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Molecular dynamics simulations of translational motion of isolated prolate ellipsoids in the sea of
spheres have been carried out for several different values of the aspect ratio~k!, obtained by
changing either the length or the diameter of the ellipsoids, at several different solvent densities. The
interaction among the spheres is given by the Lennard-Jones pair potential while that between
spheres and ellipsoids is given by a modified Gay–Berne potential. Both the mean-square
displacements of the center of mass of the ellipsoids and their orientational time correlation function
have been calculated. It is found that at short to intermediate times, the motion of ellipsoids is
anisotropic and primarily needlelike—the molecules prefer to move parallel to their long axis. The
ratio of these two diffusion constants (D i and D') approachesk, suggesting a decoupling ofD i

from the length of the ellipsoid. The diffusion becomes isotropic in the long time with the total
diffusion coefficient given byD i12D'. The crossover from the anisotropic to the isotropic
diffusion is surprisingly sharp and clear in most cases.
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I. INTRODUCTION

In many systems of interest in physics, chemistry, a
biology, molecules are highly anisotropic in shape.1 Extreme
examples are provided by rod-like molecules, such as
bacco mosaic virus.2,3 The translational motion of these mo
ecules can be quite different from those of spherical or ne
spherical molecules. Surprisingly, not much is known ab
the motion of these highly anisotropic molecules in liqui
—neither experimental nor many simulation studies ha
been carried out to investigate the translational motion
these molecules. The only information seems to come fr
the solution of Navier–Stokes hydrodynamic equatio
which provide expressions for the friction on ellipsoidal mo
ecules. The hydrodynamic solutions provide two dram
cally opposite scenarios depending on whether the stic
the slip boundary condition is applied. The Stokes–Einst
relation with thestick hydrodynamic boundary condition fo
the friction predicts that the translational diffusion of ro
like molecules in the direction parallel (D i) to the long axis
is only twice as fast as that in the perpendicular (D')
direction.2,4,5

The prediction on the motions of a prolate ellipsoid
nearly identical when the aspect ratio~k! is greater than 2~k
is defined as the ratio of the lengths of major to minor axe!.
The explicit expressions forD i andD' for a rod-like poly-
mer in a liquid of viscosityh are given by2

D i5
kBT ln~L/b!

2phL
, ~1!

a!Electronic mail: bbagchi@sscu.iisc.ernet.in
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D'5
kBT ln~L/b!

4phL
, ~2!

wherekBT is the Boltzmann constant times the temperatu
L and b are the length and the diameter of the rod, resp
tively, and for a rod,k5L/b. Note thatD i and D' are de-
fined in terms of mean-square displacements along theZ-
andX- ~or Y-! axes, respectively. TheZ axis is chosen par-
allel to the long~major! axis of the rod~prolate ellipsoid! at
time t50. According to the above equations.D i andD' vary
identically with L andk. Thus, the ratioD i /D' is indepen-
dent not only of the lengthL, but also of the aspect ratiok of
the rod. Another prediction is that if we fixL and varyb,
then bothD i andD' increase aslnk. These are remarkabl
predictions~expected to be valid for anyk.1! which should
be tested against experiments and simulations, although
are not aware of any such studies.

On the other hand, Evans and co-workers, in a very
portant and elegant contribution, have shown that for dif
sion of long ellipsoids in a liquid,the use of the stick hydro
dynamic boundary condition can be completely misleadin4

These authors showed by numerical solution of the Navi
Stokes hydrodynamic equations with theslip boundary con-
dition that the motion along the parallel direction can b
come completely decoupled from that along the
perpendicular direction and that the ratio between the
diffusion coefficients should approachk for largek.4,5

Such a huge difference in the predictions between
stick and slip boundary condition is of course not new.
similar difference is found for the rotational friction on
sphere.6 In the latter case the slip boundary condition give
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value of zero for the friction, while the stick boundary co
dition gives a value equal to 8phR3 whereh andR are the
viscosity of the liquid and the radius of the sphere, resp
tively. Accurate knowledge about the relative magnitudes
D i andD' is required for several problems of great curre
interest. For example, a preferential motion in the direct
along the major axis is essential for reptation of rod-li
polymers.7 Similarly, the transport properties of polyelectr
lyte solutions can be affected by the presence of needle
motion of rod-like polyelectrolytes.3,8 A recent theoretical
study of the excess viscosity of rod-like polyelectrolytes
voked the anisotropic diffusion of the rods to explain t
experimentally observed maximum at low polyelectroly
concentration.8 It is thus very important to find whether th
slip or the stick boundary condition provides the more a
propriate description of the solvent friction on rod-like mo
ecules.

One more aspect of interest here is the length~L! depen-
dence of the rotational correlation timet2R of long mol-
ecules, which, according to stick hydrodynamic theo
should vary asL3/ lnk. Thus, within this theory, we have th
following relation between the total diffusion coefficientDT

and the rotational correlation timet2R :7

DTt2R'L2. ~3!

We have carried out detailed molecular dynamics sim
lations to test the above predictions. This study can be c
sidered a continuation of our earlier study,9 where the paral-
lel and the perpendicular components of the diffus
coefficient were obtained from the respective velocity tim
correlation functions. Thus, the previous study could
study the crossover from the anisotropic to the isotropic
fusion. In addition, the previous study was restricted
smaller values of the aspect ratio, which was varied
changing only the length of the ellipsoid. Also, no detail
test with hydrodynamics was carried out.

The results of the present study are rather interest
First, we find that at short to intermediate times, the mot
of ellipsoids is anisotropic and primarily needlelike — th
molecules prefer to move parallel to their long axis. The ra
of these two diffusion constants (D i andD') approachesk,
suggesting a decoupling ofD i from the length of the ellip-
soid. This is a clear indication of the validity of the sl
boundary condition. As expected, the diffusion becomes
tropic in the long time, where the total diffusion coefficient
given byD i12D' . However, the crossover from the anis
tropic to the isotropic diffusion is surprisingly sharp an
clear in most cases. The time at which this crossover ta
place is found to correlate with the orientational correlat
time.

The organization of the rest of the paper is as follows
the next section we discuss the model and present the s
lation details. In Sec. III, we present the results and disc
their significance. Section IV concludes with a summary
the results.

II. THE MODEL AND THE SIMULATION DETAILS

In this paper, we present molecular dynamics~MD!
simulations ofD i andD' and also rotational correlation tim
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t2R of tagged, isolated, thin Gay–Berne ellipsoids10 in a liq-
uid of Lennard-Jones spheres. We have termed this m
‘‘ellipsoids in the sea of spheres,’’ or the ESS model. T
interaction between the particles is modeled by different
tentials. The interaction between the spheres is given by
Lennard-Jones potential

ULJ54e0F Fs0

r G12

2Fs0

r G6G , ~4!

wheres0 is the molecular diameter andr is the interparticle
distance;e0 is the energy parameter. The interaction ene
between two ellipsoids with arbitrary orientations is assum
to be given by the Gay–Berne potential10

UGB54e~ r̂ ,û1 ,û2!F F s0

r 2s~ r̂ ,û1 ,û2!1s0
G12

2F s0

r 2s~ r̂ ,û1û2!1s0
G6G , ~5!

where û1 is the axial vector of the moleculei and r̂ is the
vector along the intermolecular vectorr 5r 22r 1 , wherer 1

and r 2 denote the centers of mass of molecule 1 and 2,
spectively.s( r̂ ,û1 ,û2) and e( r̂ ,û1 ,û2) are the orientation-
dependent range and strength parameters, respectively.s and
e depend on the aspect ratiok. Finally, the interaction be-
tween a sphere and an ellipsoid is accounted for by a m
fied GB–LJ potential given below9,11

UGBLJ54e0F Fs~u!

r G12

2Fs~u!

r G6G , ~6!

with

s~u!5
~b/21R!

A11X2 cos2 u
, ~7!

whereu is the angle between the major axis of the ellipso
and the vector joining the centers of the sphere and the
lipsoid.

R5s0/2, ~8!

X5Aā22b2/4

ā21R2
, ~9!

and

ā5A(b2/41R2)S L/21R

b/21RD 2

2R2 . ~10!

Molecular dynamics simulations, with constant numb
~N!, volume~V! and energy~E! constraints, were carried ou
in a cubicbox by imposing the periodic boundary condition
for a system containing 492 particles out of which 10 G
ellipsoids were placed far from each other in the sea of
remaining 482 LJ spheres, except for aspect ratios 3.5 a
where we considered 950 LJ spheres. All the quantities in
simulation were scaled to appropriate units; that is, the d
sity by s0

23, the temperature bye/kB , and the time by
A(ms0

2/e)—the scaled quantities are denoted byr* , T* , and
t* , respectively. We have simulated the following thermod
namic state~r* ,T* ! points: ~0.7,1.0!; ~0.5,1.0!; ~0.4,1.0!;
~0.75, 1.25!. Most of the results presented here are
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r*50.7 andT*51.0. The time stepDt used was 0.002. The
system was equilibrated for 13105 time steps and the aver
ages were obtained over 23105 time steps. In each case w
ran at least three independent simulations and took the a
age. Ellipsoids with aspect ratio between 1.5 and 10 w
generated by two methods. First, we increased the radiu
the major axis,L, while keeping that of the minor axis,b,
fixed. By this method we could go only up tok54, due to
the obvious size constraints. The other method we emplo
was to fixL/l0 and then makeb/s0 smaller. We generatedk
values equal to 2,4,6~any in a preliminary study even 10! by
this method. By the time the aspect ratio is 10, we ha
indeed very thin ellipsoids. It is interesting to find that su
thin and long ellipsoids also have well-defined diffusion co
stants. Note that while the former method mimics real po
mers, the second one is also of interest, particularly in che
ing theoretical predictions. The simulation results a
discussed below.

III. RESULTS AND DISCUSSION

In Fig. 1 we plot the parallel and the perpendicular~with
respect to the prolate’s orientation at time t50! mean-square
displacements of an ellipsoid of aspect ratio 6, at somew
lower density~r*50.4! — higher densities show similar be
havior. Three distinct regions in the respective mean-squ
displacement are seen for both the components. At very s
times, the motion is ballistic. This is followed by a substa
tial duration when the diffusion is anisotropic. During th
time, the motion of the prolate can indeed be term
needlelike, because the motion along the parallel directio
much faster than that along the perpendicular direction
the long time the diffusion becomes isotropic~that is, both
the parallel and the perpendicular motions have the s
diffusion constant! and the total isotropic diffusion coeffi
cient D is given byD i12D' .

In Fig. 2, we show the comparison of the simulati
results with the prediction of the stick boundary condition.
this figure, we changed the aspect ratiok by varying the
diameterb of the minor axis. Note the weak dependence

FIG. 1. The mean-square displacement of the~a! parallel and~b! perpen-
dicular components of an ellipsoid with aspect ratio@~k!# equal to 6. The
length of the major axis is 3s0 and that of the minor axis is 0.5s0 . The
reduced solvent density,r*50.4, and the reduced temperature,T*51.0.
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D' on k, in defiance of Doi–Edwards theory which also fa
to explaink dependence ofD i . Similar results were obtained
earlier by Evanset al.4,5 for hard ellipsoids, but in a liquid of
ellipsoidal molecules.

In Fig. 3, we plot the ratio,D i /D' against the aspec
ratio k—the latter is now varied by changing bothL andb.
One clearly sees the decoupling of the motion parallel to
major axis from the length of the ellipsoid, signalling th
breakdown of the stick hydrodynamic boundary condition
is truly interesting to find how closely the results follow th
prediction of the slip boundary condition!

We found that for all the systems studied th
decay of the orientational correlation functio
^Pl(cos(u(0)))Pl(cos(u(t)))& ~wherePl is the Legendre poly-
nomial of orderl and u~t! is the angle that the major axi

FIG. 2. The comparison of the ratio,@D i(k)#/@D i(k52)# and
@D'(k)#/@D'(k52)# with the prediction of the stick boundary conditio
~Doi–Edwards! is plotted againstk. The open circles represent the parall
component and the filled ones are for the perpendicular. The solid line is
prediction of the stick hydrodynamic boundary condition.r*50.7 and
T*51.0.

FIG. 3. The simulated ratio,D i /D' , is plotted against the aspect ratio,k.
The prediction of hydrodynamics with stick boundary condition~@2#! is
shown by the solid line and that of the slip boundary condition~@4!# by the
dashed line.r*50.7 andT*51.0.
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makes with theZ axis at time t! is exponential-like. The
decay time constants are found to follow the Debyel(l11)
behavior.

In Fig. 4, we show the variation of the rati
@DR(k)#/@DR(k52)# with the aspect ratiok, and also the
hydrodynamic prediction, with the stick boundary conditio
Note that hereDR51/6t2R . As can be seen from Fig. 4, th
agreement with the hydrodynamic theory is quite satisf
tory. In the inset, we show thek dependence of the produc
of the total diffusion coefficient,DT5D i12D' and the ro-
tational relaxation timet2R . The values have been obtaine
by varying either the lengthL ~filled circles! or the diameter
b ~the open circles!. The productDTt2R is plotted against the
aspect ratiok for both long and thin ellipsoids. It is observe
that for thin ellipsoids, the product is independent of t
aspect ratio and is found to scale asL2, as envisaged in Eq
~3!. This is somewhat surprising and is under further inv
tigation.

What is the physical reason for the slip-like hydrod
namic boundary condition for translational motion along t
major axis of the ellipsoid? It seems plausible that the m
tion along the long axis involves much less displacemen
the solvent molecules and the ellipsoid can slip past the
vent molecules, thus setting up a hydrodynamic velocity fi
well described by the slip boundary condition. The moti
along the perpendicular direction of course remains coup
to the size of the polymer. It is a common wisdom that
large molecules, the stick boundary condition is more app
priate than the slip. The resolution of the paradox proba
lies in the earlier study of Zwanzig,12 who showed that for a
large rough cylinder~radius;500 Å! the stick and the slip
boundary conditions become identical. This is because

FIG. 4. The main figure depicts the aspect ratio dependence of the simu
rotational diffusion coefficient,DR . The simulated values of the rati
@DR(k)#/@DR(k52)# have been compared with the prediction of Do
Edwards theory~solid lines!. The inset shows the product of thetotal dif-
fusion coefficient,DT , with the rotational relaxation time. The upper dash
line is the quadratic fit, while the lower dashed line is a linear fit. Both in
main figure and in theinset, the open circles represent simulated resu
obtained by varyingb while the filled circles represent those obtained
varying the lengthL of the major axis.r*50.7 andT*51.0.
.
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solvent molecules are ‘‘caught up’’ in the indentations of t
rough surface and are carried along. Real systems may in
polate between the two extremes described by the slip
the stick boundary conditions. Theoretically one might
able to approach the problem by using the anisotropic b
model studied by Pastor and Zwanzig,13 who pointed out that
the failure of Doi–Edwards theory arises from their use
the Burgers–Kirkwood–Riseman theory,14,15 which uses a
scalar friction coefficient. Pastor and Zwanzig develope
scheme which allows the use of a tensorial friction coe
cient in the numerical solution of hydrodynamic equation
the total friction of the bead chain. It should be possible
model the slip boundary condition by assuming that the t
gential component of the bead friction tensor is zero. It w
be worthwhile to carry out a simulation check of this proc
dure. Thus, further computer simulations and microsco
studies, and of course experiments, are required to un
stand this aspect of the problem.

IV. CONCLUSION

To summarize, it is shown, we believe for the first tim
that the motion of long ellipsoids in liquids is needlelike a
short to intermediate times. The ratioD i /D' is found to
increase ask, while the Doi–Edwards theory predicts th
ratio to be a constant, independent both of lengthL of the
ellipse and of the aspect ratio,k. The motion in the perpen
dicular direction is weakly dependent on the aspect ra
again in disagreement with Doi–Edwards theory. The time
which the crossover from the needlelike to the isotropic d
fusion is found to correlate with the orientational relaxati
times of the prolates.
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