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Density and energy relaxation in an open one-dimensional system

Prasanth P. Jose® and Biman Bagchi®
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560012, India

A new master equation to mimic the dynamics of a collection of interacting random walkers in an
open systeris proposed and solved numerically. In this model, the random walkers interact through
excluded volume interactiofsingle-file systemm and the total number of walkers in the lattice can
fluctuate because of exchange with a bath. In addition, the movement of the random walkers is
biased by an external perturbation. Two models for the latter are consid&red: inverse potential

(Ve 1/r), wherer is the distance between the center of the perturbation and the random walker and
(2) an inverse of sixth power potentiaV¢ 1/r). The calculated density of the walkers and the total
energy show interesting dynamics. When the size of the system is comparable to the range of the
perturbing field, the energy relaxation is found to be highly nonexponential. In this range, the system

can show stretched exponentiaé*@’fs)ﬁ) and even logarithmic time dependence of energy
relaxation over a limited range of time. Introduction of density exchange in the latiickedly
weakens this nonexponentiality of the relaxation function, irrespective of the nature of
perturbation.

I. INTRODUCTION mean residence time, mean first passage time of random
walkers, eté 16

Relaxation dynamics of interacting particles in a one-  The work presented here is based on a master equation
dimensional system is often difficult to understand becausér random walk in asingle-file system(a one-dimensional
the traditional coarse-grained descriptigaach as hydrody- system that does not allow particles to pass through each
namics or time dependent mean-field type approximationsothen that allows exchange of the particles with the bte
fail in this case. This is because of the existence of long¥ig. 1 for a schematic illustrationHere we employed two
range correlations mediated through the excluded volume inmodel potentials with different characteristics to study the
teraction. In such cases, random walk models have ofteffect of perturbation on the density and energy relaxation
proved to be successful in describing the nonexponential refrocesses. The potentials used here (ajeinverse of dis-
laxation commonly observed in one-dimensional systems. tance potentialexample is a Coulomb’s field generated by a

Recently, several experimental studies have reported eft@pped charge in the lattipand (2) inverse of sixth power
ergy relaxation in one-dimensional or quasi-one-dimensionaff distance potentiafthis is a short range interaction com-
systems such as DNA2 These experiments employed the pared to Coulomb interaction and is taken as attractive part

time dependent fluorescence Stokes shift technique to gath8f the Lennard-Jones interactiorEnergy and density relax-

a quantitative measure of the time scale involved. In one Oiatlon functions in a one-dimensional channel without number

these experiments Brures al® have calculated structural re- flﬂctuaulon ;]S calcuI?teid and ;her;l c?mﬁareg W'tth thathof a
laxation of DNA oligonucleotides. They found that the red- Channel, where particle number fuctuates due 1o exchange

) L with the bath. It is observed that density fluctuation in the
shift of the fluorescent spectrum followsl@garithmic time . .
. ; . hannel makes energy relaxation exponential.
dependence. The above-described experiment is an example . . . .
The rest of this paper is organized as follows. Section |l

where d|r_nen3|onal|_ty plays an important role in the energygives the description of the master equation used in the simu-
and density relaxation.

. lation. The details of the Monte Carlo simulations are given
!n th.'s work, We propose a random Wf.ilk. model for thein Sec. lll. Results of the simulations were analyzed in Sec.
carriers in a one-dimensional channel to mimic the relaxatlor?vl Section V presents the conclusions from the Monte Carlo
of energy and density found in the above-described EXperiéimulations.
ments. There were several theoretical studies devoted to ran-
dom walk model in one-dimensional systefi$.Many re-
cent studies based on random walk model in one-

dimensional systems have explored transport and othe“r' THE GENERALIZED MASTER EQUATION

dynamical properties such as dc conductivity, frequency de-  |et the total number of lattice sites in a system consist-
pendent conductivity, effect of bias on diffusion, space andng of a linear lattice and a bath Bé&-=A; + Ny, whereN|

time dependent probability distribution of random walkers,is the number of lattice sites of the lattice ang is the
number of accessible bath sites. The time dependent prob-
3Electronic mail: jose@sscu.iisc.emnet.in ability Pj(t) of finding a particle in theth site of the lattice
YElectronic mail: bbagchi@sscu.iisc.ernet.in at time t is given by the following master equation:



https://core.ac.uk/display/291496481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.1691738

dP(t)
00 == dt

=W 1 (P (D 4w (DPH (1)

V(x)

—Wi i+ 1 (PO —w; i1 (D PF(1)

i i i+2 i

()= =) (o) (o)—() A QPP ©
I o T © I °. I 5 I © T

At equilibrium this system represents a grand canonical en-
semble. Hence for insertion and removal of the particles in

o © o o © o the randomly selected sites we use grand-canonical Monte
o o o © o) o .
o © o o Carlo method, where probabilityP(, | 1) of system having
number of particle\ is'’
Bath

N
FIG. 1. The perturbation potential and the various transitions are shown LT =
schematically. The attractive part of the Lennard-Jones potential is shown by m=T ARNI
the line (i) and Coulomb potential is given by the lirtig).

e*B[E*MN]’ (4)

whereg is the inverse of Boltzmann constant times absolute
temperature (ksT), A (= Vh%2emksT) is the thermal de
Broglie wavelengthL is the length of the linear latticey is
dPiL(t) M , L L chemical potential, ang is the potential energy of the linear
T =r;1 Win,i (1) Pr(t) = wi m(t) Pi(t) lattice. Particles of this system obey Boltzmann distribution
at equilibrium, hence the transition probability ;. ,(t) can
L B be calculated from the total energy cost for the move. The
—Pi (t)gl "Vi,j(t)ﬂz::l wi,i (D PF(D) oy hopping probability is calculated for a particle from one site
to another using Metropolis schertfeHopping probability
of a random walker from one site to the neighboring site of
the lattice is given by

Ng Ng

(the prime on the summation signifies that the térm is
to be omitted from the sumwherew,, (t) gives the transi-
tion probability of the particle from siten to i per unit time. Wi iy =min[1, e PAE]. (5)
The last two terms of the master equation introduce density
fluctuation in the lattice by allowing exchange of particles
with the bath. In the master equation, the indesums over
the bath sites anﬂjB is the probability of finding a particle in

The transition probabilities for absorption and desorption
from the lattice can be obtain¥dso as to satisfy the detailed
balance at equilibrium as

the jth bath site. This master equation can be simplified by

assuming that lattice sites in the bath are numero\Mg ( Wip=min| 1, (N+ 1) e PAE|, (6)
> N|) and the number of walkers in the bath is much larger

than that in the lattice. These assumptions allow us to per- N

form an averaging over the bath sites. Summation in the last Wou=min| 1, =e#4F|, (7)

two terms of Eq(2) can be omitted by substituting the prop-
erties of the bath with that of an ideal bath defined in thewhereQ is given by (/A)e?*. A nontrivial aspect of this
following. The sum of the transition probability; ;(t) to the =~ master equation is that the transition probabiity(t) varies

bath sites can be replaced by the temg,(t) (21:81 w; (t) Wi.ﬂ’.l ti.me in response to the number fluct'uations.' This ex-
=Wo(t)), sincew ;(t) depends only on the temperature, Plicit ime dependence af;,(t) poses formidable difficulty
size, and number of particles in the systédiscussed in N obtaining an explicit analytic solution of the problem. In
detail later in this section This ideal bath has infinite capac- this system of interacting particles, the transition probability
ity to absorb particles. Similarly, when a particle is absorbed© neighboring sites depends on the instantaneous probability
by the lattice this bath site acts as a supplier of infinite num©f that site being occupied. In a one-dimensional channel
ber of particles. The transition probabilities from all lattice With hard rod interactions between the carriers, mobility of
sites to the bath are equal and assumed to be independent&ich carrier is restricted to a portion of the lattice. The par-
the instantaneous state of the bath. Therefarg, can be ticles move in the linear lattice under the influence of a cho-
replaced byw;, andzfvjl PJ-B can be replaced b,y The  S€N potential, which is at a flx'ed .posmon Qf thls lattice.
resultant master equation is simpler and is given by Hence the energy cost for hopping in the lattice is

A E, (transition to vacant sije
E:
dPt) &, « (transition to occupied sije
G 2 Wini(DPR(O) = Wi ()P~ WouPF (1)
1 1 )
. Xi Xj+1
If only nearest-neighbor exchanges are allowed then the

master equation can be written as for potential 1 and

where
+ Win(t) Ppath- 2

Ei=K;




Ei=K>

1 1 1
5~ @—1) E()=2 x1p Pi(D), ©
for potential 2. For absorption of particles to the latticett  wherex, is a constant. Similarly, for the simulations that use
site attractive Lennard-Jones potential as the perturbation, the in-
E, (creation of vacant sie stantaneous potential energy of the lattice is given by

AE= . . .
{oo (creation of occupied sije 1

. . E()=2 ko—sPi(1), (10
where E,=K (1/x;) for potential 1 andE,=K, (1/x;’) for i X

potential 2. For the desorption of particles from ftie site :
wherek, is a constant.

AE=E,. (8 For comparison of relaxation function for different sys-
eIIem sizes, we calculate dimensionless energy relaxation

in this system is constant and equal to the initial numb . . X
Q y a éunctlon S(t), which can be defined as

of the particles in the lattice. This assumption specifies th
value of the chemical potential of this linear lattice. E(t)—E()

SUTEQ B ay

IIl. THE DETAILS OF MONTE CARLO SIMULATION whereE(t) is the instantaneous energy at titnendE () is

The Monte Carlo simulations are carried out on a lineath® average energy of the lattice, in equilibrium with pertur-
lattice, with 50%(on averaggof the lattice sites occupied by b_atlon. Densn){ relaxation is measured in terms of a dimen-
the random walkers. Closed boundary condition is used t§ionless quantity
explore the size effect on the relaxation. In this one- X(t) = X(0)
dimensional lattice, the adjacent sites are equally spaced and C(t)= W
all the sites are identical in energy in the absence of the
perturbation. Here inhomogeneity in the lattice is generategyhereX(t) is defined ask(t)=3; x;P;(t).
by the perturbation of potential introduced in the lattice. In In the equilibrium simulation the system is allowed to
addition, there is a dynamic disorder in the lattice that origi-equilibrate with perturbation for 10 000 steps to get the initial
nates from the instantaneous rearrangement of the interactir@nfiguration. The fluctuations in total energy of the system
random walkers. The initial configuration of the randomcan be defined aB(t)=(E(0)E(t)). Here a dimensionless

walkers in an unperturbed lattice is chosen from a randongnergy fluctuation relaxation function can be defined as
distribution, such that no two particles occupy the same site.

The inverse potential arise from Coulomb interaction, hence S(t)= F(t)—F ()
the magnitude of the biasing potential is calculated from the F(0)—F(x»)"

interaction between the charge of the carriayg) (and the

charge at the center of biag4) in a medium of dielectric |\, RESULTS AND DISCUSSIONS
constante. The constanK, for potential energy can be cal- ) )
culated ak, =0, /€. Here both the perturbing charge and A+ Relaxation under Coulomb potential

the charge of the carrier have magnitude of one electron and  Figure 2 shows the energy relaxation function for differ-
their signs are opposite. Assuming high screening effect, thent system sizes obtained from the nonequilibrium simula-
value of e is taken as equal to that of water, that is 80. Thetjons of a one-dimensional channel without particle fluctua-
distance between the adjacent sites in the linear lattice is 4 Aon_ At short times, the potentia| energy of the lattice relaxes
(approximately the vertical distance between two DNA basgaster, as a response to the newly created center of perturba-
pairs in the double helix All simulations were conducted tjon. This results in the accumulation of random walkers near
near room temperatur@00 K). The value ofK; used in the  the center of the biasing field, which slows down the relax-
simulation is—1.7kgT. Compared to Coulomb’s interaction, ation rate. At the same time, channels far from the center of
the Lennard-Jones interaction is short ranged, hence the coperturbation remain active due to the reduction in the density
stantK; is kept high to extend the range of the potential,of particles in that region. These effects together contribute
value ofK; used is—10kgT. to the observed slowing down of the relaxation process after
The nonequilibrium Monte Carlo simulation starts from the fast initial decay. As the system size increases the lowest
a randomly chosen initial configuration. Then a perturbingpossible energy accessible to the system obviously become
potential is introduced in the lattice at at tinhe 0. Subse- lower, hence the relaxation becomes progressive|y slow as
quent relaxation of energy is monitored. The simulation isthe system size increases. However, this effect becomes in-
repeated with different initial configurations and the resultssignificant beyond a limiting size of the lattice beyond which
are averaged. In the Monte Carlo simulation movements arghe strength of perturbation becomes negligible. To analyze
chosen randomly such that no two events can occur at thye behavior of relaxation functions in the system, we have

same time. In this simulation one Monte Carlo step isfitted the relaxation function to a sum of an exponential and
equivalent to one unit of time. Total potential energy of thea stretched exponential of the form

lattice at any instant of time when perturbed by Coulomb
potential is given as f,(t)=b,e V714 p,e” UD* (14)

(12
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FIG. 2. Energy relaxation functio§(t) is plotted for four different system
sizes under Coulomb potentialk/; =50 (dashed ling N, =100 (dotted
line), N =150 (dashed-dotted ling and A, =200 (continuous lingn a

FIG. 3. The density relaxation functidd(t) is plotted for four system sizes
under Coulomb potentiallV, =50 (dashed ling AN, =100 (dotted line,
N =150 (dashed-dotted line and NV, =200 (continuous ling The inset

closed system. The inset shows the fit of the energy relaxation function fophoWs double exponential ficontinuous ling for C(t) at. A, = 200.
N_ =200 using functiorf,(t) (dotted line andf,(t) (dashed-dotted line

fa(t)=c, e V1+c, e V7

17

(with constr_?rl]n';ﬁ]bﬁbtz:l ?ndIOSbt?'sz.tlr? .ﬂl]n orderltto b (with constraints;+c,=1 and 0<c4,c,<1) (shown in the
cqmpare wi N n% ure o _re a>§a lon Wi € TesUllS OB qet of Fig. 3 fit of the density relaxation function reveals
tained by Brunst al,,” a logarithmic function of the form

the presence of two distinct time scales in the density relax-
(15 ation. The fitting parameters obtained for the double expo-
is also used to fit the relaxation function. The inset of Fig. 2

nential [f5(t)] fit of density relaxation function are,
shows the fit of the energy relaxation function witf{t) and

0.90, y;=1.4x10°, y,=8.3x 104
(1), when size of the system i, —200. Fitting param- We now turn to the case when the number of walkers in
eters obtained for the functiofy(t) areb;=0.20, 7;=1.4

the lattice can fluctuate due to the exchange with the bath.
o Figure 4 gives the energy relaxation function plotted for dif-
x 105.’ 7,=3.4x10" £3=O.52._The f|tt|n_g parametgrs_for the fe?ent sysgtem sizes for%l/is case. Note that, i?l this case, the
funccz)t;on f_Z(t) _‘Zre le_o'lb;]’ a]:2.5, ChZ_Or'IZS’ an %’_d7'1 energy relaxation is faster than the nonfluctuating case. The
X1 S Itis eVl ent from t e figure ¢ af[t e stretc © eXpo'exchange of particles with bath is equivalent to opening up
nent|a_1I f_unct|on and logarithmic fupcuons b.OIh give good of many wider channels of relaxation that dominate the re-
description of the energy relaxation function in a one-
dimensional lattice without density fluctuations, in the pres-

ence of the Coulomb potential. The time dependence of 1
stretched exponentidt*® relaxation is given by the function

f,(t)=1—c; logyo(at)+ce "

of the form S(t) =S, e~ V™" where 0<8<1. Theoretical .l
explanation of the origin of stretched exponential relaxation 0.8
in the condensed matter has been addressed by &y, 0.7Hi:
including Huber and co-workers in a series of papérs. ol .
Their model is based on the following simple master equa-__ N
tion approach: & 05[ _
dP|(t) 0.4} ".,~ W "
Gr = 2, WniPr(D) = Wi mPi(D), (16 g} L T
600 800 1000

where wp,; gives the transition probability of the particle 0.2 time ]
from sitem to i. Stretched exponential relaxation can arise 0.1} )
when there is a continuum of relaxation channels and the e S e e
probability of any single channel being open is much less 0 500 1000 1 he 1500 2000

than unity.

Figure 3 shows the density relaxation functievhich is
a measure of particle aggregatiofor different sizes of a
system without number density fluctuations. At =200, a
double exponential

FIG. 4. Energy relaxation function is plotted for different system lengths
[N =50 (continuous ling A =100 (dashed-dotted line A/, = 150 (dotted
line), and A\, = 200 (dashed lingl under the perturbation of Coulomb poten-
tial. The log of S(t) vst plot in the inset shows straight lines due to the
exponential relaxation.
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FIG. 5. Density relaxation function with density fluctuati@ft) is plotted FIG. 6. Energy fluctuation relaxation function is plotted for four system

here for four system sizesV, =50 (continuous ling N, =100 (dashed- sizes[, =50 (continuous ling A} =100 (dashed-dotted line A, =150

dotted line, NL:150 (dotted ling, andV, =200 (dashed ling under Cou-  (qotted ling, and A =200 (dashed ling in equilibrium under the pertur-

lomb potential. bation of Coulomb potential. The inset shows the fit of the energy relaxation
function for A/ =200 using functiorf,(t) (dotted ling andf,(t) (dashed-
dotted ling.

laxation process. The Idgt) vst plot in the inset of Fig. 4

shows straight lines, which is an evidence of exponentiation is stretched exponential. Here due to the large strength
relaxation. In this case walkers can bypass the obstaclgf the potential near the perturbation center, the initial relax-
caused by hard rod interaction in the path by exchange oition is driven and faster. Corresponding density relaxation
particles with the bath. Figure 5 shows the density relaxatiounction for different sizes of this system is shown in Fig. 8.
function of an open system for different sizes. As system size  The energy relaxation functiopS(t) vs t] of a linear
increases, the effect of Coulomb field on the distribution ofjattice with particle number fluctuation is plotted for different
carriers decreases. Hence the carrier density oscillates arouggjstem sizes in Fig. 9. The inset of Fig. 9 shows logt)
a mean value due to the density fluctuations and the effect Gfs t plot of the energy relaxation function, which show
perturbation in the density relaxation remains feeble andtraight lines that is a signature of exponential relaxation. It
short lived. is clear from Figs. 4 and 9 that the number fluctuation in the
The energy fluctuation relaxation function for different System makes the energy re|axation near'y exponentia| irre_

sizes of a system with constant number density and that is igpective of the nature and range of the perturbing potential.
equilibrium with perturbation is shown in the Fig. 6. This

relaxation function shows very slow nonexponential decay.

The inset of Fig. 6 shows the energy relaxation function 1
obtained is well fitted byf,(t) andf,(t). The fitting param- 0.9
eters obtained for thé(t) areb;=0.2, ;,=3.7x1C, 7,
=3.6x10*, B=0.34 and the fitting parameters obtained for
f,(t) are c;=0.21, a=0.06, c,=0.13, andy=6.9x10°. 0.7
Note that the energy relaxation function in nonequilibrium 0.6
and energy fluctuation relaxation function in equilibrium _ ¥
show logarithmic time dependence. & 05hd

mN

B. Relaxation under Lennard-Jones potential 0.4}

The pronounced nonexponential decay found in non- 03

equilibrium energy relaxation function for Coulomb potential g2 18 k
is also found in the case of attractive Lennard-Jones poten 0 Xm_
tial. Figure 7 shows the energy relaxation function at differ- ’
ent sizes for a system without number fluctuation perturbed 0

. . : (i 1.5 2
by the attractive Lennard-Jones potential. The fit of the en- time x10°

ergy relaxation function with;(t) andf,(t) is shown in the

inset of Fig. 7. The fitting parameters obtained f@(t) are  FIG. 7. Dimensionless energy relaxation functfi(t) of a one-dimensional
b;=0, b,=1.0, 7,=1.1X 103, B=0.62, andf,(t) are ¢, channel with constant number density at different system gizgs=50
—0.14. a=5.6x 10 c,=0.58 andy= 1.3x 105, It is evi- (continuous ling A, =100 (dashed-dotted line, =150 (dotted ling, and

. . . N_=200(dashed ling] under the perturbation of Lennard-Jones potential is
dent from the figure that, in the case of short-ranged interaCshown here. The inset shows the fit of the energy relaxation function for

tion, the appropriate function which can fit relaxation func- A& =200 using functiorf(t) (dotted ling and f,(t) (dashed-dotted line



time time

FIG. 8. Density relaxation function of the lattice under the perturbation of FIG. 10. Energy fluctuation relaxation function is plotted for system in

Lennard-Jones potential at different system sjz&s= 50 (continuous ling equilibrium under the perturbation of Lennard-Jones potential for different

N_=100(dashed-dotted line\V, =150 (dotted ling, and\ =200 (dashed ~ system size\| =50 (continuous ling A, =100 (dashed-dotted ling N/,

line)] are shown. =150 (dotted ling, and NV, =200 (dashed lingl. The inset shows the fit of
the energy relaxation function fok_ =200 using functionf,(t) (dotted
line) and f,(t) (dashed-dotted line

The equilibrium energy fluctuation relaxation function of
a system under the Lennard-Jones perturbation, for differeng concLUSION
system sizes, is plotted in Fig. 10. The energy fluctuation in ] . _ _
this system is mostly from the region where potential is L€t us first summarize the main results of this work. We
weak. The fit of the energy fluctuation relaxation with func- have demonstrated that the cooperative dynamics of random
tions f,(t) and f,(t) is shown in the inset of Fig. 10. The walkers in a simple one-dimensional channel can give rise to
fitting parameters for the functiof,(t) are b,=0.42, 7, highly nonexponential relaxation, when number density fluc-
=8.8x10°, 7,=1.6x10°, B=0.73, and forf,(t) arec, tuations are not allowed. In these simulations, two perturbing
=0.14,a=5.6x 10!, c,=0.58, andy=1.3x 10°. potentials(the Coulomb and the Lennard-Johémve been
Finally, note that the stretched exponential fit of relax-Used to study the effects of perturbing potential on the relax-
ation function is more appropriate in this case due to thefion process. .The energy rglaxatlon under these potenngls
short range of the potential. We have found no evidence ofan be approximately described by a stretched exponential
logarithmic time dependence for the energy relaxation in thidin general in a closed system. The variation in the time

case. scale of relaxation under these two well-known potentials
can be understood in terms of the difference in riduege of
these potentials. The Coulomb potential being long ranged
1 . (in comparison with the Lennard-Jones interackiaghows
N much stronger nonexponentiality in the energy relaxation.
0.9 0% PR Under the Coulomb potential, the exponghof nonequilib-
0.8 = - \ -__'" ) rium energy relaxation function is 0.52 while under Lennard-
ol &15 ‘.‘ ERN Jones potential it is 0.73. The simulations seem to agree with
iy - I the results of Brunst all in showing a logarithmic time
06} :Y _25f R dependence of the energy relaxation function under the Cou-
= 0_5.'- E -3 CURN lomb potential. However, under the short-ranged Lennard-
w LA 0 500 1000 1500 20p0 . . .
Y _ Jones potential, the energy relaxation function does not show
R fime logarithmic time dependence.
03} In the smaller sized systems the relaxation is found to be
o2t faster and as the system size increases, relaxation slows
down, as expected. Also as expected, the density fluctuations
0-1 in this one-dimensional channel make the relaxation function
0 x faster and exponential. When number fluctuation is allowed,
0 500 t1i(rlrt1)g 1500 2000 random walkers overcome the resistance of the hard rod in-

teractions, by moving in and out of the linear lattice, such

FIG. 9. Energy relaxation functidr5(t)] is plotted at different system sizes
[N =50 (continuous ling A, =100 (dashed-dotted line, =150 (dotted
line), and NV, =200 (dashed ling| with particle number fluctuations under
Lennard-Jones potential. The log$ft) vst plot in the inset shows straight
lines due to the exponential relaxation.

that the random walkers experience no major hindrance to
their flow. In this case the system behaves like a system of
weakly interacting particles, without the need for strong co-
operativity for relaxation. It is worth noting that interactions



found in nature are numerous, but the models of asymptotidD
time dependence of relaxation commonly found in nature are, ’P.
limited in number. However, the parameters of the relaxatlonoK'
function depend on the form of the biasing potential and theig

nature of interaction between the carriers.
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