! en-
semble. We need to carry out similar simulations at cons
pressure~N P T!. The present calculations clearly show t
need for more accurate description of the partial radial d
tribution function of binary mixtures. We need also to co
sider the case where the constituents have different ra
Work in these directions is under progress.
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APPENDIX

Partial static structure factors are calculated accordin
the following formula by using SMSA closure:

Si j ~q!5d i j 1Ar ir jhi j ~q!. ~A1!

The intermediate scattering function is defined as the den
auto correlation function as given as

Fi j ~q,t !5~NiNj !
21/2^r i~q,t !r j~2q,0!&. ~A2!

We denoteFi j (q,z) @Laplace transform ofFi j (q,t)# as the
partial dynamic structure factor. Using time dependent d
sity functional theory, the four coupled equations that a
obtained for the dynamic structure factors are given as

Fi j ~q,z!5@z1Di~z!q2#21Si j ~q!1
Di~z!q2

z1Di~z!q2

3 (
k51

2

Ar irkcik~q!Fk j~q,z!. ~A3!

The four coupled equations (i , j 51,2) are solved to ge
the following expressions for partial dynamic structure fa
tors:

F11~q,z!5
1

Z~q,z!
@$z1D2

bin~z50!q2~12r2c22~q!!%

3S11~q!1D1
bin~z50!q2Ar1r2c12~q!S21~q!#,

~A4!

F12~q,z!5
1

Z~q,z!
@$z1D2

bin~z50!q2~12r2c22~q!!%

3S12~q!1D1
bin~z50!q2Ar1r2c12~q!S22~q!#,

~A5!

F21~q,z!5
1

Z~q,z!
@$z1D1

bin~z50!q2~12r1c11~q!!%

3S21~q!1D2
bin~z50!q2Ar1r2c21~q!S11~q!#,

~A6!

F22~q,z!5
1

Z~q,z!
@$z1D1

bin~z50!q2~12r1c11~q!!%

3S22~q!1D2
bin~z50!q2Ar1r2c21~q!S12~q!#,

~A7!

andZ(q,z) defined as



iff
ffu

u

a

s
. B
Z~q,z!5z21zD~q!@D1
bin~z50!q2S22~q!

1D2
bin~z50!q2S11~q!#

1D1
bin~z50!D2

bin~z50!q4D~q!, ~A8!

whereD(q) is defined as

D~q!5@S11~q!S22~q!2S12
2 ~q!#21. ~A9!

In the above expressions, all the frequency dependent d
sion coefficients are replaced by the respective binary di
sion coefficient valuesD1

bin(z50) andD2
bin(z50) which are

obtained from Stokes–Einstein law at zero frequency by
ing only the binary part of the viscosity as follows:

D1
bin~z50!5

1

2phbin~z50!s11
, ~A10!

D2
bin~z50!5

1

2phbin~z50!s22
. ~A11!
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