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THURSTON BOUNDARY OF TEICHMÜLLER SPACES
AND THE COMMENSURABILITY MODULAR GROUP

INDRANIL BISWAS, MAHAN MITRA, AND SUBHASHIS NAG1

Abstract. If p : Y → X is an unramified covering map between two compact
oriented surfaces of genus at least two, then it is proved that the embedding
map, corresponding to p, from the Teichmüller space T (X), for X, to T (Y )
actually extends to an embedding between the Thurston compactification of
the two Teichmüller spaces. Using this result, an inductive limit of Thurston
compactified Teichmüller spaces has been constructed, where the index for
the inductive limit runs over all possible finite unramified coverings of a fixed
compact oriented surface of genus at least two. This inductive limit contains
the inductive limit of Teichmüller spaces, constructed by I. Biswas, S. Nag and
D. Sullivan, Determinant bundles, Quillen metrics and Mumford isomorphisms
over the Universal Commensurability Teichmüller Space, Acta Mathematica,
176 (1996), 145–169, as a subset. The universal commensurability modular
group, which was constructed in the above mentioned article, has a natural
action on the inductive limit of Teichmüller spaces. It is proved here that this
action of the universal commensurability modular group extends continuously
to the inductive limit of Thurston compactified Teichmüller spaces.

1. Introduction

Let p : Y −→ X , be any finite unramified covering map between two arbitrary
compact Riemann surfaces X and Y . Both surfaces are assumed to have negative
Euler characteristic. By pulling back complex structures (or hyperbolic metrics)
on X , via p, one obtains an embedding,

T (p) : T (X) −→ T (Y )(1.1)

of the Teichmüller space of X into the Teichmüller space of Y . In fact, T (p) is a
proper holomorphic embedding between these Teichmüller spaces, isometric with
respect to the Teichmüller metrics (see [BNS], [BN1], [NS], [BN2], [N2]). In these
papers the inductive system of Teichmüller spaces arising from these embeddings, as
p runs over all pointed finite unramified coverings of X , was studied. This inductive
limit of Teichmüller spaces, which will be denoted by T∞(X), carries a natural
action of the universal commensurability modular group, denoted by MC∞(X).

In fact, MC∞(X) acts faithfully through biholomorphic automorphisms on
T∞(X), as well as on its completion, T (H∞(X)), the latter being the Teichmüller
space for the universal hyperbolic solenoid H∞(X) (see [BNS], [BN1] for the de-
tails). This modular group is universal in the sense that it does not depend on
the genus of X . It will be important for us to recall that the new modular group,
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MC∞(X), coincides with the group of all (orientation preserving) virtual automor-
phisms, Vaut(π1(X)), of the fundamental group π1(X). See the works cited.

Now, Thurston discovered (see, for instance, [FLP]) an intrinsic compactification
of the Teichmüller space:

T T (X) = T (X) ∪ {Thurston’s compactifying sphere}(1.2)

enjoying the property that the action, on T (X), of each element of the modular
(= mapping class) group MCG(X), extends continuously as homeomorphisms of
T T (X). The space T T (X) is homeomorphic to the closed Euclidean ball of dimen-
sion 6g − 6, and the compactifying boundary is a sphere S6g−7, when the genus of
X is g.

A natural question that arises is to investigate whether or not the direct limit
construction of T∞(X), and the action thereon of MC∞(X) ∼= Vaut(π1(X)), can
be carried out in the framework of the Thurston-compactified Teichmüller spaces.
In this paper we answer these queries affirmatively.

Our first aim here is to demonstrate that, corresponding to any arbitrary finite
covering p, there is an embedding:

T T (p) : T T (X) −→ T T (Y )(1.3)

extending continuously the embedding map T (p) of (1.1). Moreover, the associa-
tion of the continuous map T T (p) to the covering p is a contravariant functor from
the category of compact surfaces, with homotopy classes of unbranched covering
maps as morphisms, to the category of Thurston compactified Teichmüller spaces
and injective maps between them as morphisms. It is interesting that the extension
map T T (p) has remarkably simple and natural descriptions in the various (appar-
ently disparate) models of the Thurston boundary. These are spelled out by us in
Theorem 1 and its proof.

The functorial nature of the construction immediately implies that one can create
the inductive limit of the Thurston-compactified Teichmüller spaces :

T T
∞(X) = lim−→T T (Y )(1.4)

as the index runs over the directed set of pointed covers of X . We may fix a
universal cover X̃ −→ X . For each finite index subgroup Γ of the Galois group
G of the universal cover, the quotient X̃/Γ is a finite unramified cover of X . The
set of finite index subgroups of G are partially ordered by reverse inclusion, i.e.,
Γ ≥ Γ1 if and only if Γ ⊆ Γ1. If we consider the inductive limit in (1.4) with the
index set running over the set of finite index subgroups of G, then it is easy to see
that the inductive limit coincides with T T

∞(X).
We will show that the direct limit of the Thurston boundaries is homeomorphic

to the unit sphere S∞ in the direct sum R∞, and this inductive limit inherits
several natural structures, including a projectivized piecewise integrally linear (PIL
for short) structure and a piecewise symplectic structure, from the corresponding
structures on the finite dimensional Thurston compactifications.

Remark. Since the inductive limit of Teichmüller spaces is not even a locally com-
pact space, one cannot hope to have a compactification by attaching a boundary.
Therefore, our result that the inductive limit of Thurston boundaries exists, and
that it attaches naturally to T∞(X) as an infinite dimensional boundary sphere, is
the best possible situation to hope for in this context.
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Furthermore, and this is one of our chief points, MC∞(X) will act by homeomor-
phisms on this direct limit space T T∞(X). The naturality of the entire construction
is borne out by our results that, as for the action of the finite genus modular groups
on Thurston boundary, so also the universal commensurability modular group acts
preserving the PIL and the symplectic structure that we shall exhibit on the direct
limit of the Thurston boundaries.

The modular group MCG(X) is known to act properly discontinuously on T (X).
But the action of MCG(X) on the Thurston boundary is topologically transitive
or minimal, and even ergodic [M1]. Correspondingly we prove that MC∞(X) acts
on the direct limit of the Thurston boundary spheres in a minimal fashion. This
result is connected to the Ehrenpreis conjecture.

2. The Thurston compactification of T (X)

Let T (X) = Tg denote the Teichmüller space of the closed oriented smooth
surface X , of genus g with g ≥ 2. We recall that the Teichmüller space T (X) is the
space of all hyperbolic metrics (or conformal structures, or complex structures) on
X where two structures are identified if there is an isometry (respectively, conformal
mapping, or biholomorphism) between them that is homotopic to the identity map
of X . The space T (X) is a contractible complex manifold of complex dimension
(3g − 3).

Let Diff+(X) denote the group consisting of all orientation preserving diffeo-
morphisms of X , and let Diff0(X) denote its connected component containing the
identity map. An alternative description of Diff0(X) is that it consists of all diffeo-
morphisms homotopic to the identity map. The mapping class group of X , namely:

MCG(X) = Diff+(X)/Diff0(X)(2.1)

acts naturally on T (X). This action is proper and discontinuous, and the quo-
tient space coincides with the moduli space Mg of isomorphism classes of Riemann
surfaces of genus g.

W. Thurston found a natural compactification of the Teichmüller space by at-
taching a sphere of dimension 6g − 7 to Tg. The compactification is intrinsic, in
the sense that it actually does not depend on the choice of any reference hyperbolic
metric or complex structure on X .

Let T T (X) denote the compactified Teichmüller space with its Thurston bound-
ary. For our work in this article, we will need to briefly recapitulate various ways
of introducing the Thurston boundary.

Measured foliations and T T (X). A measured foliation on a smooth surface is
a foliation with finitely many singularities of prescribed type, and the foliation
comes equipped with an invariant transverse measure, invariant with respect to
the Bott partial connection along the foliation. Let MF(X) denote the space
of measure equivalence classes of such measured foliations on X . We recall that
measure equivalence is the weakest equivalence relation generated by the pullback
operation on foliations by transverse measure preserving diffeomorphisms isotopic
to the identity, together with the Whitehead operations on saddle connections that
join singular points. The details can be found in [FLP]. The space MF(X) has a
piecewise linear structure.

Let S denote the set of free homotopy (equivalently, isotopy) classes of simple
closed homotopically non-trivial curves on X . If X is equipped with a hyperbolic
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metric, then for each element in S, there is a unique closed geodesic, for the hyper-
bolic metric, representing that element. Thus, given any hyperbolic metric on the
surface X , we can assign a real number to each member of S, namely the length of
the corresponding geodesic. That procedure gives an embedding of the Teichmüller
space into the space of positive real valued functions on S :

length : T (X) −→ RS+ − 0.(2.2)

On the other hand, the space of non-trivial measured foliations also sits embed-
ded in the same space of functions on S, as follows. Given a measured foliation
(F , µ), and given any [γ] ∈ S, one assigns to [γ] the infimum of the transverse
µ-measures over all representatives of the class [γ]. In this way, both T (X) and
MF(X) can be embedded in the space RS+− 0. One passes to the projective space
and defines the Thurston compactification, T T (X), as the embedded image of the
Teichmüller space union with the image of the projectivized measured foliations.

T T (X) = T (X)
⋃
PMF(X)(2.3)

We refer to [FLP] for more details.

Measured geodesic laminations and T T (X). Given a hyperbolic metric on
X , a geodesic lamination, λ, is a smooth foliation of a closed subset of X by
hyperbolic geodesics as the leaves. A measured geodesic lamination is a geodesic
lamination equipped with a transverse measure which is invariant under the Bott
partial connection on the normal bundle along the foliation. In other words, one
provides a measure on each closed arc transverse to the leaves of the lamination such
that the measure is invariant under any homotopy of the arc that respects λ. The
space of projectivized measured geodesic laminations, PML(X), also completes
the Teichmüller space in a fashion equivalent to that described in the previous
paragraph. In fact (see [FLP], [PH], or [CB]) there is a natural way to pass between
ML(X) andMF(X), which demonstrates that the boundaries of Teichmüller space
determined from either method can be canonically identified, and we have

T T (X) = T (X)
⋃
PML(X).(2.4)

Currents and T T (X). We recall some of the basic notions from [Bo1]. Let the
universal cover of the Riemann surface X be denoted by X̃, which is conformally
equivalent to the hyperbolic plane H2. Let G(X̃) be the space of all (unoriented)
geodesics in X̃ equipped with the compact open topology. A geodesic current is a
positive measure on G(X̃) which is invariant under the action of π1(X). The space
C(X) of geodesic currents is equipped with the weak? uniform structure coming
from the family of semi-distances df defined as

df (α, β) :=
∣∣ ∫

α

f −
∫

β

f
∣∣

where α, β ∈ C(X) and f ranges over all compactly supported real valued continuous
functions on G(X̃).

The space of simple closed curves on X can be naturally embedded in C(X)
by associating to a closed curve c the probability measure supported on c. The
geometric intersection number of simple closed curves easily extends to a continuous
non-negative symmetric bilinear function i : C(X)× C(X) −→ R+.
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The map m −→ Lm assigning to each hyperbolic metric m on S its Liouville
current Lm (see [Bo1]) induces a proper topological embedding of the Teichmüller
space

L : T (X) −→ C(X).(2.5)

This embedding is a homeomorphism onto its image.
A measured geodesic lamination on X defines a geodesic current α, whose self-

intersection number, i(α, α) is zero. In fact, ML(X) gets identified with such
currents (see section 3 of [Bo1]). Consequently, the light cone comprising geodesic
currents of self-intersection zero is homeomorphic to ML(X). Therefore, passing
to projectivized geodesic currents, one obtains a compactification of the image of
T (X) under L, by attaching the Thurston boundary – now modeled as the space
of projectivized geodesic currents of self-intersection zero.

Harmonic maps and T T (X). M. Wolf in [W] produced a C∞ diffeomorphism
of T (X) onto the 6g − 6 dimensional real vector space consisting of holomorphic
quadratic differentials Q(X) = H0(X, K2

X) on the Riemann surface X .
Let σ denote the Poincaré metric on the Riemann surface X . Given any hy-

perbolic metric ρ on the C∞ surface X , representing a point of T (X), consider
the unique harmonic map w : (X, σ) −→ (X, ρ), that is homotopic to the identity
map of X . The map w is actually a diffeomorphism. By associating to ρ the (2, 0)
part of the pullback of the metric ρ by w, Wolf’s diffeomorphic model of T (X) is
obtained :

Φ : T (X) −→ Q(X, σ) = Q(X).(2.6)

We may compactify T (X) by attaching to each ray (or half line) through the origin
in the real vector space Q(X) an ideal point. Wolf proves that this compactification
is the same as Thurston’s compactification. This model of T T (X) will be very useful
for our work. Note that this model gives a ray structure to the Teichmüller space
and its Thurston boundary once a base point in T (X) is fixed.

3. Finite coverings and the Thurston boundary

Let X = ∆/G be obtained from the unit disc ∆ by quotienting it with a torsion-
free co-compact Fuchsian group G ⊂ PSL(2, R). So the fundamental group π1(X)
is isomorphic to G. Indeed, there is a natural isomorphism once we fix a point of
∆. Let p : Y −→ X , be a finite unbranched covering space over X of degree d.
The covering map p corresponds to the choice of a subgroup H (∼= π1(Y )), of index
d, within the Fuchsian group G.

The Teichmüller spaces of X and Y are canonically identified with the Te-
ichmüller spaces of the groups G and H respectively. The Teichmüller spaces of
these Fuchsian groups appear embedded within the universal Teichmüller space
T (∆) corresponding to the trivial Fuchsian group (see, for instance, [N1] for this
basic material). The space T (∆) is a non-separable, infinite dimensional complex
Banach manifold.

Thus the finite dimensional Teichmüller spaces T (X) ∼= T (G), and T (Y ) ∼=
T (H), appear within T (∆) as properly embedded complex submanifolds. The
inclusion of H in G induces a Teichmüller metric preserving proper holomorphic
embedding of T (G) in T (H). This embedding will be denoted by T (p).

Our first aim is to establish the following theorem.
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Theorem 1. Given the degree d covering map p : Y −→ X between closed oriented
hyperbolic surfaces, there is a natural map between the corresponding Thurston-
compactified Teichmüller spaces. In fact, there exists, functorially associated to
p, a continuous and injective map:

T T (p) : T T (X) −→ T T (Y )(3.1)

such that T T (p) is the continuous extension of the holomorphic embedding T (p) :
T (X) −→ T (Y ). The map T T (p) restricted to the Thurston boundary sphere (the
compactifying locus) of T T (X) can be given the following equivalent descriptions:

(i) By the work of F. Bonahon [Bo1], [Bo2], the Thurston-compactified Te-
ichmüller space is described in terms of the G-invariant geodesic currents on the
unit disc. Then T T (p) is defined by sending any G-invariant geodesic current on the
universal covering disc ∆ to the same current considered as an H-invariant object.

(ii) In the model of M. Wolf [W], the space T (X) is identified with the space of
quadratic differentials Q(X). Pullback of holomorphic quadratic differentials by the
covering map p defines a linear embedding of Q(X) into Q(Y ), which preserves the
ray structure. The map T T (p) is defined by sending the ideal point for any ray in
Q(X) to the ideal point of the image ray in Q(Y ) by the above linear embedding.

(iii) By the work of Hubbard and Masur [HM], the Thurston boundary of T (X)
can be identified as the space of projective rays in the linear space of quadratic dif-
ferentials on the Riemann surface X, since each φ ∈ Q(X) gives rise to a measured
foliation class on X. The map T T (p) on the Thurston boundary points is again
given by the pullback, via p, of holomorphic quadratic differentials on X.

(iv) The Thurston boundary may be represented as the space of projectivized
measured geodesic laminations on the surface. The inverse image under p of any
measured geodesic lamination on X produces a measured geodesic lamination on Y .
The map obtained this way coincides with T T (p).

The above descriptions demonstrate also that T T (p) is injective, as was the map
T (p) itself.

Proof of Theorem 1.
Proof of (i) [Geodesic currents ]. The group π1(Y ) sits as a subgroup of π1(X)

via the monomorphism p∗ induced by p. Evidently, G-invariant currents allow
a natural pullback via any covering. Indeed, a current invariant under the base
group is, a fortiori, invariant under any of its subgroups. Thus there is a forgetful
inclusion map at the level of currents that corresponds to pulling back a π1(X)-
invariant geodesic current (on the hyperbolic disc) to the very same current now
considered as a π1(Y )-invariant current.

The crucial observation is the following assertion regarding the current repre-
senting the pullback metric. If the hyperbolic metric m ∈ T (X) is represented
in Bonahon’s model by the π1(X)-invariant geodesic current Lm, then the pulled
back hyperbolic metric p∗m on the covering surface Y is represented in Bonahon’s
model of T (Y ) by the same geodesic current Lm, – considered as a π1(Y )-invariant
current.

The above assertion is immediate from the definition of the Liouville current Lm

[Bo1, page 145].
It may be useful to point out the following interpretation of the assertion. Recall

that currents live as measures on the space of all hyperbolic geodesics on the uni-
versal covering disc ∆. Now, for the currents corresponding to the surface X , one
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is looking at the π1(X)-invariant linear slice in the space of all geodesic currents on
∆. The group π1(Y ) being a subgroup of π1(X), a π1(X)-invariant current may be
regarded as a π1(Y )-invariant current via the vector space inclusion homomorphism
between the two corresponding strata. This defines the lifting of currents through
a covering.

Now one traces through Bonahon’s identification of the Thurston boundary
within the space of geodesic currents, as described in Section 2. It becomes immedi-
ately clear that the above forgetful map on currents gives the continuous extension
of the map T (p) that we are seeking. The proof of the existence of T T (p), and also
the description (i) of it, is complete.

Injectivity of T T (p): It is clear from this description, as well as from each of the
other descriptions, that the extension T T (p) of T (p) remains an injection. 3

Proof of (ii) [Wolf model ]. Denote the space of quadratic differentials H0(X, K2
X)

by Q(X). In our situation we have an unramified covering p : Y −→ X of Riemann
surfaces. Tracing through the Wolf diffeomorphisms, we observe the fundamental
fact that the induced mapping between Teichmüller spaces: T (p) : T (X) −→ T (Y ),
in the Wolf models of T (X) and T (Y ), is actually given just by pullback of holo-
morphic quadratic differentials by the map p:

T (p) ≡ p∗ : H0(X, K2
X) ∼= T (X) −→ H0(Y, K2

Y ) ∼= T (Y ).(3.2)

Indeed, it is enough to observe that hyperbolic metrics as well as harmonic diffeo-
morphisms simply lift via the covering p. Consequently, the pullback, by p, of the
quadratic differential on X corresponding to a given point of the Teichmüller space
T (X) coincides with the (2, 0) part of the pullback of the Kähler form on Y by
the harmonic diffeomorphism representing the point of T (Y ) corresponding to the
given point of T (X).

Since p∗ is a scalar multiple of an isometry (in the L1 norm on quadratic differ-
entials – the scalar being the degree of the covering), this description of Thurston
compactification due to Wolf immediately implies that the embedding extends to
the Thurston-compactifications, as desired. Indeed, T (p) is a linear map in this
model of the Teichmüller spaces, and the ray structure is preserved. Thus (ii) of
Theorem 1 is established also. 3

Proof of (iii) [Hubbard-Masur model ]. We will now look at the Thurston bound-
ary of T (X) as the projective classes of holomorphic quadratic differentials with
respect to an arbitrarily assigned but fixed complex structure on X. We note that
the main result of [HM] says that every measured foliation class in MF(X) is
realized as the horizontal trajectory structure arising from a unique holomorphic
quadratic differential on X .

Recall that a holomorphic quadratic differential is called Strebel (or Jenkins-
Strebel) if all the non-singular trajectories of its horizontal foliation are closed
curves ([Str]). It is clear that the pullback of a Strebel differential by any finite
holomorphic covering produces again a Strebel differential on the covering surface.
Our strategy will be to demonstrate that the map T T (p) has the desired description,
as pullback via p, on the Strebel differentials. The density of Strebel differentials
in Q(X) will then suffice to complete the proof.

Let us trace through the identification between π1(X)-invariant geodesic currents
on ∆ that live on the light-cone, and the holomorphic quadratic differentials on the
Riemann surface X . The horizontal trajectories of the quadratic differential give
rise to a measured foliation on X . As noted, that measured foliation corresponds
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to a geodesic lamination on X . Finally, the geodesic lamination will correspond to
a certain π1(X)-invariant geodesic current on ∆ in the sense explained in Section 2
[Bo1, page 153]. That is how the three different descriptions of Thurston boundary:
T T (X)−T (X), [namely: (1) measured foliations/quadratic differential trajectories,
(2) measured geodesic laminations, (3) geodesic currents], get canonically identified
with each other.

Consider now a Strebel differential, q ∈ Q(X), with just one cylinder. That
cylinder is swept out by the free homotopy class of some simple closed curve (called
the core curve) γ, on X . (The height or modulus of that cylinder is not material
to our present considerations.) The corresponding geodesic lamination on X con-
sists of just the unique hyperbolic geodesic in the free homotopy class of γ, with
transverse measure being the Dirac measure on γ. But then the corresponding
π1(X)-invariant geodesic current is the Dirac measure supported on the union of
all the hyperbolic geodesics in ∆ that arise as the inverse image of γ (in its geodesic
position) by the universal covering projection from ∆ onto X .

We have therefore identified the (light-cone) current corresponding to the Strebel
point q. Now, by our already established description (i) of T T (p) at the level of
currents, we see that this current must map to the same current thought of as π1(Y )-
invariant current. But on Y the pullback Strebel differential, p∗q, corresponds, by
the same discussion as above, to exactly this π1(Y )-invariant current. Consequently,
T T (p) has the description (iii) when acting on Strebel points of Q(X).

Note. An alternative and instructive way to see the above is as follows. We know
that q will determine a point, say b, on the Thurston boundary of T (X). We claim
that this point, b, is the limit in T T (X) of a sequence of points, say tn, of the
Teichmüller space corresponding to pinching the curve γ. In fact, the hyperbolic
length of the closed geodesic in the class of γ is converging to zero as we go along
the degenerating sequence of metrics. Hence the limit measured foliation on the
Thurston boundary must have trajectory structure that assigns zero mass to the
loop γ. So the loop γ must not intersect transversely the leaves of the foliation b, or
in other words, the leaves of b must be parallel to γ. It is therefore easy to see that
the point b is given by the horizontal trajectory structure of the Strebel differential q.
Now pull back the hyperbolic metrics tn to the corresponding sequence of hyperbolic
metrics on the covering surface Y. This lifted sequence in T (Y ) will evidently
converge to the boundary point of T T (Y ) represented by the pullback of the Strebel
differential q. Thus T T (p) is indeed defined on these Strebel boundary points by
pullback of the relevant holomorphic quadratic differentials.

It now follows that T T (p) in the entire quadratic differential picture must be
pullback via p on arbitrary (projective class of) quadratic differential, since this
operation is continuous and coincides with the T T (p) action on the dense set of
Strebel points. That density, even for Strebel differentials with just one cylinder,
is a result of Douady and Hubbard [DH]. This finishes the proof of part (iii) in the
statement of the theorem.

Lastly, from the canonical identification : MF(X) = ML(X), it follows that
description (iv) of T T (p), in terms of lifting laminations, is valid too.

This completes the proof of Theorem 1.

Remark. Having established the existence of T T (p), the association p 7−→ T T (p)
can easily be seen to be a contravariant functor from the category of closed oriented
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surfaces, morphisms being homotopy classes of unbranched covering maps, to the
category of Teichmüller spaces with Thurston boundary, and continuous injections
thereof.

We will now work in the pointed category (for surfaces and covering maps); the
factoring maps, whenever they exist, are therefore uniquely determined. Conse-
quently, the compactified Teichmüller spaces T T (Y ), with the connecting maps
T T (.) between them, fit together into an inductive system, as desired.

We remark that it is possible to avoid the choice of a base point if we fix once
and for all a universal cover X̃ of X . In that situation, the coverings X that will
be considered are those which are a obtained from X̃ by quotienting it with a finite
index subgroup of the Galois group.

Definition 3.3. Denote by T T
∞(X) the direct limit of the T T (Y ) taken over the

directed set of all pointed covers, Y −→ X , having range X .

As sketched in the introduction, instead of all possible covers of X considered in
the above definition, it is enough to consider a special of covers. We will describe
it here in more details. Since X is equipped with the choice of a base point x ∈ X ,
by considering homotopy classes of paths on X starting at x, we get the universal
cover

π : (X̃, x̃) −→ (X, x)

of the pointed surface (X, x). Let G denote the Galois group for the covering π,
which is canonically isomorphic to the fundamental group π1(X, x). If Γ ⊂ G is a
subgroup of finite index, then X̃/Γ is a finite unramified pointed covering of (X, x).
The base point in X̃/Γ is the image of the point x̃. It is easy to see that any finite
unramified pointed covering Y −→ X , where Y is connected, is isomorphic to a
covering of the above type for some Γ ⊆ G. Consequently, the direct limit of T T (Y ),
where the index set runs over all pointed covers of (X, x) given by subgroups Γ ⊂ G
of finite index, is canonically isomorphic to the direct limit T T

∞(X) in Definition
3.3.

The final upshot is that one obtains a limit of spheres in Euclidean vector spaces –
namely a standard topological S∞ as the direct limit of the Thurston boundaries
of the finite-dimensional Teichmüller spaces. So we have

T T
∞(X) − T∞(X) = S∞.(3.4)

Pictured in the Wolf model, this limiting sphere S∞ can be thought of as the
space of rays in the directed union of the vector spaces of holomorphic quadratic
differentials, as one goes through the directed set of coverings over X .

Remark. C. Odden [Od] has taken some preliminary steps toward a theory of cur-
rents that live directly on the inverse limit solenoid H∞(X). If that theory can be
further worked out, it may be interesting to discover the relationship between the
Thurston limit sphere, S∞, that we have found above, and some suitable projec-
tivization of the space of solenoidal currents.

Action of the universal commensurability modular group. Recall from the
work in [BNS] and [BN1], that the universal commensurability mapping class group,

MC∞(X) = Vaut(π1(X))

acts faithfully on T∞(X) as biholomorphic automorphisms.
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Theorem 2.
1. Commensurability action: The action of the universal commensurability

modular group MC∞(X) = Vaut(π1(X)) extends, as self-homeomorphisms,
on the inductive limit of the Thurston compactifications: namely on T T

∞(X).
2. Minimality at infinity: Every orbit of the above action of MC∞(X), on

the limit S∞ of the Thurston spheres, is dense in S∞.

Proof. For the first part of the theorem, the necessary set-theoretic idea follows the
work in [BNS] and [BN1]. First, there is a natural map induced by the cover p, as
follows:

T T
∞(p) : T T

∞(Y ) −→ T T
∞(X).

In fact, T T
∞(p) is defined by mapping any point belonging to any Teichmüller space

of a covering, say Z over Y , to the same point of the same Teichmüller space, T (Z),
where Z is now considered as a covering over X by composing the covering Z −→ Y
with p. It follows directly from the definition that T T

∞(p) is injective. Moreover,
it is easily shown to be surjective by using a fiber-product argument on covering
spaces. Thus each of these mappings, T T∞(p), is an invertible homeomorphism
between the universal Thurston-compactified commensurability Teichmüller spaces
built from bases Y and X respectively. As a consequence, the group MC∞(X),
which was defined in [BNS] as the group arising from arbitrary cycles of covering
arrows starting and ending at X , acts as automorphisms on T T

∞(X). Note that the
association p 7−→ T T∞(p) is a covariant functor. This completes the proof of part (i)
of the theorem.

The second part of the theorem arises from the fundamental fact ([FLP], [M2])
that, for each fixed surface Y , the modular group, MCG(Y ), acts with dense orbits
on the Thurston sphere at the boundary of T (Y ). The group MCG(Y ) is canon-
ically isomorphic to the quotient by the group of inner automorphisms of π1(Y )
of the subgroup Aut(π1(Y ))0 of the automorphism group Aut(π1(Y )) consisting
of all those elements that act trivially on H2(Y, Z) = Z (i.e., all those automor-
phisms of π1(Y ) that arise from orientation preserving diffeomorphisms of Y ). The
group Aut(π1(Y ))0 is contained in the universal commensurability modular group
MC∞(X). After identifying MC∞(X) with Vaut(π1(X)), the homomorphism of
Aut(π1(Y ))0 into MC∞ is the obvious one.

The topology of the sphere S∞ obtained by taking the inductive limit is merely
the quotient topology from the disjoint union (co-product) topology of the indi-
vidual strata. Moreover, the universal commensurability modular group contains
faithful copies of the modular groups acting on the strata, (indeed these elements of
MC∞(X), which comprise a proper subset of MC∞(X), were called the mapping
class like elements; see [BN1], [Od]). Thus, it follows that it is sufficient to employ
just the subset of mapping class like elements of MC∞(X) alone, in order to show
that each orbit of MC∞(X) on the limiting sphere S∞ is dense.

Remark. In earlier papers, ([BNS], [BN1]), it was pointed out that the Ehrenpreis
conjecture – regarding proximity of the complex structures on an arbitrary pair
of compact Riemann surfaces with respect to taking finite unramified covers – is
actually equivalent to the statement that the orbits of the action of MC∞(X) on
T∞(X) are dense. The result of Theorem 2(ii) above, that MC∞(X) acts with
dense orbits on the limit of Thurston boundaries, may be a bit of evidence for the
validity of the Ehrenpreis conjecture.
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Remark. In [M1], Masur has shown that the action of MCG(X) on the Thurston
sphere T T (X)−T (X), is actually ergodic with respect to a suitable measure class.
The theory of measures does not fit well with inductive limit constructions. On the
other hand, if we consider a projective limit of measure spaces, the Kolmogorov
existence theorem ensures the existence of a measure on the projective limit once
the mappings are compatible with the measures. That is why a natural ergodicity
statement for the action of the universal commensurability modular group on the
limiting Thurston sphere S∞ is not possible.

Connected to this measure theoretic point, there is, however, an interesting
matter that we wish to briefly indicate. It is possible to create a natural projective
limit of the spaces of quadratic differentials on the covering surfaces. One takes
the connecting maps in the inverse system to be the averaging map that sends
quadratic differentials on Y to those on X . Identifying the spaces of quadratic
differentials, using the Wolf model, to the corresponding Teichmüller spaces, one
thus does obtain an inverse limit of Teichmüller spaces. Indeed we can now show
the existence of an inverse limit measure on the limit object, (a measure whose
conditional expectations fit coherently).

This construction depends on the choice of a base complex structure on X , and
it therefore transpires that MC∞(X) does not have a natural action on the inverse
limit. In fact, it is the commensurability automorphism group of the Riemann
surface X , ComAut(X), (see [BN2], [BN3]) that acts on the inverse limit object.
The group ComAut(X) is actually the isotropy subgroup for the action of MC∞(X)
on T∞(X) at the point of T∞(X) represented by X . We refer to the papers cited
above for the details.

The next section will be devoted to the construction of various natural structures
on the inductive limit of the Thurston compactified Teichmüller spaces.

4. PIL and symplectic structures at infinity

For a given surface X , there exist finitely many train tracks carrying all lamina-
tions. This gives a coordinate chart system for the space of measured laminations
ML(X). A diffeomorphism of the surface permutes these train tracks. Hence a
diffeomorphism induces a piecewise integral map of ML(X). By considering the
induced map of the projectivization of ML(X), one gets a piecewise integrally
projective map of the Thurston boundary – which is a sphere with a PL structure
coming from the train tracks. Now, lifting to covers preserves this structure – one
needs to extend the basis given by train tracks at each stage. The outcome is that
one obtains on the limiting infinite dimensional sphere, S∞, a natural PL structure.
It is interesting to describe the train-track charts of this limiting sphere, and look
at the action thereon of universal commensurability modular group MC∞(X).

We note that the space S∞ is a R∞-manifold [H1]. Consequently, S∞ is home-
omorphic to R∞ [H2, page 48, Corollary 2].

It is well-known that the space of measured laminations ML(X) on a surface X
of genus g > 1 can be equipped with the following structures:

1. A PIL structure coming from charts corresponding to train tracks. (See, for
instance, section 3.1 of [PH]).

2. A piecewise bilinear skew-symmetric pairing coming from a family of
such pairings, one corresponding to each train-track chart. (Section 3.2 of
[PH].)
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Furthermore, any diffeomorphism φ of the surface preserves these structures,
(vide addendum of [PH] on the action of the Mapping Class Group).

We will use terminology from the standard theory of train tracks on surfaces, as
in [PH]. Let us recall the notation:

PIL = Piecewise Integrally Linear,
PIP = Piecewise Integrally Projective.

These notions are meant to indicate the nature of the action of the mapping class
group MCG(X) of X on measured lamination space, and projectivized measured
lamination space, respectively.

We will briefly describe what PIL means (projectivizing one gets PIP).
(a) There exist finitely many train tracks T1, · · · , Tm such that any lamination

is carried by some Ti. (Note: all the Ti may be chosen to have simply connected
complements.)

(b) Each Ti is regarded as a coordinate chart by associating to it all laminations
carried by it. Furthermore, each Ti gives a collection of equations whose solution
is a cone on a polyhedron in Euclidean space.

Thus two such coordinate charts intersect along the laminations carried by
two train tracks, corresponding to the situation when certain components of the
solution-space are set to zero.

Hence given a choice of these finitely many Ti, the space ML(X) gets equipped
with a piecewise linear structure – corresponding to the PL structure of a cone on
a sphere. The sphere is equipped with a finite PL structure; each face of the sphere
is a polyhedron again. As mentioned, the cone on a face can be regarded as the
solution space to the equations given by the corresponding Ti.

Now look at the action of an element φ ∈ MCG(X) on the space ML(X)
equipped with the above structure.

Claim 1: The action takes coordinate charts to coordinate charts. Indeed, this
is a consequence of the fact that all the Ti may be chosen to have simply connected
complements.

Claim 2: Restrict to a coordinate chart. Recall that this means looking at all
laminations carried by a particular track, T1 say, and these are mapped to those
carried by some T2. (Alternately, one says T1 is carried by T2.) Now each branch
of T1 (the part of the track between 2 switches) is mapped to T2 such that switches
go to switches, hence the branch goes to an integral linear combination of strands
of T2. Thus the action on an integral solution is piecewise integral.

To see this even more explicitly, one can see that the image of a train track τ
under a diffeomorphism is again a train track, which we will denote by σ. Further,
this image train track is carried by one of the chosen train tracks. Now, using
standard moves (alternately called peeling apart and its reverse pasting together) on
train tracks, we can define a self-map of the surface homotopic to the identity such
that σ is mapped to one of the Ti’s and switches go to switches.

Further a linear combination of solutions to equations coming from T1 are sent to
linear combinations of their images, i.e., the action is linear. The above condition
is according to the law determined by strands going to integral linear combinations
of strands. This is what one means by saying that the action of φ on ML(X) is
PIL.

Projectivize the space ML(X). Then the resulting action of φ on PML(X)
(this is the Thurston boundary), is called PIP.
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The PIL structure at infinity. There is an exact analog for the commensura-
bility modular action in the direct limit situation we have been considering.

Let G = π1(X) and let

H1, H2, · · ·, Hi, · · ·(4.1)

be an enumeration of the collection of all distinct subgroups of finite index in G.
Let Xj −→ X be the covering corresponding to the subgroup Hj . For each Xi

choose train tracks Ti1, · · ·, Tini such that any lamination on Xi is carried by some
Tij .

Let

ML∞(X) = lim−→ML(Xi)(4.2)

be the direct limit of the finite dimensional spaces of measured laminations as we
run through all the finite coverings. Let λ be an element of ML∞(X). Then λ
is given by an equivalence class of some representative pair (Xi, λi) where λi is a
measured lamination belonging to some ML(Xi).

Now, λi is carried by one of the Tij ’s by our choice of Tij ’s. This shows that
identifying Tij with the set of laminations carried by it, we have a countable col-
lection of charts covering all of ML∞(X). Furthermore, since train tracks lift to
train tracks, the PIL structures fit together to give a PIL structure on ML∞(X).
Thus we have a PIL structure on ML∞(X).

Piecewise bilinear skew-symmetric pairing. Let us now describe the piecewise
bilinear skew symmetric pairing. It is shown in [PH] that for the subset ML(τ) ⊂
ML(X) of laminations on the surface X carried by the train track τ there exists a
skew-symmetric bilinear pairing given as follows.

Let w1, w2 be two measured laminations, both carried by τ . Then w1, w2 define
1-cycles (also called w1, w2 for convenience) on H1(X). The fundamental (intersec-
tion) pairing for these laminations is given by

(w1, w2) = (w1∪w2)∩[X ].(4.3)

These intersection pairing will fit together in ML∞(X), provided we introduce
a suitable normalizing factor. Thus, let wi ∈ ML(Xi) and wj ∈ ML(Xj) be
two representative elements of ML∞(X). Choose a common cover Xk (the cover
corresponding to Hi∩Hj = Hk is good enough) of Xi, Xj . Lift wi, wj to measured
laminations ui, uj in ML(Xk). Finally define

(wi, wj)∞ =
1

gk − 1
(ui, uj)(4.4)

where the pairing between ui, uj is the usual intersection pairing on the surface Xk

as defined in (4.3), and gk is the genus of Xk.
With this normalization, the pairings are easily seen to fit together to give a

piecewise skew-symmetric bilinear pairing on ML∞(X). For the relevant compu-
tation, see the end of the proof of the next theorem.

We will consider the compatibility of the action of the universal commensurabil-
ity modular group on the direct limit with the above structures. Let us note that
the proof of Theorem 2(i) shows that the MC∞(X) acts by homeomorphisms also
on the (un-projectivized) space ML∞(X).

Theorem 3. The direct limit ML∞(X) of measured laminations carries a natural
piecewise integral linear structure equipped with a piecewise bilinear skew symmetric
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pairing. Further both these structures are preserved under the natural action of the
universal commensurability modular group MC∞(X) = Vaut(π1(X)). The action
on the limit of Thurston boundaries, S∞ = PML∞(X), is therefore PIP.

Proof. In analogy with the situation in case of a single surface, we show that a
virtual automorphism of π1(X) (which acts, by Theorem 2, onML∞(X)) preserves
the structure described. Let g be a virtual automorphism. One can choose a
representative for g as an isomorphism gij : Hi −→ Hj . That corresponds to
a diffeomorphism between Xi and Xj. (If i = j we are in the situation of an
automorphism of a surface – then the element g is called mapping class like.)

As in the case of a single surface, gij takes laminations carried by some Tim

to laminations carried by some Tjn. Now gij(Tim) is clearly a train track on Xj.
Furthermore, gij(Tim) is carried by Tjn, and can be mapped to Tjn such that
switches go to switches and branches are mapped to a sum of branches as in the
case of a diffeomorphism of a single surface. (See above; the only new thing here is
that we are considering a diffeomorphism between two possibly different surfaces.)
This shows that the PIL structure is preserved by gij since a branch goes to a
positive integral linear combination of branches. In the direct limit one sees that g
preserves the PIL structure of ML∞(X).

What we further desire to show is that g preserves the piecewise skew-symmetric
bilinear pairing of (4.4). To see this we use an equivalent description of members
of MC∞(X) by the 2-arrow diagrams that were introduced in [BNS], [BN1]. Then
any g ∈ MC∞(X) is given by two (in general inequivalent) covering maps, say
π1, π2, from some surface Xi onto the base surface, X .

Indeed, let ML∞(Xi) denote the directed system of spaces of measured lami-
nations based at Xi. Induced by the covering π1, just as in the proof of Theorem
2(i), we obtain a natural map:

ML∞(π1) : ML∞(Xi) −→ ML∞(X).(4.5)

The action of the commensurability modular element, g, on ML∞(X) is given by:

ML∞(π2) ◦ML∞(π1)
−1

.

It is clearly enough to check that ML∞(π1) (and, similarly, ML∞(π2)) preserves
our intersection pairing.

This follows from the fact that we have normalized the intersection numbers on
Xi and X by (gi − 1) and (g − 1), respectively, and that the degree of the covering
is precisely gi−1

g−1 . Indeed, let u1, u2 be laminations on X pulling back by π1, to v1,
v2 on Xi. We show that the pairing is preserved:

(u1, u2)∞ =
1

g − 1
(u1, u2),

(v1, v2)∞ =
1

gi − 1
(v1, v2)

=
1

gi − 1
(v1∪v2)∩[Xi]

=
1

gi − 1
((u1∪u2)∩[X ])

gi − 1
g − 1

= (u1, u2)∞.

The proof of the theorem is finished.
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5. Inductive limit of Thurston-compactified moduli spaces

The unramified finite covering p : X̃ −→ X is called characteristic if it corre-
sponds to a characteristic subgroup of the fundamental group π1(X). In other words,
the subgroup π1(X̃) ⊆ π1(X) must be invariant by every element of Aut(π1(X)).
This yields, therefore, a homomorphism :

Lp : Aut(π1(X)) −→ Aut(π1(X̃)).(5.1)

The topological characterization of a characteristic cover is that every diffeomor-
phism of X lifts to a diffeomorphism of X̃, and the homomorphism (5.1) corresponds
to this lifting process.

Characteristic subgroups are obviously normal. It is well-known that the nor-
mal subgroups of finite index form a co-final family among all subgroups of finite
index in π1(X). This property continues to hold for the more special characteristic
subgroups, as shown in [BN1].

Lemma ([BN1, Lemma 3.2]). The family of finite index characteristic subgroups,
as a directed set partially ordered by inclusion, is co-final in the poset of all finite
index subgroups of π1(X). In fact, given any finite covering q : Y −→ X, there
exists another finite covering h : Z −→ Y such that that the composition q ◦ h :
Z −→ X is a characteristic cover.

The characteristic tower. Consider the tower over the (pointed) surface X = Xg

consisting of only the characteristic coverings. Namely, we replace the old directed
set, say K(X) – consisting of all finite unramified pointed coverings, by the subset:

Kch(X) ⊂ K(X)

consisting of all α such that α is a characteristic cover over X . Furthermore, for α, β
in Kch(X), we say β �� α if and only if β = α◦θ with θ being also a characteristic
covering. This gives Kch(X) the structure of a directed set.

As a consequence of the homomorphism (5.1), any characteristic cover p, from
genus g̃ to genus g, induces a morphism

M(p) : Mg −→ Mg̃(5.2)

which is an algebraic morphism between these normal quasi-projective varieties.
In other words, the map T (p) descends to a map between the moduli spaces of
Riemann surfaces when the covering p is characteristic.

We therefore have a direct system of moduli spaces over the directed set Kch(X).
Passing to the direct limit, we define:

M∞(X) := lim−→M(Xα), α ∈ Kch(X)(5.3)

in exact parallel with the definition of T∞(X).
We can now attach Thurston boundary at the moduli level. Define the Thurston

compactification of each moduli space, as the quotient of T T (X) by the corre-
sponding modular group. The fact that the mapping class groups act ergodically
and with dense orbits on the Thurston boundary spheres at each genus tells us
that the quotient boundary is strongly non-Hausdorff. But nevertheless these com-
pactified moduli spaces, with their weird boundaries, will fit together to give an
inductive system of compactified moduli spaces.
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There is a natural subgroup Caut(π1(X)) as defined in [BN1], of the commen-
surability modular group, MC∞(X) = Vaut(π1(X)), defined as the direct limit of
the (base point preserving) modular groups as we go through the index set Kch(X).

Proposition 5.4. The subgroup Caut(π1(X)) of the commensurability modular
group, acts on T T

∞(X) to produce the Thurston compactified ind-variety MT
∞(X)

as the quotient.

Proof. Consider the direct system of Teichmüller spaces (with or without Thurston
boundaries attached) over the co-final subset Kch(X). Let us denote by T ch∞ (X)
the corresponding inductive limit space (without Thurston boundaries). But the
inclusion of directed sets Kch(X) in K(X) induces a natural homeomorphism of
T ch∞ (X) onto T∞(X). It follows from the definition of the group Caut(π1(X)) that
Caut(π1(X)) acts on T ch

∞ (X) to produce M∞(X) as the quotient. Consequently,
by identifying T ch

∞ (X) with T∞(X) by the above homeomorphism, we obtain the
result. Note that, because of set-theoretic generalities, the proof remains the same
even when Thurston boundaries are attached all along.
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