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Abstract. Let R[X, Y] be a polynomial ring in two variables over a commutative ring R and
let FeR[X, Y] such that R[X, Y]/(F) = R[Z] (a polynomial ring in one variable). In this set-up
we prove that R[X,Y]=R[F,G] for some GeR[X,Y] if either R contains a field of
characteristic zero or R is a seminormal domain of characteristic zero.
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1. Introduction

Let k be a field of characteristic zero. Let k[ X, Y] be a polynomial ring in two variables
over k and Fek[X,Y] such that k[X, Y]/(F)=k[Z] (a polynomial ring in one
variable). In this set-up the famous epimorphism theorem of Abhyankar and Moh
([2], Theorem 1.2) says that k[X,Y]=k[F,G] for some Gek[X,Y]. Russell and
Sathaye had obtained the following analog of the epimorphism theorem ([6], Theorem
2.6.2): If Ris a locally factorial Krull domain of characteristic zero and FeR[ X, Y] such
that R[X, Y]/(F) = R[Z], then R[X, Y] = R[F, G]. Therefore one asks the following
natural question:

Is the foregoing result valid for an arbitrary commutative domain R of characteristic
zero?

In this paper we answer this question affirmatively under the assumption that R is
seminormal. We prove:

Theorem A. Let R be a seminormal commutative domain of characteristic zero. Let I be
anideal of RLX, Y] suchthat R[X, Y1/I = R[Z]. Then I isa principalideal say generated
by F and R[X,Y] = R[F,G] for some GeR[X,Y].

Moreover we give an example (Example 3.8) to show that I need not be principal if
R is not seminormal. When R contains a field of characteristic zero we prove the
following (weaker) epimorphism theorem:

Theorem B. Let R be a commutative ring containing a field of characteristic zero. Let

FeR[X,Y] such that R[X,Y]/(F)=R[Z]. Then R[X, Y]=R[F,G] for some
GeR[X,Y]. ‘
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2. Preliminaries

Throughout this paper all rings will be commutative.
In this section we set up notations and state some results for later use.
R will denote a commutative ring.
R™: polynomial ring in n variables over R.
R™ free R-module of rank n.
For a finitely generated R-algebra 4,
Q. x: universal module of R-differentials of A.
For a prime ideal 9 of R,
k(D): Ry/DRy.

DEFINITION

A reduced ring R is said to be seminormal if it satisfies the condition: for b, ceR with
b3 =¢2, there is an aeR with a>=b, a* =c.

Lemma (2.1). Let R be a noetherian ring and let seR be a non-zero divisor. Let M be a
finitely generated R-module. If M is a projective Rg-module of rank d and M [sM is R/sR-
projective of rank d then M is R-projective of rank d.

Proof. Without loss of generality we can assume that R is local.

Since M/sM is R/s-projective and R is local there exists a surjective R-linear map B:
R%—» M (d = rank M/sM). Let N =ker . Since M is R-projective of rank d and f is
surjective we get Ny=0. But s is a non-zero-divisor of R and N < RY, therefore N
=0=>N =0 and § is an isomorphism.

Lemma (2.2). Let R be a noetherian ring and I be an ideal of R™ such that R/ ~ R~ 1)
as R-algebras. Then for an ideal ® of R, 1 GR™ = G1. Moreover if I isa principal ideal
of R™ say generated by F, then

(i) F is a non-zero-divisor of R™.
(ii) F is a algebraically independent over R, ie. R[F]~ R,
(if)) RLF]AGR" = GRLF] for any ideal ® of R.

Proof. Since for any non-negative integer I, R" is a free R-module, the exact sequence

&€ —_ . . .
0—1I—RM5RP=11,0; o R-algebra homomorphism of R-modules gives rise to the
exact sequence

0 IQR/6 —» RIQR/G-2S Ri- QR /6 0
R R R

proving that the canonical map I/GI—I+ GRM/GRM of R/G™-modules is an
isomorphism. Hence I " GR™ = G 1.

Now we assume that [ = (F).
(i) It is easy to see that F¢»R™ for any maximal ideal » of R. This shows that Fis a
non-zero-divisor of R,
(ii) Suppose co + ¢, F + -+ + ¢, F" =0 where ¢;eRVi, 0<i<r. Then 0=a(co+ ¢, F
4ot F)=coie Fcy + cyF + -+ + ¢, F"~ 1) = 0. Therefore, as by (i) F is a non-zero-
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divisor, ¢; + ¢,F + -+-¢,F"~! = 0 showing that ¢, = 0. Repeating this argument we see
that ¢;=0Vi, 0<i<r.

(i) Let F be the image of F in R/GM (= RM/GRM). Then obviously
R/G"/(F)~ R/®G"~ 11, Therefore by (ii) F is algebraically independent over R/G and
hence R[F]AGRI = GR[F].

Lgmma (2.3). Let R be a noetherian ring and let ® be the nilradical of R. Let I be an ideal
of RM such that R™/I ~ R~ 1 g5 R-algebras. If 1/®1 is a projective R/®M-module of
(constant) rank 1 then I is a projective R™-module of (constant) rank 1.

Proof. Since G is nilpotent, the canonical map Pic(R™)— Pic(R/G") is an isomorph-
ism. Therefore there exists a projective Ri"-module L of constant rank 1 such that
L/GL~1/61. Hence there exists a R"linear map y: L — I such that the induced map
W: L/®L— /6! is an isomorphism.

We claim that ¢ is an isomorphism.

Surjectivity of : Since  is an isomorphism, we have I = /(L) + ®1. But G is nilpotent
and hence I = y(L).

Injectivity of : Let M ="2r y. Then we get the following exact sequence of RI"-
modules:

0-M—L%51-0.

As in Lemma 2.2 we see that I is a projective R-module. Therefore the above exact
sequence gives rise to the following exact seruence:

0 M/GM = LIGLS 161 0.

But ¥ is an isomorphism. Therefore M/6M =0 ie. M =6M. The nilpotency of ®
shows that M =0.
Thus y is an isomorphism.

3. Main theorems

In this section we prove Theorem A and Theorem B which are quoted in the
introduction. For the proof of these theorems we need some lemmas and 2 proposition.
Lemma 3.1 is well known but for the lack of a proper reference we give a proof.

Lemma3.1. Let R be a noetherian ring and S be a noetherian R-algebra. Let neR be such
that S, is a flat R,-algebra and S/ S is a flat R/n R-algebra. Moreover assume that
TorR(S, R/nR) =0. Then S is a flat R-algebra.

Proof. Let M and N be finitely generated R-modules and let f: M >N be a R.-lin‘ear
injective map. Then we want to show that themap f® 15 M®gS— N ®gS isinjective.
Let K =ker(f ®1g).
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Since S, is R -flat we have K, =0. Let T=1+7R and T'=1+7S. Then since
Tor’7(Sy, Ry/nRy) = Tor¥(S, R/aR) @S =0 and Ryp/aRp=R/aR, Sp/nS. =
§/xS, by ([1], Theorem 3.2, p. 91) Sy is flat over Ry and hence K. =0.

Thus K =0, K, =0. Therefore K =0 showing that S is a flat R-algebra.

Lemma3.2. Let R be anoetherian ring of finite Krull dimension (denoted by dim R). Let F
be an element of R[X, Y] such that R[X, Y]/(F) = R[Z] as R-algebras. Then R[X,Y]is
a flat R[F1-algebra.

Proof. Let ® be the nilradical of R. Since R[F] (F being algebraically independent over
R)and R[X, Y] are flat over R, for every module M over R we have Tor®FI(R[X, Y],
M®gR[F])=0. In particular for every ideal J of R we have Tor{"R[X,Y],
R[FJ/JR[F]) = 0. Therefore, since G is nilpotent, by ([1], Theorem 3.2, p. 91) R[X, Y]
isflat over R[F]if R[X, Y]/GR[X, Y](= R/G[X, Y])isflat over RLF]/GR[F]. Soitis
enough to prove the result when R is a reduced ring.

We prove the result by induction on dim R. Without loss of generality we can assume
that R is local.

If dim R =0 then R is a field, R[F] is a principal ideal domain and R[X, Y] is a
domain. Therefore R[X, Y ] is R[F]-flat.

Now we assume that dim R>0. Let 7eR be a nonunit non-zero-divisor of R.
Let F denote the image of F in R/(m)[X, Y]. Then R/(7)[F]=R[F]/=R[F]. Since
dimR/(n) <dimR and dim R, <dim R, by the induction hypothesis R.[X, Y] is
flat over R[F] and R[X,Y]/zR[X,Y] is flat over R[F]/zR[F]. Moreover
Tor®FY(R[X, Y], R[F]/nR[F])=0. Therefore by Lemma 3.1 R[X,Y] is a flat
R[F]-algebra.

Thus the proof of Lemma 3.2 is complete.

We state a definition before stating the next lemma.

DEFINITION
Anelement F of R[X, Y]is called a residual variable if for every prime ideal 9) of R, k()
[X,Y]=k(Q) [F1') where F denotes the image of F in k(%) [X, Y].

Lemma 3.3. Let R be a ring and FeR[X, Y] be such that R[X, Y]/(F)=R[Z] as
R-algebras. Assume that F is a residual variable. Then for every prime ideal 9’ of R[F],
k(D)@ g RLX, Y] = k()1

Proof. Let 9'nR = 9. Then YR[F] = Y’ and by (22) 9 R[F] = DRLX, Y]AR[F].
Since F is a residual variable, we have k(¥) [X, Y] =k(9)[F]™ where F denotes the
image of F in k(9) [X, Y]. Moreover k(9) [F] = k(Y)) ® xk R[F] and there exists a R[F]-
algebra homomorphism k()[F] - k(2)'). Therefore

KY)QRIX, Y] = k(‘D’)k(g:[)ﬁk(‘D)[F] (QRX, Y]

R[F] RIF]
= K™

Lemma 3.4. Let R be a ring and FeR[X, Y] be such that R[X, Y]/(F)= R[Z] as R-
algebras. Assume that F is a residual variable. Then Qgix yyger iS afree R[X, Y]-module
of rank one.
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Proof. We have the following right exact sequence of R[X. Y]-modules

0
Qpiryr ;@1 R[X, Y] = Qppx.yyr = Qrix.yyrir1 =~ 0.

Since Qpyy yygis a free RLX, Y]-module of rank two with abasisdX,dYand Im (0) = N
is the cyclic submodule generated by FydX +F ydY where Fy=0aF/0X and Fy
=0F/dY, it is enough to show that the ideal (Fy. Fy) = R[X, Y]

Suppose 9 is a maximal ideal of R[X, Y] such that (Fy, Fy)e9 Let MnR =Y.
Then replacing R by R, and R by 9, we can assume that R is a local ring with the
maximal ideal #, 9t is a maximal ideal of R[X, Y] with MR = and (Fy, Fy) N
But then, since F is a residual variable, we have R[X. Y] =(FyFy)+wR[X,Y]cN
which is absurd. Hence (Fy, Fy) =R[X, Y]

Lemma 3.5. Let R be a noetherian ring such that no prime integer s a zero-divisor in R.
Let FeR[X, Y] be such that R[X, Y]/(F) = R[Z] as R-alyebras. Then Fis a residual
variable.

Proof. Let 9 bea prime ideal of R and let F denote the image of I'in k() [ X, Y]. Then
KX, YI(F) = kD)[Z].

If ht 9 =0, then since no prime integer is a zero-divisor in R, k(¥)) is a field of
characteristic zero. Therefore by the Abhyankar-Moh cpimorphism theorem ([2],
Theorem 1.2) k(D)[X, Y] =k(Y)[F]H.

Ifht 9 > 0 then there exists a discrete valuation ring } of characteristic zero with the
uniformizing parameter 7 and a ring homomorphism o R =V such that 2 '((m) ="
and the field extension k() - V/(n) (induced by «) is algebraic. .

Let F denote the image (through ) of F in V[X,Y]. Then VX, Yy =V[Z].
Therefore_by ([6], Theorem 2.62) V[X,Y]= VIF]" and hence V/(m)[X,Y]
= V/(m)[F1'") where F is the image of F in V/(m)[ X, Y].

Since we have the following commutative diagram of rings

R — V

|

k() —V/n)

and V/(n) is algebraic over k(9), by ([4], Proposition 1.16) KX, Y] = ke[,
Thus we prove that F is a residual variable.

PROPOSITION 3.6.

Let R be aring and I be anideal of R™ such that R™/I =~ R™ " *1qs R-algebras. Then Lisa
projective R-module of (constant) rank 1. Moreover if there exists a projective R-module
Lofrank 1 such that L® xR™ ~ I as R™-modules then I is a free R™-module of rank I i.e.
1 is a principal ideal (necessarily generated by a non-zero-divisor of R,

Proof. It is easy to see th.at under the hypothesis of the proposition there exists a
subring R’ of R which is finitely generated over the ring of integers and anideal I' of R'™
such that R¥/I'x R Hand [ = 'R™ ~ I' @ p. R = I' ® pmR". Therefore for proving
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the first part of the proposition we can assume without loss of generality that R is
noetherian of finite Krull dimension.

We prove the result by induction on dim R.

Let dim R =0. By Lemma 2.3 we can assume that R is reduced. But then R is a finite
product of fields and hence, since RI"/I ~ R"™*, I is a principal ideal (of height 1)
generated by a non-zero-divisor. Therefore I is a free RU"-module of rank 1.

Now we assume that dim R >0. Again by Lemma 2.3 we can assume that R is
reduced. Let S be the set of non-zero-divisors of R. Then Ry is a finite product of fields
and as before we conclude that I is a free R¢-module of rank 1. Therefore 3 seS such
that I, is a free RI-module of rank 1. We may assume that s is a nonunit of R.

Since InsRM =sI, I/sI ~I+sRM/sRM as R/(s)-modules. Therefore, since
RU/(I 4+ sRM)~ R/(s)~ 11 and dim R/(s)<dimR, by the induction hypothesis
I/sl is a projective R/(s)-module. Since s is a non-zero-divisor of R, I < R and I
(resp. I/sI) is a projective RI-module (resp. R/(s)-module) of rank 1, by Lemma 2.1
I is a projective R"-module of (constant) rank 1.

Now assume that there exists a projective R-module L of rank 1 such that
L®zR"M~I as R"-modules.

Since R/l ~ R"~ 1 as R-algebras, we get the following right exact sequence of
R~ .modules:

/1% = Qpon o/ 1Qpim g = Qin-12 > 0.

Since, for non-negative integer I, QO is a free R®%-module of rank I and I/l Zisa
projective R"~*--module (as I is projective over R of rank 1) of rank 1 we see that the
above sequence is also left exact and

QR["]/R/IQR["I/R ~ QRIH- ”/R @ 1/12

Thus I/I?is a stably free R~ -module of rank 1 and therefore I/I? is frec over R~ of
rank 1.
Let 6: RP~1 R be a surjective R-algebra homomorphism. Then composite map

R—RM R/ x RO-15R

is the identity automorphism of R.
Since L@ RM ~ I, we get

L=L@RMQR™ ® RAIQR1 Q) R

R ) R[n‘ 1] R ] R[n— 1]
=1/ ® R
Rin—11
But I/I? is a free R~ Y-module of rank 1. Hence L is a free R-module of rank 1 and
therefore I is a free R™-module of rank 1 ie. I is a principal ideal.
Thus the proof of Proposition 3.6 is complete.
Now we prove Theorem A.

Theorem 3.7. Let R be a ring such that R 4 is seminormal and no prime integer is a zero-
divisor in Ry Let I be anideal of RLX, Y] such that R[X, Y]/I = R[Z] (as R-algebras).
Then I is a principal ideal say generated by F and R[X,Y] = R[F]!.
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Proof. Since R, is seminormal by ([7], Theorem 6.1) Pic(R) = Pic(R™) for every n.
Therefore by Proposition 3.6 I is a principal ideal say generated by F.

Let G be the nilradical of R and let Fbetheimage of Fin R/G[X, Y. If R/G[X, Y]
=R/G[F]! then it is easy to see that R[X, Y] =R[F]!*L Therefore we can assume
that R is reduced. It is also easy to see that there exists a subring S of R which is finitely
generated over the ring of integers such that FeS[X, Y] and S[X, Y]/(F)=S[Z] as S-
algebras. Note that S is a noetherian ring of finite Krull dimension.

Since S < R and R is reduced, by the hypothesis of the theorem, no prime integer is
a zero-divisor in S. Therefore F is a residual variable in S[X, Y] by Lemma 3.5. Hence
Qgx yysyry 18 @ free S[X, Y]-module of rank one by Lemma 3.4. Moreover by Lemma
3.3,forevery primeideal 9’ of S[F1, k() @ sy SLX, Y] =k(Y ). S[X, Y]isa (finitely
generated) flat S[FJ-algebra by Lemma 3.2. Therefore by ([3], Lemma 3.3) there exists
a positive integer m such that S[X, Y™ = S[F]im+1l,

Now S[X, YI™ = S[F]"* ) implies that R[X, Y] = R[F]"* L. Since R is semi-
normal (we have assumed R to be reduced) by ([5], Theorem 2.6) R[X, Y] =R[F]!.

Thus the proof of Theorem 3.7 is complete.
The following example shows that if R4 is not seminormal then R[X, Y}/I = R[Z]
need not imply that I is principal.

Example 3.8. Let k be a field of characteristic zero and let R= k[[t]]:a power series in
one variable over k. Let R = k[ [t%,t3]], considered as a subring of R. It is obvious that
R is the normalization of R and R is not seminormal.

Let o: R[X,Y]—R[Z] be the R-algebra homomorphism defined as: a(X)=Z
+13Z% and «(Y)=t*Z. Let I =ker o. Then

(1) « is surjective
(2) I is not a principal ideal of R[X, Y].

Proof. Since a(X —t*X? +2XY?+ Y?)=Z, o is surjective.

Leta: ﬁ[X ,Y]—> R[Z] be the R-algebra homomorphism such that #(X)=o(X)=2Z
+1322 and &(Y)=o(Y)=1>Z. Let [ =ker & Then I is a principal prime ideal of
R[X, Y] generated by F(X,Y)=1*X —Y — tY2 Moreover I = IR[X,Y](=IQ®xR).

If I is a principal ideal of R[X, Y] say generated by H then H = uF (=u(t’X =Y
—tY?) where u is a unit in R and uteR ie. teR which is a contradiction.

Thus we prove that I cannot be principal.
We conclude this section with the proof of Theorem B.

Theorem 3.9. Let R be a ring containing a field k of characteristic zero. Let FER[X, Y]
such that R[X, Y1/(F) = R[Z] as R-algebras. Then R[X,Y] = R[FI.

Proof. As in Theorem 3.7, we can assume that R is reduced and R contains a noe-
therian subring S of finite Krull dimension such that FeS§ [X, Y] and S[X, Y]/(F)=
S[Z] as S-algebras. Moreover we can assume that S contains k. Repeating the
same arguments we see that there exists a positive integer m such that S[X, Y]m =
S[F]™*+!. Now since S contains k (a field of characteristic zero) by ([5], Theorem 2.3),
S[X, Y] =S[F]"\. Hence R[X, Y] = R[F]™.
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