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Anisotropic translational diffusion in the nematic phase:

Dynamical signature of the coupling between orientational and

translational order in the energy landscape
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Abstract

We find in a model system of thermotropic liquid crystals that the translational diffusion coef-

ficient parallel to the director D‖ first increases and then decreases as temperature drops through

the nematic phase, and this reversal occurs where the smectic order parameter of the underlying

inherent structures becomes significant for the first time. We argue, based on an energy landscape

analysis, that the coupling between orientational and translational order can play a role in inducing

the non-monotonic temperature behavior of D‖. Such a view is likely to form the foundation of a

theoretical framework to explain the anisotropic translation diffusion.
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Anisotropic translational diffusion of non-spherical molecules enjoys immense interdisci-

plinary interests because of its importance in physical (liquid crystals), chemical (micelles),

and biological (lipids) systems [1, 2, 3, 4, 5]. It is particularly important in the uniaxial

nematic phase, where the diffusion description invokes D‖ and D⊥, the principal components

of the second-rank diffusion tensor, for translational motion parallel and perpendicular, re-

spectively, to the macroscopic director [1]. A variety of experimental techniques probe the

anisotropic translational diffusion in the nematic phase [2, 3, 5]. However, a consensus

regarding an appropriate dynamical model still lacks. In particular, the role of coupling

between the orientational and translational order parameters appears to be overlooked.

On the contrary, the interplay between orientational and translational order has been

extensively discussed in the context of the nematic-smectic-A (NA) phase transition over

three decades [1, 6, 7, 8, 9, 10, 11, 12, 13]. The de Gennes-McMillan (dGM) coupling, which

refers to the occurrence of the smectic (one-dimensional translational) ordering being intrin-

sically coupled with increase in the nematic (orientational) ordering [1, 6, 7], could drive,

within a mean field approximation, an otherwise continuous NA transition first order for a

narrow nematic range [6]. Halperin, Lubensky, and Ma later invoked the coupling between

the smectic order parameter and the transverse director fluctuations in their theoretical

treatment that predicted NA transition to be at least weakly first order [8].

Intuitively, D‖ appears to be well placed to capture the dynamical signature of the

coupling between orientational and translational order. Therefore, we here investigate

anisotropic translational diffusion in a model system of thermotropic liquid crystals. The

observed diffusion behavior of the system is correlated with the features of its underlying

potential energy landscape [14]. In this Letter, we show that the coupling between orien-

tational and translational order can lead to the non-monotonic temperature behavior of D‖

being reported here.

We have investigated a system of 256 ellipsoids of revolution along two isochors at a

series of temperatures. We have used the well-established Gay-Berne (GB) pair potential

[15], which explicitly incorporates anisotropy in both the attractive and the repulsive parts

of the interaction with a single-site representation for each ellipsoid of revolution [16]. The

GB pair potential gives rise to a family of models, each member of which is characterized by

the values chosen for the set of four parameters (κ, κ′, µ, ν) [17]. Here κ defines the aspect

ratio, that is the ratio of molecular length to breadth, of the ellipsoid of revolution and κ′
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FIG. 1: (a) The self-diffusion coefficients D‖ and D⊥ in the logarithmic scale versus the inverse

temperature along two isochors at densities ρ = 0.32 (circles) and 0.33 (squares), respectively. The

dot-dashed and long-dashed lines lines are guide to eye for the D‖ data (filled symbols) and the

solid lines and the dotted lines are the Arrhenius fits to the D⊥ (empty symbols) data for ρ = 0.32

and 0.33, respectively. D⊥ data have been considered separately across the isotropic phase and the

nematic phase for the Arrhenius fits. (b) The comparison of the scaled D‖ and D⊥ data obtained

from our simulations with those predicted by the Hess-Frenkel-Allen (HFA) model (main frame)

and the Chu and Moroi (CM) model (inset). For the comparison with the HFA model the scaling

is done by 〈D〉g while for that with the CM model it is done by 〈D〉.

is the energy anisotropy parameter defined by the ratio of the depth of the minimum of the

potential for a pair of molecules aligned parallel in a side-by-side configuration to that in

an end-to-end configuration while µ and ν are two adjustable exponents that also control

the anisotropy in the well depth [17]. We have employed the original and most studied

parameterization: κ = 3, κ′ = 5, µ = 2, ν = 1 [15, 17]. The isochors have been so chosen

that the range of the nematic phase along these varies considerably.

Fig. 1a shows the inverse temperature dependence of the principal components of the

diffusion tensor (in the logarithmic scale) of the Gay-Berne system with the aspect ratio 3

along the two isochors considered [18]. D‖ and D⊥ are obtained from the slopes at long

times of the respective mean square displacements versus time plots: D‖ = 1

2
limt→∞

d
dt

<

∆r2

‖(t) >, D⊥ = 1

2
limt→∞

d
dt

< ∆r2

⊥(t) >, where < ∆r2

‖(t) >=< (r‖(t) − r‖(0))2 > and <

∆r2

⊥(t) >=< (r⊥(t)−r⊥(0))2 > [19]. Here the subscripts refer to the Cartesian components,

resolved in a system of axes based on the director defined at each time origin. For the finite

size of the system, the average orientational order parameter S has a nonzero value even in
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the isotropic phase [20]. This allows us to compute D‖ and D⊥ also in the isotropic phase.

It is evident from Fig. 1a that both D‖ and D⊥, which have nearly identical values in the

isotropic phase, exhibit an Arrhenius temperature dependence in this phase. On crossing

the isotropic-nematic (I-N) phase boundary as temperature drops, D‖ first increases and

then decreases while D⊥ continues to undergo a monotonic decrease following an Arrhenius

temperature behavior across the nematic phase. From the Arrhenius fits to the D⊥ data, we

find that the activation energy for the diffusive translational motion perpendicular to the

director remains effectively unchanged on either side of the I-N transition.

A quantitative, albeit indirect, approach to capture the dynamical signature of the cou-

pling between orientational and translational order is to compare the D‖ and D⊥ data

obtained from our simulations with those predicted by the existing dynamical models,

which ignore such coupling. In Fig. 1b, we do so by considering two theoretical mod-

els [21, 22], that have been applied to trace experimental and molecular dynamics sim-

ulation data of anisotropic translational diffusion in the nematic phase of liquid crys-

talline systems [3, 21, 22, 23, 24]. The main frame displays the comparison with the

Hess-Frenkel-Allen (HFA) model while the inset shows the same with the Chu and Mo-

roi model. The latter gives relatively simple expressions for D‖ and D⊥ in terms of

only the orientational order parameter S and the shape factor g = π/(4κ): D‖ =

〈D〉[1 + 2S(1 − g)/(2g + 1)] and D⊥ = 〈D〉[1 − S(1 − g)/(2g + 1)], where the isotropic

average is defined by 〈D〉 = (2D⊥ + D‖)/3. The HFA model invokes the concept of affine

transformation from the space of isotropic hard spheres and yields the following expressions:

D‖ = 〈D〉gα[κ4/3−2/3κ−2/3(κ2−1)(1−S)] and D⊥ = 〈D〉gα[κ−2/3+1/3κ−2/3(κ2−1)(1−S)],

where α = [1 + 2/3(κ−2 − 1)(1−S)]−1/3[1 + 1/3(κ2 − 1)(1−S)]−2/3 and the geometric aver-

age is defined by 〈D〉g = D
2/3

⊥ D
1/3

‖ . For the purpose of comparison, we plot scaled D‖ and

D⊥ data. It follows from Fig. 1b that both the models cannot capture the non-monotonic

temperature behavior of D‖. We next demonstrate directly by performing a landscape anal-

ysis that the non-monotonic temperature behavior of D‖ could be due to the the coupling

between orientational and translational order.

In the landscape formalism, the potential energy surface is partitioned into a large number

of ”basins”, each defined as the set of points in the multidimensional configuration space

such that a local minimization of the potential energy maps each of these points to the same

local minimum [14]. The inherent structure corresponds to the minimum configuration [25].
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FIG. 2: The temperature dependence of the average inherent structure energy per particle along the

two isochors at densities ρ = 0.32, 0.33. The inset shows the evolution of the average orientational

order parameter S with temperature both for the inherent structures (filled) and the corresponding

pre-quenched ones (empty). The two sets of data are for the same two densities as in Fig. 1a. The

vertical dot-dashed and dotted lines in the main frame show the locations of the isotropic-nematic

and nematic-smectic phase boundaries, respectively.

As a result of this partitioning of the configuration space, the time dependent position ri(t)

of a particle i can be resolved into two components: ri(t) = Ri(t)+Si(t), where Ri(t) is the

spatial position of the particle i in the inherent structure for the basin inhabited at time t,

and Si(t) is the intrabasin displacement away from that inherent structure [26]. That the

replacement of the real positions ri(t) by the corresponding inherent structure positions in

the Einstein relations yields an equivalent diffusion description, as has been theoretically

argued and also verified in simulations [26, 27], is the key to our analysis presented here.

Fig. 2 displays the average inherent structure energy as the drop in temperature drives

the system across the mesophases along two different isochors [28, 29]. In the inset of Fig.

2, we show the concomitant evolution of the average orientational order parameter S both

for the inherent structures and the corresponding pre-quenched ones. While the average

inherent structure energy remains fairly insensitive to temperature variation in the isotropic

phase and also in the smectic phase, it undergoes a steady fall as the orientational order

grows through the nematic phase. We find that D‖ starts increasing near the I-N phase

boundary at a temperature that marks the onset of the growth of the depth of the potential

energy minima explored by the system.

The onset of the growth of the orientational order in the vicinity of the I-N transition
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FIG. 3: The evolution of the smectic order parameter Ψ for the inherent structures with tempera-

ture at two densities.
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FIG. 4: The coupling between the orientational order and translational order in the Gay-Berne

system with the aspect ratio κ = 3 at three state points along the isochor at density ρ = 0.32: at

the nematic phase (T = 1.194; red), at the smectic phase (T = 0.502; blue), and at the nematic-

smectic transition region (T = 0.785; green). Here S and Ψ denote the respective order parameters

for instantaneous configurations.

induces a translational order in a layer in the underlying quenched configurations [29]. The

smectic order parameter Ψ provides a quantitative measure of the one-dimensional transla-

tional order [30]. In Fig. 3, we show the evolution of the average smectic order parameter

Ψ of the inherent structures, obtained by averaging over the quenched configurations, with

temperature [30]. A steady increase in Ψ with the concomitant growth of S in the underlying

inherent structures is apparent across the nematic phase.

The interplay between the orientational order and translational order, shown in Fig. 3,

is reminiscent of the dGM coupling which was originally conceived to be present near the

nematic-smectic phase boundary in the parent system. Figure 4 confirms this with an explicit

6



demonstration of the coupling between the smectic order parameter Ψ and the nematic order

parameter S near the nematic-smectic transition region. While the fluctuation of S is large

at the nematic phase, it is the fluctuation of Ψ that is rather large in the smectic phase. A

strong coupling between the two is evident at the nematic-smectic transition region where

configurations with larger S values tend to have larger Ψ values.

On scrutiny of Figs. 1 and 3, we find that the reversal in the temperature behavior of D‖

in the nematic phase as temperature drops occurs when the the smectic order parameter in

the underlying inherent structures becomes significant (above 0.3) for the first time. The

smectic order parameter is a measure of the translational order which appears in a layer

perpendicular to the director. The induction of such translational order makes translational

motion parallel to the director much difficult, resulting in a reducing effect on D‖. From the

viewpoint of the energy landscape analysis, translational order in the underlying inherent

structures therefore appears to play a key role in the non-monotonic temperature dependence

of D‖. The latter can therefore be taken as a dynamical signature of the de Gennes-McMillan

coupling augmented in the potential energy landscape.

System size in the present study has been optimal given that the landscape studies

have often been restricted to a smaller system size while long wavelength fluctuations in the

vicinity of a phase transition suggest a bigger one to be undertaken. The system size we have

chosen here is, however, large enough so that the system tracks the phase diagram reported

earlier [17]. Nevertheless, in order to check possible system size effects on our results, we

have further considered systems with 500 ellipsoids of revolution along the isochor at density

ρ = 0.32. No qualitative change in the results has been observed (data not shown).

We have further studied effects of varying the aspect ratio κ and the energy anisotropy

parameter κ′ separately to explore the robustness of our results and analysis. In particular,

we have considered the aspect ratio κ = 3.8 along the isochor at ρ = 0.235, for which

a stable smectic-A phase appears between a wide nematic and low-temperature smectic-

B phase. The temperature behavior of D‖ in the nematic phase has been found to be

qualitatively similar to what has been observed with the aspect ratio κ = 3, for which the

smectic-A phase appears only in the underlying inherent structure [29]. It is particularly

interesting to consider a case where the smectic phase is absent and contrast the behavior.

To this end, we have considered κ′ = 1, for which no smectic phase appears even at low

temperatures and the underlying inherent structures for the nematic phase also do not have
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on the average any translational order [29]. In this case, we find that the signature of the

non-monotonic behavior in the temperature dependence of D‖ is rather weaker and is even

missing in the scaled data (data not shown) – the dynamical models considered here also

provide a better description of the anisotropic translational diffusion data. This further

substantiates the importance of the coupling between orientational and translational order

in the anisotropic translation diffusion in the nematic phase.

In summary, the present work throws light on the plausible role of the coupling between

orientational and translational order in inducing a non-monotonic temperature behavior of

D‖ in the nematic phase. While the competition between the alignment and thermal effects

can also give rise to a non-monotonic behavior, the importance of such coupling cannot

be ignored particularly when a low-temperature smectic phase exists. A comparison of

the simulated D‖ data with those predicted by two well-known theoretical models shows the

inadequacy of these models to capture the observed non-monotonic temperature dependence

of D‖. The energy landscape analysis presented here suggests the necessity of a theoretical

treatment that includes the coupling between orientational and translational order, which

has an augmented manifestation in the underlying energy landscape. Such a suggestion is

likely to form the foundation of a theoretical framework to explain the features anisotropic

translational diffusion.
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