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Density and energy relaxation in an open one-dimensional system
Prasanth P. Josea) and Biman Bagchib)

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560012, India

A new master equation to mimic the dynamics of a collection of interacting random walkers in an
open systemis proposed and solved numerically. In this model, the random walkers interact through
excluded volume interaction~single-file system!; and the total number of walkers in the lattice can
fluctuate because of exchange with a bath. In addition, the movement of the random walkers is
biased by an external perturbation. Two models for the latter are considered:~1! an inverse potential
(V} 1/r ), wherer is the distance between the center of the perturbation and the random walker and
~2! an inverse of sixth power potential (V} 1/r 6). The calculated density of the walkers and the total
energy show interesting dynamics. When the size of the system is comparable to the range of the
perturbing field, the energy relaxation is found to be highly nonexponential. In this range, the system
can show stretched exponential (e2(t/ts)

b
) and even logarithmic time dependence of energy

relaxation over a limited range of time. Introduction of density exchange in the latticemarkedly
weakens this nonexponentiality of the relaxation function, irrespective of the nature of
perturbation.
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I. INTRODUCTION

Relaxation dynamics of interacting particles in a on
dimensional system is often difficult to understand beca
the traditional coarse-grained descriptions~such as hydrody-
namics or time dependent mean-field type approximatio!
fail in this case. This is because of the existence of lo
range correlations mediated through the excluded volume
teraction. In such cases, random walk models have o
proved to be successful in describing the nonexponentia
laxation commonly observed in one-dimensional systems

Recently, several experimental studies have reported
ergy relaxation in one-dimensional or quasi-one-dimensio
systems such as DNA.1,2 These experiments employed th
time dependent fluorescence Stokes shift technique to ga
a quantitative measure of the time scale involved. In one
these experiments Brunset al.1 have calculated structural re
laxation of DNA oligonucleotides. They found that the re
shift of the fluorescent spectrum follows alogarithmic time
dependence. The above-described experiment is an exa
where dimensionality plays an important role in the ene
and density relaxation.

In this work, we propose a random walk model for t
carriers in a one-dimensional channel to mimic the relaxa
of energy and density found in the above-described exp
ments. There were several theoretical studies devoted to
dom walk model in one-dimensional systems.3–9 Many re-
cent studies based on random walk model in o
dimensional systems have explored transport and o
dynamical properties such as dc conductivity, frequency
pendent conductivity, effect of bias on diffusion, space a
time dependent probability distribution of random walke

a!Electronic mail: jose@sscu.iisc.ernet.in
b!Electronic mail: bbagchi@sscu.iisc.ernet.in
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mean residence time, mean first passage time of ran
walkers, etc.9–16

The work presented here is based on a master equa
for random walk in asingle-filesystem~a one-dimensiona
system that does not allow particles to pass through e
other! that allows exchange of the particles with the bath~see
Fig. 1 for a schematic illustration!. Here we employed two
model potentials with different characteristics to study t
effect of perturbation on the density and energy relaxat
processes. The potentials used here are~1! inverse of dis-
tance potential~example is a Coulomb’s field generated by
trapped charge in the lattice! and ~2! inverse of sixth power
of distance potential~this is a short range interaction com
pared to Coulomb interaction and is taken as attractive
of the Lennard-Jones interaction!. Energy and density relax
ation functions in a one-dimensional channel without num
fluctuation is calculated and then compared with that o
channel, where particle number fluctuates due to excha
with the bath. It is observed that density fluctuation in t
channel makes energy relaxation exponential.

The rest of this paper is organized as follows. Section
gives the description of the master equation used in the si
lation. The details of the Monte Carlo simulations are giv
in Sec. III. Results of the simulations were analyzed in S
IV. Section V presents the conclusions from the Monte Ca
simulations.

II. THE GENERALIZED MASTER EQUATION

Let the total number of lattice sites in a system cons
ing of a linear lattice and a bath beNT5NL1NB , whereNL

is the number of lattice sites of the lattice andNB is the
number of accessible bath sites. The time dependent p
ability Pi

L(t) of finding a particle in thei th site of the lattice
at time t is given by the following master equation:
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dPi
L~ t !

dt
5 ( 8

m51

NL

wm,i~ t !Pm
L ~ t !2wi ,m~ t !Pi

L~ t !

2Pi
L~ t !(

j 51

NB

wi , j~ t !1(
j 51

NB

wj ,i~ t !Pj
B~ t ! ~1!

~the prime on the summation signifies that the termi 5m is
to be omitted from the sum!, wherewm,i(t) gives the transi-
tion probability of the particle from sitem to i per unit time.
The last two terms of the master equation introduce den
fluctuation in the lattice by allowing exchange of particl
with the bath. In the master equation, the indexj sums over
the bath sites andPj

B is the probability of finding a particle in
the j th bath site. This master equation can be simplified
assuming that lattice sites in the bath are numerousNB

@NL) and the number of walkers in the bath is much larg
than that in the lattice. These assumptions allow us to
form an averaging over the bath sites. Summation in the
two terms of Eq.~2! can be omitted by substituting the pro
erties of the bath with that of an ideal bath defined in
following. The sum of the transition probabilitywi , j (t) to the
bath sites can be replaced by the termwout(t) (( j 51

NB wi , j (t)
5wout(t)), sincewi , j (t) depends only on the temperatur
size, and number of particles in the system~discussed in
detail later in this section!. This ideal bath has infinite capac
ity to absorb particles. Similarly, when a particle is absorb
by the lattice this bath site acts as a supplier of infinite nu
ber of particles. The transition probabilities from all lattic
sites to the bath are equal and assumed to be independe
the instantaneous state of the bath. Therefore,wj ,i can be
replaced bywin and( j 51

NB Pj
B can be replaced byPbath. The

resultant master equation is simpler and is given by

dPi
L~ t !

dt
5( 8

m

NL

wm,i~ t !Pm
L ~ t !2wi ,m~ t !Pi

L~ t !2woutPi
L~ t !

1win~ t !Pbath. ~2!

If only nearest-neighbor exchanges are allowed then
master equation can be written as

FIG. 1. The perturbation potential and the various transitions are sh
schematically. The attractive part of the Lennard-Jones potential is show
the line ~i! and Coulomb potential is given by the line~ii !.
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dPi
L~ t !

dt
5wi 11,i~ t !Pi 11

L ~ t !1wi 21,i~ t !Pi 21
L ~ t !

2wi ,i 11~ t !Pi
L~ t !2wi ,i 21~ t !Pi

L~ t !

2wout~ t !Pi
L~ t !1win~ t !Pbath. ~3!

At equilibrium this system represents a grand canonical
semble. Hence for insertion and removal of the particles
the randomly selected sites we use grand-canonical Mo
Carlo method, where probability (Pm,L,T) of system having
number of particlesN is17

Pm,L,T}
LN

LNN!
e2b[E2mN] , ~4!

whereb is the inverse of Boltzmann constant times absol
temperature (1/kBT), L (5Ah2/2pmkBT) is the thermal de
Broglie wavelength,L is the length of the linear lattice,m is
chemical potential, andE is the potential energy of the linea
lattice. Particles of this system obey Boltzmann distributi
at equilibrium, hence the transition probabilitywi ,i 11(t) can
be calculated from the total energy cost for the move. T
hopping probability is calculated for a particle from one s
to another using Metropolis scheme.17 Hopping probability
of a random walker from one site to the neighboring site
the lattice is given by

wi ,i 115min@1, e2bDE#. ~5!

The transition probabilities for absorption and desorpt
from the lattice can be obtained17 so as to satisfy the detaile
balance at equilibrium as

win5minF1,
Q

~N11!
e2bDEG , ~6!

wout5minF1,
N

Q
ebDEG , ~7!

whereQ is given by (L/L)ebm. A nontrivial aspect of this
master equation is that the transition probabilitywin(t) varies
with time in response to the number fluctuations. This e
plicit time dependence ofwin(t) poses formidable difficulty
in obtaining an explicit analytic solution of the problem.
this system of interacting particles, the transition probabi
to neighboring sites depends on the instantaneous probab
of that site being occupied. In a one-dimensional chan
with hard rod interactions between the carriers, mobility
each carrier is restricted to a portion of the lattice. The p
ticles move in the linear lattice under the influence of a ch
sen potential, which is at a fixed position of this lattic
Hence the energy cost for hopping in the lattice is

DE5H E1 ~ transition to vacant site!

` ~ transition to occupied site!

where

E15K1S 1

xi
2

1

xi 11
D

for potential 1 and

n
by
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E15K2S 1

xi
6 2

1

xi 11
6 D

for potential 2. For absorption of particles to the lattice ati th
site

DE5H E2 ~creation of vacant site!

` ~creation of occupied site!,

whereE25K1 (1/xi) for potential 1 andE25K2 (1/xi
6) for

potential 2. For the desorption of particles from thei th site

DE5E2 . ~8!

Q in this system is constant and equal to the initial num
of the particles in the lattice. This assumption specifies
value of the chemical potential of this linear lattice.

III. THE DETAILS OF MONTE CARLO SIMULATION

The Monte Carlo simulations are carried out on a line
lattice, with 50%~on average! of the lattice sites occupied b
the random walkers. Closed boundary condition is used
explore the size effect on the relaxation. In this on
dimensional lattice, the adjacent sites are equally spaced
all the sites are identical in energy in the absence of
perturbation. Here inhomogeneity in the lattice is genera
by the perturbation of potential introduced in the lattice.
addition, there is a dynamic disorder in the lattice that ori
nates from the instantaneous rearrangement of the intera
random walkers. The initial configuration of the rando
walkers in an unperturbed lattice is chosen from a rand
distribution, such that no two particles occupy the same s
The inverse potential arise from Coulomb interaction, he
the magnitude of the biasing potential is calculated from
interaction between the charge of the carriers (q1) and the
charge at the center of bias (q2) in a medium of dielectric
constante. The constantK1 for potential energy can be ca
culated asK15q1q2 /e. Here both the perturbing charge an
the charge of the carrier have magnitude of one electron
their signs are opposite. Assuming high screening effect,
value ofe is taken as equal to that of water, that is 80. T
distance between the adjacent sites in the linear lattice is
~approximately the vertical distance between two DNA ba
pairs in the double helix!. All simulations were conducted
near room temperature~300 K!. The value ofK1 used in the
simulation is21.7kBT. Compared to Coulomb’s interaction
the Lennard-Jones interaction is short ranged, hence the
stant K2 is kept high to extend the range of the potenti
value ofK2 used is210kBT.

The nonequilibrium Monte Carlo simulation starts fro
a randomly chosen initial configuration. Then a perturb
potential is introduced in the lattice at at timet50. Subse-
quent relaxation of energy is monitored. The simulation
repeated with different initial configurations and the resu
are averaged. In the Monte Carlo simulation movements
chosen randomly such that no two events can occur at
same time. In this simulation one Monte Carlo step
equivalent to one unit of time. Total potential energy of t
lattice at any instant of time when perturbed by Coulom
potential is given as
r
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E~ t !5(
i

k1

1

xi
Pi~ t !, ~9!

wherek1 is a constant. Similarly, for the simulations that u
attractive Lennard-Jones potential as the perturbation, the
stantaneous potential energy of the lattice is given by

E~ t !5(
i

k2

1

xi
6 Pi~ t !, ~10!

wherek2 is a constant.
For comparison of relaxation function for different sy

tem sizes, we calculate dimensionless energy relaxa
function S(t), which can be defined as

S~ t !5
E~ t !2E~`!

E~0!2E~`!
, ~11!

whereE(t) is the instantaneous energy at timet andE(`) is
the average energy of the lattice, in equilibrium with pert
bation. Density relaxation is measured in terms of a dim
sionless quantity

C~ t !5
X~ t !2X~`!

X~0!2X~`!
, ~12!

whereX(t) is defined asX(t)5( i xi Pi(t).
In the equilibrium simulation the system is allowed

equilibrate with perturbation for 10 000 steps to get the init
configuration. The fluctuations in total energy of the syst
can be defined asF(t)5^E(0)E(t)&. Here a dimensionless
energy fluctuation relaxation function can be defined as

S~ t !5
F~ t !2F~`!

F~0!2F~`!
. ~13!

IV. RESULTS AND DISCUSSIONS

A. Relaxation under Coulomb potential

Figure 2 shows the energy relaxation function for diffe
ent system sizes obtained from the nonequilibrium simu
tions of a one-dimensional channel without particle fluctu
tion. At short times, the potential energy of the lattice relax
faster, as a response to the newly created center of pertu
tion. This results in the accumulation of random walkers n
the center of the biasing field, which slows down the rela
ation rate. At the same time, channels far from the cente
perturbation remain active due to the reduction in the den
of particles in that region. These effects together contrib
to the observed slowing down of the relaxation process a
the fast initial decay. As the system size increases the low
possible energy accessible to the system obviously bec
lower, hence the relaxation becomes progressively slow
the system size increases. However, this effect become
significant beyond a limiting size of the lattice beyond whi
the strength of perturbation becomes negligible. To anal
the behavior of relaxation functions in the system, we ha
fitted the relaxation function to a sum of an exponential a
a stretched exponential of the form

f 1~ t !5b1e2t/t11b2e2(t/t2)b
~14!
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~with constraintsb11b251 and 0<b1 ,b2<1). In order to
compare with the nature of relaxation with the results o
tained by Brunset al.,1 a logarithmic function of the form

f 2~ t !512c1 log10~at!1c2e2t/g ~15!

is also used to fit the relaxation function. The inset of Fig
shows the fit of the energy relaxation function withf 1(t) and
f 2(t), when size of the system isNL5200. Fitting param-
eters obtained for the functionf 1(t) are b150.20, t151.4
3105, t253.43105, b50.52. The fitting parameters for th
function f 2(t) are c150.16, a52.5, c250.25, andg57.1
3103. It is evident from the figure that the stretched exp
nential function and logarithmic functions both give go
description of the energy relaxation function in a on
dimensional lattice without density fluctuations, in the pre
ence of the Coulomb potential. The time dependence
stretched exponential18,19 relaxation is given by the function
of the formS(t)5S0 e2(t/ts)

b
, where 0,b,1. Theoretical

explanation of the origin of stretched exponential relaxat
in the condensed matter has been addressed by many20–23

including Huber and co-workers in a series of papers.24,25

Their model is based on the following simple master eq
tion approach:

dPi~ t !

dt
5 (

mÞ i
wm,i Pm~ t !2wi ,mPi~ t !, ~16!

where wm,i gives the transition probability of the particl
from site m to i . Stretched exponential relaxation can ar
when there is a continuum of relaxation channels and
probability of any single channel being open is much le
than unity.

Figure 3 shows the density relaxation function~which is
a measure of particle aggregation! for different sizes of a
system without number density fluctuations. AtNL5200, a
double exponential

FIG. 2. Energy relaxation functionS(t) is plotted for four different system
sizes under Coulomb potential:NL550 ~dashed line!, NL5100 ~dotted
line!, NL5150 ~dashed-dotted line!, and NL5200 ~continuous line!in a
closed system. The inset shows the fit of the energy relaxation function
NL5200 using functionf 1(t) ~dotted line! and f 2(t) ~dashed-dotted line!.
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f 3~ t !5c1 e2t/g11c2 e2t/g2 ~17!

~with constraintsc11c251 and 0<c1 ,c2<1) ~shown in the
inset of Fig. 3! fit of the density relaxation function revea
the presence of two distinct time scales in the density re
ation. The fitting parameters obtained for the double ex
nential @ f 3(t)# fit of density relaxation function arec1

50.90,g151.43106, g258.33104.
We now turn to the case when the number of walkers

the lattice can fluctuate due to the exchange with the b
Figure 4 gives the energy relaxation function plotted for d
ferent system sizes for this case. Note that, in this case,
energy relaxation is faster than the nonfluctuating case.
exchange of particles with bath is equivalent to opening
of many wider channels of relaxation that dominate the

or

FIG. 3. The density relaxation functionC(t) is plotted for four system sizes
under Coulomb potential:NL550 ~dashed line!, NL5100 ~dotted line!,
NL5150 ~dashed-dotted line!, and NL5200 ~continuous line!. The inset
shows double exponential fit~continuous line! for C(t) at NL5200.

FIG. 4. Energy relaxation function is plotted for different system leng
@NL550 ~continuous line!, NL5100 ~dashed-dotted line!, NL5150 ~dotted
line!, andNL5200 ~dashed line!# under the perturbation of Coulomb poten
tial. The log ofS(t) vs t plot in the inset shows straight lines due to th
exponential relaxation.
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laxation process. The logS(t) vs t plot in the inset of Fig. 4
shows straight lines, which is an evidence of exponen
relaxation. In this case walkers can bypass the obst
caused by hard rod interaction in the path by exchange
particles with the bath. Figure 5 shows the density relaxa
function of an open system for different sizes. As system s
increases, the effect of Coulomb field on the distribution
carriers decreases. Hence the carrier density oscillates ar
a mean value due to the density fluctuations and the effec
perturbation in the density relaxation remains feeble a
short lived.

The energy fluctuation relaxation function for differe
sizes of a system with constant number density and that
equilibrium with perturbation is shown in the Fig. 6. Th
relaxation function shows very slow nonexponential dec
The inset of Fig. 6 shows the energy relaxation funct
obtained is well fitted byf 1(t) and f 2(t). The fitting param-
eters obtained for thef 1(t) are b150.2, t153.73103, t2

53.63104, b50.34 and the fitting parameters obtained f
f 2(t) are c150.21, a50.06, c250.13, andg56.93103.
Note that the energy relaxation function in nonequilibriu
and energy fluctuation relaxation function in equilibriu
show logarithmic time dependence.

B. Relaxation under Lennard-Jones potential

The pronounced nonexponential decay found in n
equilibrium energy relaxation function for Coulomb potent
is also found in the case of attractive Lennard-Jones po
tial. Figure 7 shows the energy relaxation function at diff
ent sizes for a system without number fluctuation pertur
by the attractive Lennard-Jones potential. The fit of the
ergy relaxation function withf 1(t) and f 2(t) is shown in the
inset of Fig. 7. The fitting parameters obtained forf 1(t) are
b1.0, b2.1.0, ts51.13103, b50.62, and f 2(t) are c1

50.14, a55.63101, c250.58, andg51.33103. It is evi-
dent from the figure that, in the case of short-ranged inte
tion, the appropriate function which can fit relaxation fun

FIG. 5. Density relaxation function with density fluctuationC(t) is plotted
here for four system sizes@NL550 ~continuous line!, NL5100 ~dashed-
dotted line!, NL5150 ~dotted line!, andNL5200 ~dashed line!# under Cou-
lomb potential.
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tion is stretched exponential. Here due to the large stren
of the potential near the perturbation center, the initial rel
ation is driven and faster. Corresponding density relaxat
function for different sizes of this system is shown in Fig.

The energy relaxation function@S(t) vs t] of a linear
lattice with particle number fluctuation is plotted for differe
system sizes in Fig. 9. The inset of Fig. 9 shows log ofS(t)
vs t plot of the energy relaxation function, which sho
straight lines that is a signature of exponential relaxation
is clear from Figs. 4 and 9 that the number fluctuation in
system makes the energy relaxation nearly exponential
spective of the nature and range of the perturbing poten

FIG. 6. Energy fluctuation relaxation function is plotted for four syste
sizes@NL550 ~continuous line!, NL5100 ~dashed-dotted line!, NL5150
~dotted line!, andNL5200 ~dashed line!# in equilibrium under the pertur-
bation of Coulomb potential. The inset shows the fit of the energy relaxa
function for NL5200 using functionf 1(t) ~dotted line! and f 2(t) ~dashed-
dotted line!.

FIG. 7. Dimensionless energy relaxation functionS(t) of a one-dimensional
channel with constant number density at different system sizes@NL550
~continuous line!, NL5100 ~dashed-dotted line!, NL5150 ~dotted line!, and
NL5200 ~dashed line!# under the perturbation of Lennard-Jones potentia
shown here. The inset shows the fit of the energy relaxation function
NL5200 using functionf 1(t) ~dotted line! and f 2(t) ~dashed-dotted line!.
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The equilibrium energy fluctuation relaxation function
a system under the Lennard-Jones perturbation, for diffe
system sizes, is plotted in Fig. 10. The energy fluctuation
this system is mostly from the region where potential
weak. The fit of the energy fluctuation relaxation with fun
tions f 1(t) and f 2(t) is shown in the inset of Fig. 10. Th
fitting parameters for the functionf 1(t) are b150.42, t1

58.83103, t251.63105, b50.73, and for f 2(t) are c1

50.14, a55.63101, c250.58, andg51.33103.
Finally, note that the stretched exponential fit of rela

ation function is more appropriate in this case due to
short range of the potential. We have found no evidence
logarithmic time dependence for the energy relaxation in
case.

FIG. 8. Density relaxation function of the lattice under the perturbation
Lennard-Jones potential at different system sizes@NL550 ~continuous line!,
NL5100 ~dashed-dotted line!, NL5150 ~dotted line!, andNL5200 ~dashed
line!# are shown.

FIG. 9. Energy relaxation function@S(t)# is plotted at different system size
@NL550 ~continuous line!, NL5100 ~dashed-dotted line!, NL5150 ~dotted
line!, andNL5200 ~dashed line!# with particle number fluctuations unde
Lennard-Jones potential. The log ofS(t) vs t plot in the inset shows straigh
lines due to the exponential relaxation.
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V. CONCLUSION

Let us first summarize the main results of this work. W
have demonstrated that the cooperative dynamics of ran
walkers in a simple one-dimensional channel can give ris
highly nonexponential relaxation, when number density flu
tuations are not allowed. In these simulations, two perturb
potentials~the Coulomb and the Lennard-Jones! have been
used to study the effects of perturbing potential on the rel
ation process. The energy relaxation under these poten
can be approximately described by a stretched expone
~in general! in a closed system. The variation in the tim
scale of relaxation under these two well-known potenti
can be understood in terms of the difference in therangeof
these potentials. The Coulomb potential being long ran
~in comparison with the Lennard-Jones interaction!, shows
much stronger nonexponentiality in the energy relaxati
Under the Coulomb potential, the exponentb of nonequilib-
rium energy relaxation function is 0.52 while under Lenna
Jones potential it is 0.73. The simulations seem to agree
the results of Brunset al.1 in showing a logarithmic time
dependence of the energy relaxation function under the C
lomb potential. However, under the short-ranged Lenna
Jones potential, the energy relaxation function does not s
logarithmic time dependence.

In the smaller sized systems the relaxation is found to
faster and as the system size increases, relaxation s
down, as expected. Also as expected, the density fluctuat
in this one-dimensional channel make the relaxation funct
faster and exponential. When number fluctuation is allow
random walkers overcome the resistance of the hard rod
teractions, by moving in and out of the linear lattice, su
that the random walkers experience no major hindrance
their flow. In this case the system behaves like a system
weakly interacting particles, without the need for strong c
operativity for relaxation. It is worth noting that interaction

fFIG. 10. Energy fluctuation relaxation function is plotted for system
equilibrium under the perturbation of Lennard-Jones potential for differ
system sizes@NL550 ~continuous line!, NL5100 ~dashed-dotted line!, NL

5150 ~dotted line!, andNL5200 ~dashed line!#. The inset shows the fit of
the energy relaxation function forNL5200 using functionf 1(t) ~dotted
line! and f 2(t) ~dashed-dotted line!.
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found in nature are numerous, but the models of asympt
time dependence of relaxation commonly found in nature
limited in number. However, the parameters of the relaxat
function depend on the form of the biasing potential and
nature of interaction between the carriers.
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