Generalized epimorphism theorem

S M BHATWADEKAR

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

MS received 12 January 1988; revised 24 March 1988

Abstract. Let R[X, Y] be a polynomial ring in two variables over a commutative ring R and let $F \in R[X, Y]$ such that R[X, Y]/(F) = R[Z] (a polynomial ring in one variable). In this set-up we prove that R[X, Y] = R[F, G] for some $G \in R[X, Y]$ if either R contains a field of characteristic zero or R is a seminormal domain of characteristic zero.

Keywords. Epimorphism theorem; polynomial ring; seminormal domain; characteristic zero.

1. Introduction

Let k be a field of characteristic zero. Let k[X, Y] be a polynomial ring in two variables over k and $F \in k[X, Y]$ such that k[X, Y]/(F) = k[Z] (a polynomial ring in one variable). In this set-up the famous epimorphism theorem of Abhyankar and Moh ([2], Theorem 1.2) says that k[X, Y] = k[F, G] for some $G \in k[X, Y]$. Russell and Sathaye had obtained the following analog of the epimorphism theorem ([6], Theorem 2.6.2): If R is a locally factorial Krull domain of characteristic zero and $F \in R[X, Y]$ such that R[X, Y]/(F) = R[Z], then R[X, Y] = R[F, G]. Therefore one asks the following natural question:

Is the foregoing result valid for an arbitrary commutative domain R of characteristic zero?

In this paper we answer this question affirmatively under the assumption that R is seminormal. We prove:

Theorem A. Let R be a seminormal commutative domain of characteristic zero. Let I be an ideal of R[X, Y] such that R[X, Y]/I = R[Z]. Then I is a principal ideal say generated by F and R[X, Y] = R[F, G] for some $G \in R[X, Y]$.

Moreover we give an example (Example 3.8) to show that I need not be principal if R is not seminormal. When R contains a field of characteristic zero we prove the following (weaker) epimorphism theorem:

Theorem B. Let R be a commutative ring containing a field of characteristic zero. Let $F \in R[X, Y]$ such that R[X, Y]/(F) = R[Z]. Then R[X, Y] = R[F, G] for some $G \in R[X, Y]$.

2. Preliminaries

Throughout this paper all rings will be commutative.

In this section we set up notations and state some results for later use.

R will denote a commutative ring.

 $R^{[n]}$: polynomial ring in n variables over R.

 R^n : free R-module of rank n.

For a finitely generated R-algebra A,

 $\Omega_{A/R}$: universal module of R-differentials of A.

For a prime ideal \mathfrak{Y} of R,

 $k(\mathfrak{Y}): R_{\mathfrak{Y}}/\mathfrak{Y}R_{\mathfrak{Y}}.$

DEFINITION

A reduced ring R is said to be seminormal if it satisfies the condition: for b, $c \in R$ with $b^3 = c^2$, there is an $a \in R$ with $a^2 = b$, $a^3 = c$.

Lemma (2.1). Let R be a noetherian ring and let $s \in R$ be a non-zero divisor. Let M be a finitely generated R-module. If M_s is a projective R_s -module of rank d and M/sM is R/sR-projective of rank d then M is R-projective of rank d.

Proof. Without loss of generality we can assume that R is local.

Since M/sM is R/s-projective and R is local there exists a surjective R-linear map β : $R^d woheadrightarrow M$ ($d = \operatorname{rank} M/sM$). Let $N = \ker \beta$. Since M_s is R_s -projective of rank d and β is surjective we get $N_s = 0$. But s is a non-zero-divisor of R and $N \subset R^d$, therefore $N_s = 0 \Rightarrow N = 0$ and β is an isomorphism.

Lemma (2.2). Let R be a noetherian ring and I be an ideal of $R^{[n]}$ such that $R^{[n]}/I \approx R^{[n-1]}$ as R-algebras. Then for an ideal $\mathfrak G$ of R, $I \cap \mathfrak G R^{[n]} = \mathfrak G I$. Moreover if I is a principal ideal of $R^{[n]}$ say generated by F, then

- (i) F is a non-zero-divisor of $R^{[n]}$.
- (ii) F is a algebraically independent over R, i.e. $R[F] \approx R^{[1]}$.
- (iii) $R[F] \cap \mathfrak{G}R^{[n]} = \mathfrak{G}R[F]$ for any ideal \mathfrak{G} of R.

Proof. Since for any non-negative integer l, $R^{[l]}$ is a free R-module, the exact sequence $0 \to I \to R^{[n]} \overset{\sim}{\to} R^{[n-1]} \to 0$; α : R-algebra homomorphism of R-modules gives rise to the exact sequence

$$0 \to I \bigotimes_{R} R/\mathfrak{G} \to R^{[n]} \bigotimes_{R} R/\mathfrak{G} \xrightarrow{\alpha \bigotimes_{R} 1_{R/\mathfrak{G}}} R^{[n-1]} \bigotimes_{R} R/\mathfrak{G} \to 0$$

proving that the canonical map $I/\mathfrak{G}I \to I + \mathfrak{G}R^{[n]}/\mathfrak{G}R^{[n]}$ of $R/\mathfrak{G}^{[n]}$ -modules is an isomorphism. Hence $I \cap \mathfrak{G}R^{[n]} = \mathfrak{G}I$.

Now we assume that I = (F).

- (i) It is easy to see that $F \notin mR^{[n]}$ for any maximal ideal m of R. This shows that F is a non-zero-divisor of $R^{[n]}$.
- (ii) Suppose $c_0 + c_1 F + \dots + c_r F^r = 0$ where $c_i \in R \, \forall i, \ 0 \le i \le r$. Then $0 = \alpha(c_0 + c_1 F + \dots + c_r F^r) = c_0$ i.e. $F(c_1 + c_2 F + \dots + c_r F^{r-1}) = 0$. Therefore, as by (i) F is a non-zero-

divisor, $c_1 + c_2 F + \cdots + c_r F^{r-1} = 0$ showing that $c_1 = 0$. Repeating this argument we see that $c_i = 0 \forall i, 0 \le i \le r$.

(iii) Let \overline{F} be the image of F in $R/\mathfrak{G}^{[n]}$ (= $R^{[n]}/\mathfrak{G}R^{[n]}$). Then obviously $R/\mathfrak{G}^{[n]}/(\overline{F}) \approx R/\mathfrak{G}^{[n-1]}$. Therefore by (ii) \overline{F} is algebraically independent over R/\mathfrak{G} and hence $R[F] \cap \mathfrak{G}R^{[n]} = \mathfrak{G}R[F]$.

Lemma (2.3). Let R be a noetherian ring and let $\mathfrak G$ be the nilradical of R. Let I be an ideal of $R^{[n]}$ such that $R^{[n]}/I \approx R^{[n-1]}$ as R-algebras. If $I/\mathfrak G I$ is a projective $R/\mathfrak G^{[n]}$ -module of (constant) rank 1 then I is a projective $R^{[n]}$ -module of (constant) rank 1.

Proof. Since \mathfrak{G} is nilpotent, the canonical map $\operatorname{Pic}(R^{[n]}) \to \operatorname{Pic}(R/\mathfrak{G}^{[n]})$ is an isomorphism. Therefore there exists a projective $R^{[n]}$ -module L of constant rank 1 such that $L/\mathfrak{G}L \approx I/\mathfrak{G}I$. Hence there exists a $R^{[n]}$ -linear map $\psi: L \to I$ such that the induced map $\overline{\psi}: L/\mathfrak{G}L \to I/\mathfrak{G}I$ is an isomorphism.

We claim that ψ is an isomorphism.

Surjectivity of ψ : Since $\overline{\psi}$ is an isomorphism, we have $I = \psi(L) + \mathfrak{G}I$. But \mathfrak{G} is nilpotent and hence $I = \psi(L)$.

Injectivity of ψ : Let M = 1 er ψ . Then we get the following exact sequence of $R^{[n]}$ -modules:

$$0 \to M \to L \xrightarrow{\psi} I \to 0.$$

As in Lemma 2.2 we see that I is a projective R-module. Therefore the above exact sequence gives rise to the following exact sequence:

$$0 \rightarrow M/\mathfrak{G}M \rightarrow L/\mathfrak{G}L \xrightarrow{\bar{\psi}} I/\mathfrak{G}I \rightarrow 0.$$

But $\overline{\psi}$ is an isomorphism. Therefore $M/\mathfrak{G}M=0$ i.e. $M=\mathfrak{G}M$. The nilpotency of \mathfrak{G} shows that M=0.

Thus ψ is an isomorphism.

3. Main theorems

In this section we prove Theorem A and Theorem B which are quoted in the introduction. For the proof of these theorems we need some lemmas and a proposition. Lemma 3.1 is well known but for the lack of a proper reference we give a proof.

Lemma 3.1. Let R be a noetherian ring and S be a noetherian R-algebra. Let $\pi \in R$ be such that S_{π} is a flat R_{π} -algebra and S/π S is a flat R/π R-algebra. Moreover assume that $Tor_1^R(S, R/\pi R) = 0$. Then S is a flat R-algebra.

Proof. Let M and N be finitely generated R-modules and let $f: M \to N$ be a R-linear injective map. Then we want to show that the map $f \otimes 1_S$: $M \otimes_R S \to N \otimes_R S$ is injective. Let $K = \ker(f \otimes 1_S)$.

Since S_{π} is R_{π} -flat we have $K_{\pi}=0$. Let $T=1+\pi R$ and $T'=1+\pi S$. Then since $\operatorname{Tor}_{1}^{R_{T}}(S_{T'},R_{T}/\pi R_{T})=\operatorname{Tor}_{1}^{R}(S,R/\pi R)\otimes_{S}S_{T'}=0$ and $R_{T}/\pi R_{T}=R/\pi R$, $S_{T'}/\pi S_{T'}=S/\pi S$, by ([1], Theorem 3.2, p. 91) $S_{T'}$ is flat over R_{T} and hence $K_{T'}=0$. Thus $K_{T'}=0$, $K_{\pi}=0$. Therefore K=0 showing that S is a flat R-algebra.

Lemma 3.2. Let R be a noetherian ring of finite Krull dimension (denoted by dim R). Let F be an element of R[X, Y] such that R[X, Y]/(F) = R[Z] as R-algebras. Then R[X, Y] is

a flat R[F]-algebra.

Proof. Let 6 be the nilradical of R. Since R[F] (F being algebraically independent over R) and R[X, Y] are flat over R, for every module M over R we have $\operatorname{Tor}_1^{R[F]}(R[X, Y], M \otimes_R R[F]) = 0$. In particular for every ideal J of R we have $\operatorname{Tor}_1^{R[F]}(R[X, Y], R[F]/JR[F]) = 0$. Therefore, since 6 is nilpotent, by ([1], Theorem 3.2, p. 91) R[X, Y] is flat over R[F] if R[X, Y]/6R[X, Y] (= R/6[X, Y]) is flat over R[F]/6R[F]. So it is enough to prove the result when R is a reduced ring.

We prove the result by induction on dim R. Without loss of generality we can assume that R is local.

If dim R = 0 then R is a field, R[F] is a principal ideal domain and R[X, Y] is a domain. Therefore R[X, Y] is R[F]-flat.

Now we assume that dim R > 0. Let $\pi \in R$ be a nonunit non-zero-divisor of R. Let \overline{F} denote the image of F in $R/(\pi)[X,Y]$. Then $R/(\pi)[\overline{F}] = R[F]/\pi R[F]$. Since dim $R/(\pi) < \dim R$ and dim $R_{\pi} < \dim R$, by the induction hypothesis $R_{\pi}[X,Y]$ is flat over $R_{\pi}[F]$ and $R[X,Y]/\pi R[X,Y]$ is flat over $R[F]/\pi R[F]$. Moreover $Tor_1^{R[F]}(R[X,Y],R[F]/\pi R[F]) = 0$. Therefore by Lemma 3.1 R[X,Y] is a flat R[F]-algebra.

Thus the proof of Lemma 3.2 is complete.

We state a definition before stating the next lemma.

DEFINITION

An element F of R[X, Y] is called a residual variable if for every prime ideal \mathfrak{Y} of R, $k(\mathfrak{Y}) = k(\mathfrak{Y})$ $[\overline{F}]^{[1]}$ where \overline{F} denotes the image of F in $k(\mathfrak{Y})$ [X, Y].

Lemma 3.3. Let R be a ring and $F \in R[X, Y]$ be such that R[X, Y]/(F) = R[Z] as R-algebras. Assume that F is a residual variable. Then for every prime ideal \mathfrak{Y}' of R[F], $k(\mathfrak{Y}') \otimes_{R[F]} R[X, Y] = k(\mathfrak{Y}')^{[1]}$.

Proof. Let $\mathfrak{Y} \cap R = \mathfrak{Y}$. Then $\mathfrak{Y}R[F] \subset \mathfrak{Y}'$ and by (2.2) $\mathfrak{Y}R[F] = \mathfrak{Y}R[X,Y] \cap R[F]$. Since F is a residual variable, we have $k(\mathfrak{Y})[X,Y] = k(\mathfrak{Y})[\bar{F}]^{[1]}$ where \bar{F} denotes the image of F in $k(\mathfrak{Y})[X,Y]$. Moreover $k(\mathfrak{Y})[\bar{F}] = k(\mathfrak{Y}) \otimes_R R[F]$ and there exists a R[F]-algebra homomorphism $k(\mathfrak{Y})[\bar{F}] \to k(\mathfrak{Y}')$. Therefore

$$\begin{split} k(\mathfrak{Y}') & \bigotimes_{R[F]} R[X,Y] = k(\mathfrak{Y}') \bigotimes_{k(\mathfrak{Y})[F]} k(\mathfrak{Y}) \big[\overline{F} \big] \bigotimes_{R[F]} R[X,Y] \\ &= k(\mathfrak{Y}')^{[1]}. \end{split}$$

Lemma 3.4. Let R be a ring and $F \in R[X,Y]$ be such that R[X,Y]/(F) = R[Z] as R-algebras. Assume that F is a residual variable. Then $\Omega_{R[X,Y]/R[F]}$ is a free R[X,Y]-module of rank one.

Proof. We have the following right exact sequence of R[X, Y]-modules

$$\Omega_{R[F]/R} \bigotimes_{R[F]} R[X, Y] \xrightarrow{\theta} \Omega_{R[X, Y]/R} \to \Omega_{R[X, Y]/R[F]} \to 0.$$

Since $\Omega_{R[X,Y]/R}$ is a free R[X,Y]-module of rank two with a basis dX, dY and $Im(\theta) = N$ is the cyclic submodule generated by $F_X dX + F_Y dY$ where $F_X = \partial F/\partial X$ and $F_Y = \partial F/\partial Y$, it is enough to show that the ideal $(F_X, F_Y) = R[X, Y]$.

Suppose $\mathfrak N$ is a maximal ideal of R[X,Y] such that $(F_X,F_Y)\subset \mathfrak N$. Let $\mathfrak N\cap R=\mathfrak Y$. Then replacing R by $R_{\mathfrak Y}$ and $\mathfrak N$ by $\mathfrak N_{\mathfrak Y}$ we can assume that R is a local ring with the maximal ideal m, $\mathfrak N$ is a maximal ideal of R[X,Y] with $\mathfrak N\cap R=m$ and $(F_X,F_Y)\subset \mathfrak N$. But then, since F is a residual variable, we have $R[X,Y]=(F_X,F_Y)+mR[X,Y]\subset \mathfrak N$ which is absurd. Hence $(F_X,F_Y)=R[X,Y]$.

Lemma 3.5. Let R be a noetherian ring such that no prime integer is a zero-divisor in R. Let $F \in R[X, Y]$ be such that R[X, Y]/(F) = R[Z] as R-algebras. Then F is a residual variable.

Proof. Let \mathfrak{Y} be a prime ideal of R and let \overline{F} denote the image of F in $k(\mathfrak{Y})[X, Y]$. Then $k(\mathfrak{Y})[X, Y]/(\overline{F}) = k(\mathfrak{Y})[Z]$.

If $ht \ \mathfrak{Y} = 0$, then since no prime integer is a zero-divisor in R, $k(\mathfrak{Y})$ is a field of characteristic zero. Therefore by the Abhyankar-Moh epimorphism theorem ([2], Theorem 1.2) $k(\mathfrak{Y})[X, Y] = k(\mathfrak{Y})[\overline{F}]^{[1]}$.

If $ht \, \mathfrak{Y} > 0$ then there exists a discrete valuation ring V of characteristic zero with the uniformizing parameter π and a ring homomorphism $\alpha: R \to V$ such that $\alpha^{-1}((\pi)) = \mathfrak{Y}$ and the field extension $k(\mathfrak{Y}) \to V/(\pi)$ (induced by α) is algebraic.

Let \widetilde{F} denote the image (through α) of F in V[X, Y]. Then $V[X, Y]/(\widetilde{F}) = V[Z]$. Therefore by ([6], Theorem 2.6.2) $V[X, Y] = V[\widetilde{F}]^{[1]}$ and hence $V/(\pi)[X, Y] = V/(\pi)[\widetilde{F}]^{[1]}$ where \widetilde{F} is the image of \widetilde{F} in $V/(\pi)[X, Y]$.

Since we have the following commutative diagram of rings

$$\begin{array}{ccc}
R & \xrightarrow{\alpha} & V \\
\downarrow & & \downarrow \\
k(\mathfrak{Y}) & \longrightarrow V/(\pi)
\end{array}$$

and $V/(\pi)$ is algebraic over $k(\mathfrak{Y})$, by ([4], Proposition 1.16) $k(\mathfrak{Y})[X, Y] = k(\mathfrak{Y})[\overline{F}]^{[1]}$. Thus we prove that F is a residual variable.

PROPOSITION 3.6.

Let R be a ring and I be an ideal of $R^{[n]}$ such that $R^{[n]}/I \approx R^{[n-1]}$ as R-algebras. Then I is a projective $R^{[n]}$ -module of (constant) rank 1. Moreover if there exists a projective R-module Lofrank 1 such that $L \otimes_R R^{[n]} \approx I$ as $R^{[n]}$ -modules then I is a free $R^{[n]}$ -module of rank 1 i.e. I is a principal ideal (necessarily generated by a non-zero-divisor of $R^{[n]}$).

Proof. It is easy to see that under the hypothesis of the proposition there exists a subring R' of R which is finitely generated over the ring of integers and an ideal I' of $R'^{[n]}$ such that $R'^{[n]}/I' \approx R'^{[n-1]}$ and $I = I'R^{[n]} \approx I' \otimes_{R'} R = I' \otimes_{R'^{[n]}} R^{[n]}$. Therefore for proving

Ti

the first part of the proposition we can assume without loss of generality that R is noetherian of finite Krull dimension.

We prove the result by induction on dim R.

Let dim R=0. By Lemma 2.3 we can assume that R is reduced. But then R is a finite product of fields and hence, since $R^{[n]}/I \approx R^{[n-1]}$, I is a principal ideal (of height 1) generated by a non-zero-divisor. Therefore I is a free $R^{[n]}$ -module of rank 1.

Now we assume that dim R > 0. Again by Lemma 2.3 we can assume that R is reduced. Let S be the set of non-zero-divisors of R. Then R_S is a finite product of fields and as before we conclude that I_S is a free $R_S^{[n]}$ -module of rank 1. Therefore $\exists s \in S$ such that I_S is a free $R_S^{[n]}$ -module of rank 1. We may assume that S is a nonunit of S.

Since $I \cap sR^{[n]} = sI$, $I/sI \approx I + sR^{[n]}/sR^{[n]}$ as $R/(s)^{[n]}$ -modules. Therefore, since $R^{[n]}/(I + sR^{[n]}) \approx R/(s)^{[n-1]}$ and dim $R/(s) < \dim R$, by the induction hypothesis I/sI is a projective $R/(s)^{[n]}$ -module. Since s is a non-zero-divisor of R, $I \subset R^{[n]}$ and I_s (resp. I/sI) is a projective $R_s^{[n]}$ -module (resp. $R/(s)^{[n]}$ -module) of rank 1, by Lemma 2.1 I is a projective $R^{[n]}$ -module of (constant) rank 1.

Now assume that there exists a projective R-module L of rank 1 such that $L \otimes_R R^{[n]} \approx I$ as $R^{[n]}$ -modules.

Since $R^{[n]}/I \approx R^{[n-1]}$ as R-algebras, we get the following right exact sequence of $R^{[n-1]}$ -modules:

$$I/I^2 \to \Omega_{R^{[n]}/R}/I\Omega_{R^{[n]}/R} \to \Omega_{R^{[n-1]}/R} \to 0.$$

Since, for non-negative integer l, $\Omega_{R^{[1]}/R}$ is a free $R^{[1]}$ -module of rank l and I/I^2 is a projective $R^{[n-1]}$ -module (as I is projective over $R^{[n]}$ of rank 1) of rank 1 we see that the above sequence is also left exact and

$$\Omega_{R^{[n]}/R}/I\Omega_{R^{[n]}/R}\approx\Omega_{R^{[n-1]}/R}\oplus I/I^2.$$

Thus I/I^2 is a stably free $R^{[n-1]}$ -module of rank 1 and therefore I/I^2 is free over $R^{[n-1]}$ of rank 1.

Let $\theta: R^{[n-1]} \to R$ be a surjective R-algebra homomorphism. Then composite map

$$R \to R^{[n]} \twoheadrightarrow R^{[n]}/I \approx R^{[n-1]} \stackrel{\theta}{\longrightarrow} R$$

is the identity automorphism of R.

Since $L \otimes_R R^{[n]} \approx I$, we get

$$\begin{split} L &= L \bigotimes_{R} R^{[n]} \bigotimes_{R^{[n]}} R^{[n-1]} \bigotimes_{R^{[n-1]}} R \approx I \bigotimes_{R^{[n]}} R^{[n-1]} \bigotimes_{R^{[n-1]}} R \\ &= I/I^2 \bigotimes_{R^{[n-1]}} R. \end{split}$$

But I/I^2 is a free $R^{(n-1)}$ -module of rank 1. Hence L is a free R-module of rank 1 and therefore I is a free $R^{(n)}$ -module of rank 1 i.e. I is a principal ideal.

Thus the proof of Proposition 3.6 is complete.

Now we prove Theorem A.

Theorem 3.7. Let R be a ring such that R_{red} is seminormal and no prime integer is a zero-divisor in R_{red} . Let R be an ideal of R[X, Y] such that R[X, Y]/I = R[Z] (as R-algebras). Then R is a principal ideal say generated by R and $R[X, Y] = R[F]^{[1]}$.

Proof. Since R_{red} is seminormal by ([7], Theorem 6.1) $Pic(R) = Pic(R^{[n]})$ for every n. Therefore by Proposition 3.6 I is a principal ideal say generated by F.

Let \mathfrak{G} be the nilradical of R and let \overline{F} be the image of F in $R/\mathfrak{G}[X, Y]$. If $R/\mathfrak{G}[X, Y] = R/\mathfrak{G}[\overline{F}]^{[1]}$ then it is easy to see that $R[X, Y] = R[F]^{[1]}$. Therefore we can assume that R is reduced. It is also easy to see that there exists a subring S of R which is finitely generated over the ring of integers such that $F \in S[X, Y]$ and S[X, Y]/(F) = S[Z] as S-algebras. Note that S is a noetherian ring of finite Krull dimension.

Since $S \hookrightarrow R$ and R is reduced, by the hypothesis of the theorem, no prime integer is a zero-divisor in S. Therefore F is a residual variable in S[X, Y] by Lemma 3.5. Hence $\Omega_{S[X,Y]/S[F]}$ is a free S[X, Y]-module of rank one by Lemma 3.4. Moreover by Lemma 3.3, for every prime ideal \mathfrak{Y}' of S[F], $k(\mathfrak{Y}') \otimes_{S[F]} S[X, Y] = k(\mathfrak{Y}')^{[1]}$. S[X, Y] is a (finitely generated) flat S[F]-algebra by Lemma 3.2. Therefore by ([3], Lemma 3.3) there exists a positive integer m such that $S[X, Y]^{[m]} = S[F]^{[m+1]}$.

Now $S[X, Y]^{[m]} = S[F]^{[m+1]}$ implies that $R[X, Y]^{[m]} = R[F]^{[m+1]}$. Since R is seminormal (we have assumed R to be reduced) by ([5], Theorem 2.6) $R[X, Y] = R[F]^{[1]}$.

Thus the proof of Theorem 3.7 is complete.

The following example shows that if R_{red} is not seminormal then R[X, Y]/I = R[Z] need not imply that I is principal.

Example 3.8. Let k be a field of characteristic zero and let $\tilde{R} = k[[t]]$: a power series in one variable over k. Let $R = k[[t^2, t^3]]$, considered as a subring of \tilde{R} . It is obvious that \tilde{R} is the normalization of R and R is not seminormal.

Let α : $R[X, Y] \to R[Z]$ be the *R*-algebra homomorphism defined as: $\alpha(X) = Z + t^3 Z^2$ and $\alpha(Y) = t^2 Z$. Let $I = \ker \alpha$. Then

- (1) α is surjective
- (2) I is not a principal ideal of R[X, Y].

Proof. Since $\alpha(X-t^3X^2+t^2XY^2+Y^3)=Z$, α is surjective. Let $\tilde{\alpha}$: $\tilde{R}[X,Y]\to \tilde{R}[Z]$ be the \tilde{R} -algebra homomorphism such that $\tilde{\alpha}(X)=\alpha(X)=Z+t^3Z^2$ and $\tilde{\alpha}(Y)=\alpha(Y)=t^2Z$. Let $\tilde{I}=\ker \tilde{\alpha}$. Then \tilde{I} is a principal prime ideal of $\tilde{R}[X,Y]$ generated by $F(X,Y)=t^2X-Y-tY^2$. Moreover $\tilde{I}=I\tilde{R}[X,Y](=I\otimes_R\tilde{R})$. If I is a principal ideal of R[X,Y] say generated by H then H=uF $(=u(t^2X-Y-tY^2))$ where u is a unit in R and $ut\in R$ i.e. $t\in R$ which is a contradiction.

Thus we prove that I cannot be principal. We conclude this section with the proof of Theorem B.

Theorem 3.9. Let R be a ring containing a field k of characteristic zero. Let $F \in R[X, Y]$ such that R[X, Y]/(F) = R[Z] as R-algebras. Then $R[X, Y] = R[F]^{[1]}$.

Proof. As in Theorem 3.7, we can assume that R is reduced and R contains a noetherian subring S of finite Krull dimension such that $F \in S[X, Y]$ and S[X, Y]/(F) = S[Z] as S-algebras. Moreover we can assume that S contains k. Repeating the same arguments we see that there exists a positive integer m such that $S[X, Y]^{[m]} = S[F]^{m+1}$. Now since S contains k (a field of characteristic zero) by ([5], Theorem 2.8), $S[X, Y] = S[F]^{[1]}$. Hence $R[X, Y] = R[F]^{[1]}$.