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Suppression of the rate of growth of dynamic heterogeneities and its

relation to the local structure in a supercooled polydisperse liquid

Sneha Elizabeth Abraham and Biman Bagchi∗
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Indian Institute of Science, Bangalore 560 012, India

The relationship between the microscopic arrangement of molecules in a supercooled liquid and
its slow dynamics at low temperature near glass transition is studied by Molecular Dynamics
(MD) simulations. A Lennard-Jones liquid with polydispersity in size and mass of constituent
particles is chosen as the model system. Our studies reveal that the local structure (that varies
with polydispersity) plays a crucial role both in the slowing down of dynamics and in the growth
of the dynamic heterogeneities, besides determining the glass forming ability (GFA) of the system.
Increasing polydispersity at fixed volume fraction is found to suppress the rate of growth of dynamic
correlations, as detected by the growth in the peak of the non-linear density response function,
χ4(t). The growth in dynamical correlation is manifested in a stronger than usual breakdown of
Stokes-Einstein relation at lower polydispersity at low temperatures and also leads to a decrease in
the fragility of the system with polydispersity. We show that the suppression of the rate of growth
of the dynamic heterogeneity can be attributed to the loss of structural correlations (as measured
by the structure factor and the local bond orientational order) with polydispersity. While a critical
polydispersity is required to avoid crystallization, we find that further increase in polydispersity
lowers the glass forming ability.

PACS: 64.70.pm, 61.20.Lc, 82.70.Dd

I. INTRODUCTION

The relation between the local structure and
its slow dynamics in a supercooled liquid near
glass transition temperature, Tg is currently a
subject of intense curiosity. The most distinc-
tive feature of glass formation is the rapid in-
crease of viscosity with decrease in tempera-
ture. The temperature at which the viscosity
becomes 1013 Poise is defined as the glass tran-
sition temperature. One of the main difficul-
ties in understanding the glass transition phe-
nomenon is that this enormous slowing down
of dynamics is apparently not accompanied by
a growing static correlation length (unlike the
usual critical phenomena). Static structural
quantities do not reveal any long range corre-
lation. In fact the static structure of the liquid
near glass transition is not much different from
its equilibrium high temperature counterpart.

In the Adam-Gibbs picture [1], the sharp
slowing down is related to the growth of a co-
operative dynamic length scale. In a separate
theoretical study the size of heterogeneous re-
configuring regions in a deeply viscous liquid
was inferred via the Random First Order Tran-
sition Theory (RFOT)[2]. There is now increas-
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ing evidence from both experiments and simula-
tions of a dynamic correlation length that grows
upon approaching the glass transition [3, 4, 5].
Multipoint susceptibilities have been devised to
quantify the behavior and magnitude of grow-
ing dynamic length scales and have been used
in the experimental studies for several mate-
rials [4]. These have directly determined the
number of molecular units that move coopera-
tively near glass transition. The simplest den-
sity correlation function that contains informa-
tion on correlated motion is the fourth-order
[6, 7]. The four-point time-dependent density
correlation function, g4(r, t) measure the spa-
tial correlations between the local liquid den-
sity at two points in space, each at two different
times. The dynamical four-point susceptibility,
χ4(t) (the volume integral of g4(r, t)) becomes
increasingly pronounced as glass transition is
approached.

In this study, we look for a possible relation-
ship between the structure and the slowdown
of dynamics in supercooled polydisperse liquids
near glass transition. In particular, we look at
how the local structure (which we characterize
using structure factor and bond orientational
order parameters) would influence the growth
of dynamic heterogeneity and the glass form-
ing ability of the system. Polydisperse liquids
are one of the simplest model systems that ex-
hibit glass transition and can be conveniently
studied via both experiments [7, 8] and com-
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puter simulations as the size distribution of
particles prevents crystallization [10, 11]. It
also serves as a model for colloids and many
other real world systems like polymers, pig-
ments, paints etc as polydispersity is inherent
in all these systems. Polydispersity introduces
a distribution of particle diameters and masses
and thus makes the system intrinsically more
heterogeneous. However, the effect of polydis-
persity on dynamic heterogeneity has not yet
been examined in detail. Here we probe this is
detail using the dynamical four-point suscepti-
bility, χ4(t). Increasing polydispersity results
in the loss of structural order. Thus by vary-
ing polydispersity one can understand the effect
of loss of structure on the growth of dynamic
heterogeneities. Our studies [11] have shown
that increasing polydispersity at fixed volume
fraction decreases the fragility. And hence this
study also presents us with an opportunity to
probe the growth of four-point susceptibility
(and thus dynamic heterogeneity) in systems
with varying degree of fragility.

The rest of the paper is organized as follows.
In section II we describe the model and simu-
lation details and also define various quantities
that are used in the analysis. In section III we
present our results and give detailed discussions
on the same. We give our concluding remarks
in section IV .

II. THEORY AND COMPUTATIONAL
METHODS

A. Four-point susceptibility

The two-point, two-time, fourth-order den-
sity correlation function [6, 7] is defined as

g4(~r1, ~r2, t) ≡ 〈ρ(~r1, 0)ρ(~r1, t)ρ(~r2, 0)ρ(~r2, t)〉
−〈ρ(~r1, 0)ρ(~r1, t)〉〈ρ(~r2, 0)ρ(~r2, t)〉

The volume integral of g4(r1, r2, t) gives the
four-point susceptibility χ4(t),

χ4(t) =
βV

N2

∫ ∫
d~r1d~r2ρ(~r1, 0)ρ(~r2, t)g4(~r1, ~r2, t)

(1)
It has been shown that χ4(t) can be written as
[7]

χ4(t) =
βV

N2
[〈Q2(t)〉 − 〈Q(t)〉2] (2)

Here β = 1

kBT and Q(t) is a time-dependent
order parameter and is given by

Q(t) =

∫ ∫
d~r1d~r2ρ(~r1, 0)ρ(~r2, t)w(| ~r1 − ~r2 |)

=
N∑

i=1

N∑
j=1

d~rw(| ~r1 − ~r2 |)δ(~r + ~ri(0) − ~rj(t))

w(r) is the overlap function that is unity inside
a region of size a and zero otherwise, where a
is taken on the order of particle diameter. In
our studies we choose a = 0.40 for all the sys-
tems with different polydispersity. Q(t) mea-
sures the number of particles that in a time
t has either remained within a distance a of
their original position (when i = j ) or were
replaced by another particle (when i 6= j ).
We can separate Q into self and distinct parts,
Q(t) = QS(t) + QD(t). The self part corre-
sponds to terms with i = j, Qs(t) =

∑
w(|

~ri(0) − ~rj(t) |). The distinct part is given by

QD(t) =
∑ ∑

i6=j w(| ~ri(0)− ~rj(t) |)). The sus-

ceptibility χ4(t) can then be decomposed into
self, distinct and cross terms [7],

χ4(t) = χS
4 (t) + χD

4 (t) + χSD
4 (t) (3)

where,

χS
4 (t) ∝ 〈Q2

S(t)〉 − 〈QS(t)〉2 (4)

χD
4 (t) ∝ 〈Q2

D(t)〉 − 〈QD(t)〉2 (5)

and,

χSD
4 (t) ∝ 〈QS(t)QD(t)〉 − 〈QS(t)〉〈QD(t)〉 (6)

As has been found in previous studies [7], we
find that for our model system also the ma-
jor contribution to χ4(t) comes from χS

4 (t) and
hence in this paper we have presented results
only for χS

4 (t).

The definition of χ4(t) in Eq. (1) is in terms
of spontaneous fluctuations of local dynamics.
Berthier et al have used fluctuation dissipation
theorem (FDT) and have defined four-point
susceptibilities in terms of the response of the
averaged two-time dynamical correlators to an
infinitesimal perturbing field [4, 12],

χx(t) =
∂〈| f(t) |r〉

∂x
(7)

where x = Torρ. Here ∂〈| f(t) |r〉 is a standard
two-time correlator and f(r, t) = O(r, t)O(r, 0).
For instance when the observable O is the ex-
cess density ρ(r, t) − ρρ0, then ∂〈| f(t) |r〉

2
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FIG. 1: The time dependence of the four-point sus-
ceptibility (χS

4 (t)) at four different temperatures
and at two different polydispersity, S = 0.10 (thick
lines) and S = 0.20 (dashed lines). From the bot-
tom to the top, temperature decreases. χS

4 (t) grows
for both the systems as T decreases but there is a
more pronounced growth at lower polydispersity.

is the intermediate scattering function. Here
| f(t) |r= 1

V

∫
d~rf(~r, t) is the spatial average

over a large but finite volume, V . The above
defintion of χx(t) provides a very valuable ex-
perimental tool to measure the dynamic length
scales in glass systems as shown in [4].

B. Bond-orientational order

The average microscopic structure of liquids
is usually described by the radial distribution
function or the structure factor, which essen-
tially measures only the density-density corre-
lation function. However, bond-orientational
order parameters (BOP ) introduced by Stein-
hardt et al [13, 14, 15] gives a better quantifi-
cation of the local structure as they capture
the symmetry of bond orientations. BOP is
described in terms of combinations of spher-
ical harmonic functions. Consider a system
of N particles. First, one defines a set of`bonds´which are defined as the vectors con-
necting neighboring particles. All particles j

within a cutoff distance r0 of particle i are de-
fined as neighbors of particle i. Here r0 is cho-
sen to be equal to the distance to the first mini-
mum of the radial distribution function (RDF ).
The local order parameters associated with a
bond r are the set of numbers

Qlm(r) ≡ Ylm(θ(r), φ(r)) (8)

where θ(r) and φ(r) are the polar and az-
imuthal angles of the bond with respect to
an arbitrary but fixed reference frame and
Ylm(θ(r), φ(r)) are the spherical harmonic func-
tions. It is useful to consider only the even-l
spherical harmonics, which are invariant under
inversion. Global bond order parameters can
be calculated by averaging over all the bonds
in the system,

Qlm ≡ 1

Nb

∑
bonds

Qlm(~r) (9)

Since Qlms for a given l depends on the ro-
tations of the reference frame, it is important
to consider the rotationally invariant combina-
tions such as

Ql ≡ [
4π

2l + 1

l∑
−l

| Qlm |2] 1

2 (10)

and

Wl ≡
m1+m2+m3=0∑

m1,m2,m3

(.....)Qlm1
Qlm2

Qlm3
(11)

Ql and Wl are the second and third order in-
variants, respectively. The coefficients (...) are
Wigner 3j symbols. One also defines a normal-
ized quantity,

Ŵl ≡
Wl

(
∑

m | Qlm |2)3/2
(12)

which for a given l is independent of the mag-
nitudes of the Qlm. The four bond order pa-
rameters Q4, Q6, Ŵ4 and Ŵ6 are sufficient to
identify different crystal structures. The typical
values of these for different crystal structures
are given in [15]. For a liquid the global values
of all these four quantities are zero as there is
no long range order. Note that in clusters with
cubic symmetry non-zero averages occur only
for l ≥ 4 whereas non-zero averages occur only
at l = 6 and 10 for icosahedral cluster.

C. System and simulation details

Micro canonical (NVE) ensemble MD simu-
lations are carried out in three dimensions on
a system of N = 864 particles of mean diame-
ter σ with polydispersity in both size and mass.
The polydispersity in size is introduced by ran-
dom sampling from the Gaussian distribution
of particle diameters σ,

P (σ) =
1√
2πδ

exp[−1

2
(
σ − σ

δ
)2] (13)
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FIG. 2: (a) The value of the peak height of χS
4 (t) is

plotted as a function of T for S = 0.10 (filled circle),
S = 0.15 (star) and S = 0.20 (filled triangle) sys-
tems. The figure shows the suppression of the rate
of growth of dynamic heterogeneity with S. (b)
The time at which χS

4 (t) peaks, t∗ is plotted as a
function of T for S = 0.10 (S1) and S = 0.20 (S2)
systems (filled circles and triangles, respectively).
t∗ is similar to the α- relaxation time (open circles
and triangles, respectively). The latter is obtained
by doing KWW fit to Fs(kmax, t) where kmax cor-
responds to the first peak in the static structure
factor.

The standard deviation δ of the distribution di-
vided by its mean σ gives a dimensionless pa-
rameter, the polydispersity index S = δ

σ . The
mass mi of particle i is scaled by its diame-
ter mi = m(σi

σ )3. We have chosen m = 1.0.
The simulations are carried out at different val-
ues of the polydispersity index, S but at fixed
volume fraction, φ = 0.52. The interactions
between the particles are given by the shifted-
force Lennard-Jones (LJ) 12-6 potential

Uij = 4ǫij[(
σij

rij
)12 − (

σij

rij
)6] (14)

where i and j represent any two particles and
σij = (

σi+σj

2
). The LJ interaction parameter

ǫij is assumed to be the same for all particle
pairs and set equal to unity. The particles are
enclosed in a cubic box and periodic boundary
conditions are used. The cutoff radius rc is cho-
sen to be 2.5σ. A time step of 0.001 is employed
for T ≥ 1.0 and 0.002 for T < 1.0. All quan-
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FIG. 3: (a) χS
4 (t∗) as a function of the distance

from the MCT critical temperature Tc for S = 0.10
and S = 0.20 systems. Tc values are 0.42 and 0.39
for S = 0.10 and S = 0.20 systems, respectively.(b)
α- relaxation time, τα as a function of the distance
from Tc.

tities in this study are given in reduced units
(length in units of σ, temperature in units of

ǫ
kB

and time in units of τ = (mσ2

ǫ )
1

2 ).

III. RESULTS AND DISCUSSION

The main objective of our study is to demon-
strate the effect of polydispersity and hence of
the local structure on the growth of dynamic
heterogeneities. By varying polydispersity we
can `tune´the local structure and hence study
its effects on the dynamic heterogeneity. As
polydispersity is increased, the local structure
is progressively destroyed. Hence the blocking
of the particles in the cages of the neighboring
particles (as required for the mode coupling the-
ory of dynamic transition [17]) becomes ineffec-
tive at higher polydispersity. We find that this
has a pronounced effect on the development of
dynamic heterogeneities as well. In this section
we systemically present our results and show
that the local structure plays a very important
role in determining the dynamics in supercooled
liquids near glass transition.
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The thick lines are VFT fit to the diffusivity data,
D = D0exp( ED

T−T0
). The reference temperature Tr

is chosen such that D(Tr) = 4.5 × 10−5. The VFT
extrapolation is used to locate Tr. The plot shows
that fragility decreases with S. Strength parame-
ter m (where m = ED

T0

[16]) obtained from VFT fit
have the values 7.78, 8.54 and 15.94 for S = 0.10,
S = 0.15 an d S = 0.20 systems, respectively.

A. Suppression of the rate of growth of
dynamic correlations by polydispersity

The four-point susceptibility χS
4 (t) obtained

from Eq. (2) is shown in FIG. 1 for S = 0.10
and S = 0.20 for a few temperatures. From
Eqs. (1) and (2) we see that χ4(t) becomes
larger when the dynamic fluctuations become
increasingly spatially correlated. Since χ4(t) is
the volume integral of the four-point correlator
g4(r, t), it is directly related to the number of
correlated particles. As temperature is lowered
χS

4 (t) grows for both the systems but the rate
of growth decreases with polydispersity. This
more clearly seen in FIG. 2(a) where the peak
height of χS

4 (t) (which we label as χS
4 (t∗)) is

plotted against temperature for different values
of polydispersity. FIG. 2(a) shows the suppres-
sion of the rate of growth of dynamical het-
erogeneity by polydispersity. In FIG. 3(a) we
plot the peak height χS

4 (t∗) as a function of
the distance from the MCT critical tempera-
ture Tc for S = 0.10 and S = 0.20 systems.
The rescaled plot also shows a suppression in
the rate of growth of χS

4 (t∗) for S = 0.20 sys-
tem as compared to S = 0.10 system. By fit-

ting to the expression χ4(t
∗) ∼ (T−Tc

Tc
)γχ , we

get the values of the exponent γχ as 1.507 and
1.188 for S = 0.10 and S = 0.20 systems,
respectively. The exponent γχ thus seems to
change with polydispersity. The suppression of
the rate of growth of dynamical heterogeneity
by polydispersity leads to the dynamic cross-
overs observed in the values of the stretch expo-
nent, β and the non-Gaussian parameter, α2(t)
between S = 0.10 and S = 0.20 systems as
shown earlier [11] and the cross-over behavior
seen in the exponent zσ that quantifies the de-
viation from the prediction of Stokes-Einstein
relation(See Section III. B). Increasing polydis-
persity at fixed volume fraction decreases the
fragility of the system (See FIG. 4). Fragility
measures the rapidity with which the system
approaches glass transition. Hence decrease in
the the rate of growth of dynamic heterogeneity
with polydispersity is consistent with the de-
crease in the fragility. This is further explained
in section III.C.

In FIG. 2(b) we show the time at which
χS

4 (t) peaks, t∗ versus temperature for S =
0.10 and S = 0.20. Also shown are the
α-relaxation times, τα obtained by doing
Kohlrausch-William-Watts (KWW) fit to the
self part of intermediate scattering function,
Fs(k, t). The plot shows that the dynamics is
maximally correlated on time scales of the or-
der of the alpha relaxation time. In FIG. 3(b),
τα is plotted as a function of the distance from
the MCT critical temperature, Tc. The rescaled
plot shows that the rate of growth of τα de-
creases with polydispersity.

B. Breakdown of Stokes-Einstein Relation

In this section we discuss the breakdown of
Stokes-Einstein (SE) relation and its connec-
tion to the rate of growth of dynamic hetero-
geneity in the system as temperature is lowered.
The SE relation is based on treating the liquid
as a continuum and is given by,

D =
kBT

Cησ
(15)

Here C is a constant that depends on the
boundary conditions (stick or slip) and η is
the viscosity. If the Stokes-Einstein relation
is strictly valid, then a plot of ln(Di/Dj) ver-
sus ln(σj/σi) would be a straight line with unit
slope. Here i and j are indices for solute and
solvent, respectively. In FIG. 5 we show this
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FIG. 5: The plot of ln(Di/Dj) versus ln(σj/σi) for
S = 0.10(circles) and S = 0.20 (triangles). Here
the subscript i denotes the smaller particle. If the
SE relation is valid, this plot would be of unit slope
(dashed line). The plot shows that at high tempera-
ture the deviation from the Stokes-Einstein predic-
tion is higher for S = 0.20 system, but the scenario
reverses at low temperature where S = 0.10 system
shows a stronger deviation due to the faster growth
of dynamic heterogeneity.

plot for S = 0.10 and S = 0.20 systems. Both
systems show deviation from the SE prediction
even at high temperatures due to the intrinsic
heterogeneity in the system, with the deviation
being more pronounced for S = 0.20 system.
The SE relation has been shown to be not valid
for the diffusion of small solutes in a solvent
of bigger particles [18]. There is an anomalous
enhancement of the self-diffusion over the SE
value for small solutes which can be described
by a power law,

Di

Dj
∼ (

σj

σi
)zσ (16)

Hence the exponent zσ quantifies the deviation
from SE relation. It is unity in the SE limit
and usually larger than unity in supercooled liq-
uid. FIG. 6 shows that zσ deviates significantly
from unity for polydisperse liquids, particularly
at low temperatures. Interestingly, it is larger
than unity even at high temperature because
of the heterogeneity in the size and mass. This
deviation of the slope from unity at high tem-
perature can be a combination of two different
effects. The first one is the mass which is not
present in SE relation but has been reported
earlier in simulations [19] and mode coupling
theory (MCT) studies [20]. The studies predict
a weak power law mass dependence of diffusion.
The second effect is that of size which has also
been obtained in experiments and simulations
[21] and MCT studies [18]. When the size of one

of the particles is 1.5−15 times smaller than the
other it shows an anomalous rise in diffusion.
This enhanced diffusion has been explained in
terms of microviscosity effect. The MCT stud-
ies explain the microscopic origin of the size
effect in terms of the difference in relaxation
timescales of the two particles which leads to a
decoupling in the dynamics [18]. (Note that for
size dependent studies the small particle was a
tracer and for mass dependent studies the heav-
ier particle was a tracer. In the present study
the systems are intrinsically heterogeneous.)

As temperature is lowered the deviation from
the prediction of SE relation becomes more
pronounced and one observes a crossover in the
value of zσ between the S = 0.10 and S = 0.20
systems; the values are much higher for S =
0.10 system than S = 0.20 at low temperatures
[see FIG. 6]. This again shows that the rate
of growth of dynamic heterogeneity is faster in
S = 0.10 system than in S = 0.20 system.
The faster rate of growth of dynamic correla-
tions leads to similar temperature-dependent
crossovers between S = 0.10 and S = 0.20 sys-
tems in the values of the stretch exponent (β)
and the non-Gaussian parameter (α2(t)), both
of which contain implicit information on dy-
namic heterogeneity [11]. These studies show
that there is a strong correlation between the
growing dynamic heterogeneity in the system
and the breakdown of SE relation as the for-
mer renders the continuum description of liquid
invalid as required for the SE relation.

C. Fragility and the growth of dynamic
correlations

It has been shown that the dynamics of
fragile liquids are more spatially heterogeneous
than that of strong liquids [22]. Increas-
ing polydispersity at fixed volume fraction de-
creases the fragility of the system as shown in
FIG. 4. The decrease of the rate of growth
of χ4(t) with polydispersity supports the pre-
viously observed correlation between fragility
and dynamic heterogeneity. The intrinsic het-
erogeneity of the system (as measured by the
distribution of particle masses and sizes) in-
creases with polydispersity. Hence we have the
interesting scenario in which increasing polydis-
persity leading to a more homogeneous dynam-
ics even though the system becomes completely
amorphous at higher values of polydispersity. It
has been shown that polydispersity has a pro-
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relation is strictly valid then zσ = 1. Deviation
from unity shows the breakdown of SE relation.
The figure clearly shows that at high temperatures
intrinsic heterogeneity causes a larger breakdown
in S = 0.20 system, whereas at low temperatures
the faster growth of dynamic heterogeneity leads to
a stronger breakdown in S = 0.10 system.

nounced effect on potential energy surface [23].
As polydispersity is increased from zero, the
characteristics of the potential energy minima
change from that of crystalline to that of amor-
phous. The latter is known to have low curva-
ture and small barriers along some coordinates
[24, 25]. This observation is also consistent
from the perspective of the inherent structure
formalism, according to which the potential en-
ergy landscape of a fragile liquid is very hetero-
geneous which in turn leads to heterogeneous
dynamics whereas the landscape of strong liq-
uids consist of a single mega basin [26]. Hence
from a potential energy landscape perspective,
increasing polydispersity leads to a smoothen-

ing of the landscape that in turn leads to the
facilitation of dynamics as well as decrease of
fragility. In Section III. D, we try to under-
stand how polydispersity suppresses the rate of
growth of dynamic correlations and in particu-
lar, whether the loss of structure upon increas-
ing polydispersity has any role to play in this.
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FIG. 7: The calculated static structure factor, S(k)
is plotted against wave number k for S = 0.10
(thick lines) and S = 0.20 (dashed lines) systems
at a few temperatures. Structural correlation is
weaker in S = 0.20 system than in S = 0.10 system
and shows no appreciable change with temperature.

D. Local structure and the growth of
dynamic heterogeneities

We plot the static structure factor, S(k) for
S = 0.10 and S = 0.20 systems in FIG. 7. The
plot shows that increasing polydispersity de-
stroys the local structure in the system as the
system becomes more amorphous. The peak
height of S(k) is highly suppressed in S = 0.20
system as compared to S = 0.10 system and
does not show any appreciable growth upon
lowering of T . FIG. 8 shows the peak height
value of RDF , g(rmax) as a function of temper-
ature. At S = 0.10, the peak height shows con-
siderable enhancement upon lowering of tem-
perature whereas at S = 0.20 there is no re-
markable change in the value of g(rmax) with
temperature.

As mentioned in Section II. B, the bond ori-
entational order parameters give a better quan-
tification of the local structural arrangement.
Frank [27] proposed that atoms might form
icosahedral clusters in liquids since the lowest
energy state of a 13-atom cluster interacting via
Lennard-Jones potential is an icosahedron (and
not fcc). But icosahedra cannot tile space in
3-dimensions due to its 5-fold symmetry and
hence do not satisfy the global structural stabil-
ity criterion. This geometrical frustration could
be an important factor that contributes to the
stability of glassy state [28]. Steinhardt et al
[13] have shown that there is a long range ori-
entational icosahedral order in supercooled liq-
uids. It has been shown that the large size dis-
parities at higher values of polydispersity would
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FIG. 8: Peak height value of the radial distribution
function, g(rmax), when plotted against separation
r, is plotted as a function of T for S = 0.10 (cir-
cles), S = 0.15 (stars) and S = 0.20 (triangles).
S = 0.20 system does not show any remarkable
change in the value of g(rmax) upon lowering of
T . On the other hand, S = 0.10 system shows a
sudden increase of spatial correlations for T ≤ 0.8.
Comparison between FIG. 8 and FIG. 2(a) shows
that local structure plays a crucial role in the build
up of dynamic correlations.

inhibit any icosahedral cluster formation. How-
ever, since at low/moderate polydispersity the
peak height of g(rmax) shows a pronounced
growth as temperature is lowered, one can ask
whether this is due to the formation of icosahe-
dral clusters that grows with decrease in tem-
perature.

We look for the local values of BOP in order
to understand whether local orientational order
plays any role in the growth of dynamic het-
erogeneities. The icosahedral order, if present,
would be picked by the BOP corresponding to
l = 6, Q6. The local values of Q6 are plotted
in FIG. 9. To get the local values the spherical
harmonics corresponding to l = 6 are summed
over the nearest neighbor bonds only. The fig-
ure shows that there is a pronounced icosahe-
dral orientational order at the local level. This
local icosahedral order shows considerable en-
hancement at lower polydispersity as tempera-
ture is lowered (for T ≤ 0.80) and also decreases
with polydispersity. In the inset of FIG. 9 we
plot Q6 as a function of the distance from the
MCT critical temperature Tc which shows that
as temperature is lowered, Q6 increases much

0.5 1 1.5 2

T
*

0.34

0.36

0.38

0.4

0.42

Q
6

S = 0.10
S = 0.15
S = 0.20

0 1 2 3 4
T/Tc - 1

0.34

0.36

0.38

0.4

0.42

Q
6

S = 0.10
S = 0.20

FIG. 9: The calculated local values of bond or-
der parameter, Q6 are plotted as a function of
T for S = 0.10 (circles), S = 0.15 (stars) and
S = 0.20 (triangles). The plot shows that at the
local level there is significant orientational order
that increases with decrease in temperature and de-
creases with polydispersity.[Inset: Q6 as a function
of the distance from Tc.]

more sharply at lower values of S.

In FIG. 10 we plot the global values of Q6 for
different S as a function of temperature. The
averages over bonds are evaluated by summing
over all bonds lying within a sphere of radius
2.4 units. Nine such spheres are considered
whose centers lie at different locations of the
simulation box. We repeat this averaging for
several different snapshots obtained from sim-
ulation. It is evident from FIG. 10 that poly-
dispersity suppresses long range orientational
order. Even at moderate polydispersity, there
is no pronounced growth of long range icosahe-
dral order upon supercooling.

Our results indicate that increasing polydis-
persity destroys both the local structure and
the local orientational order. The four-point
susceptibility χS

4 (t) measures the susceptibility
arising from the number of localized particles
and is a measure of the dynamic heterogeneity
in the system. Thus the dynamic heterogeneity
is associated with the temporary localization
of particles by their neighbors. Since the lo-
cal structure is destroyed, at higher values of
polydispersity it is not possible to have such a
caging effect. As a consequence particle motion
gets decorrelated over much shorter time scales.
This is best seen by plotting the van Hove cor-
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FIG. 10: The calculated values of the global bond
order parameter, Q6 are plotted as a function of T
for S = 0.10 (circles), S = 0.15 (stars) and S = 0.20
(triangles). The plot shows that there is no appre-
ciable long range orientational order developing in
the supercooled state.
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FIG. 11: The calculated van Hove self-correlation
function, Gs(r, t), plotted against position r at dif-
ferent times (indicated on the figure) for S = 0.10
(thick lines) and S = 0.20 (dashed lines) systems at
T = 0.45. The figure shows the faster decay of den-
sity correlations for S = 0.20 system as compared
to S = 0.10 system.

relation function [see FIG.s 11 and 12]. Thus
the loss of local structure due to polydispersity
suppresses the growth of dynamic heterogeneity
in the system.

E. Polydispersity and Glass Forming
Ability (GFA)

We find that the present system of LJ parti-
cles of varying size and mass crystallizes when
polydispersity is less than 7.5%. Thus, our sys-
tem with 10% polydispersity can be regarded as
the system on the lower side of polydispersity
that could be made to avoid crystallization and
remain liquid within our MD simulation time
range. Interestingly, we find that this is also
the system that shows glassy behavior at the
highest temperature. When we increase poly-
dispersity beyond 10%, we need to lower the
temperature to capture the onset of slow glassy
dynamics. This can be seen from FIG. 2(b)
which shows that the rate of growth of τα de-
creases with S. The new aspect revealed in
the present work is the correlation between the
GFA and the rate of growth of the dynamic
heterogeneity —sharper the growth, larger the
GFA.

Given that a polydisperse liquid with low
polydispersity (S < 0.05) crystallizes easily, the
loss of local structure at large S (≥ 0.20) and
the concomitant difficulty of glass formation at
large S imply a rather narrow range of S for
polydisperse systems to act as good glass for-
mers. This means that only at moderate poly-
dispersity the system has a high GFA. The
GFA decreases with polydispersity beyond a
value of S. Further insight can be gained from
the study of inherent structures. We find that
the ruggedness of potential energy landscape
decreases with S, which is consistent with de-
crease of the GFA as well as fragility with S.
It is important to note that network glass for-
mers like Silica which is a strong liquid in An-
gells fragile/strong classification, exhibits high
glass forming ability due to trapping by de-
fects. This apparently contradicts the decrease
of GFA with polydispersity. The latter appears
to be a hallmark of polydisperse systems. We
shall address these issues in detail elsewhere.

IV. CONCLUDING REMARKS

The hypothesis that structure determines dy-

namics has been termed by Harowell as the cen-

tral dogma of glass science[29]. This dogma is
validated in the Mode Coupling Theory. The
Adams-Gibbs theory, however, gives larger em-
phasis on the emergence of a dynamical cor-
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FIG. 12: The calculated van Hove distinct-
correlation function, Gd(r, t) is plotted against po-
sition r for S = 0.10 (upper panel) and S = 0.20
(lower panel) systems, at T = 0.45 depicting the
faster decay of inter-particle correlations at higher
polydispersity.

relation length as the source of slow dynamics
which does not seem to depend too sensitively
on the structure formation. This can be un-
derstood from the relative insensitivity of the

structure to temperature. In the present work,
we have varied polydispersity that allows large
variation of the local structure and find that the
local structure indeed plays an important role
in the development of dynamic correlations and
the slow dynamics near glass transition in a su-
percooled polydisperse liquid. Increasing poly-
dispersity at constant volume fraction leads to
a suppression of the rate of growth of dynamic
heterogeneity in the system, which can be at-
tributed to the loss of local structure with poly-
dispersity. At moderate polydispersity, there is
a faster growth of structural correlations as the
temperature is lowered, which leads to a corre-
sponding faster growth of dynamic heterogene-
ity. At higher polydispersity, structural correla-
tions are weak and do not show any significant
change with temperature and correspondingly,
the rate of growth of dynamic correlations is
also less. We also find that there is a pro-
nounced local icosahedral order which increases
with cooling and decreases with polydispersity.
No significant long range icosahedral order is
found either in the equilibrium or supercooled
liquid.

An important outcome of the present work is
the hitherto unknown correlation between poly-
dispersity and glass forming ability. This cor-
relation deserves further study.
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