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The concept of ‘tunnelling time’ in the context of quantum particle tunnelling is reviewed.
Various suggestions of linking the tunnelling dynamics with a characteristic time (real or
complex) like the phase time, barrier interaction time (bounce time), presence time, etc. are
analysed. A simple but fully quantal method of defining and estimating a real tunnelling time is
examined in a variety of situations. The recently proposed idea of interpreting ‘tunnelling time’
as the cavity lifetime of a particle is also explored. We emphasize that proton or H-atom
transfer reactions in double or triple wells offer systems in which the signature of the tunnelling
time should be recognizable not just indirectly through the tunnelling splitting of spectral lines,
but by following the relaxation dynamics of the subsystem that the proton or H atom leaves by
tunnelling.
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1. Introduction

Particle tunnelling is a purely quantum mechanical phenomenon involving over-barrier
reflection and under-barrier penetration. It has aroused interest ever since the
foundations of quantum mechanics were laid. Tunnelling was first used by Fermi in
explaining the mechanism of alpha decay in radioactive atoms. Viewed as a dynamical
event, it is very natural to try to associate a characteristic time with tunnelling – the so-
called ‘tunnelling time’ – which was first put forward by MacColl [1]. Since then the idea
of tunnelling being described by a characteristic tunnelling time has been debated,
analysed and discussed in the literature [2–9]. These discussions do not seem to converge
to a single or a simple conclusion – rather several points of view appear to emerge. One
of these is that the very concept of tunnelling time is meaningless, there being no
quantum mechanical operator ðT̂Þ for time (t) and that the use of such a concept could
lead to a violation of the principle of causality and afford the possibility of superluminal
communication [10–12]. Another view asserts that tunnelling time is not an observable,
but the distribution of tunnelling times is. A third viewpoint assumes that the concept of
tunnelling time need not be abandoned altogether and looks for schemes for computing
and interpreting tunnelling time meaningfully. It is important, however, to be able to
compute tunnelling time meaningfully and recognize its signature in suitable
observables, if any. The present review is an attempt to capture the essential features
of these schemes, especially in the context of chemical reactions, spectroscopy and
molecular physics.

Tunnelling can be unambiguously defined only for one-dimensional barrier traversal
problems. Classically, the transmission probability is zero at energies lower than the
barrier energy. Quantum mechanics, however, predicts non-zero transmission
probabilities even at energies below the barrier energy [13]. In one-dimensional
problems, therefore, tunnelling may be taken to represent the passage of the system
across a barrier at energies below the barrier energy. Such a passage may be viewed as a
reaction by tunnelling. Generally, chemical reactions involve motion of nuclei on
multidimensional potential energy surfaces through an activated state situated at the
top of the barrier. If the PES has been obtained by solving the Schrödinger equation
(SE) under the Born–Oppenheimer (BO) approximation exactly and the subsequent
nuclear dynamics also solved quantum mechanically, all contributions due to tunnelling
are automatically included in the computed results. One can then define the tunnelling
factor �(�) to be equal to the ratio of kexact(�) and kVTST(�) where kVTST(�) represents
the rate constant predicted by the variational transition state theory [14]. It has been
shown that �ð�Þ � 1 in many simple atom transfer reactions of the type
Aþ BC) ABþ C. Although kVTST(�) is computed on the basis of a number of
approximations, the ratio of kexact and kVTST may reflect, among other things, the
tunnelling contribution to the rates of simple atom transfer reactions [14–16].
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Experimentally, the presence of curvature in the Arrhenius plots of reaction rate

constants has usually been taken to confirm the presence of tunnelling. Such curvatures

are very difficult to detect in Arrhenius plots for gas phase reactions. The situation in

condensed phase reactions is different, for not only have such curvatures been detected

in many reactions in condensed phases at low temperatures (T<100K), the occurrence

of a temperature-independent part of the rate constant has been confirmed as T! 0K.

Very accurate theoretical calculations have, however, demonstrated how important the

tunnelling contribution can be to reaction rates, even in simple gas phase reactions at

low temperatures.
Classically the rate constant k at a temperature T can be expressed as

k ¼ A

Z 1
0

gð"Þe�"=kBT d" ð1Þ

where A represents the collision frequency, kB is the Boltzman constant and g(") is an
energy dependent barrier transparency factor (classically g(")¼ 1, if "�V0 and g(")¼ 0

if "<V0, V0 being the barrier height). The integration over " then leads to the

expression for the Arrhenius rate constant, kclassical¼Ae
�V0=KBT. For the simple reaction

DþH2!HDþH, kclassical at low temperatures turns out to be zero (kclassical� 10�426)

whereas full quantum mechanical calculations lead to ktunnelling� 18 [15]. The

theoretical results demonstrate emphatically that simple gas phase atom transfer

reactions at low temperatures are dominated by tunnelling. The analysis of condensed

phase reactions is more difficult as the environment couples to the reaction system and

plays an important role, depending on the temperature.
Theoretical analysis of condensed phase reactions suggests that the behaviour of the

rate constant depends strongly on the temperature regime [17–20]. In the high-

temperature regime (regime III), the classical Arrhenius behaviour is noted. In this

regime, both the medium and the reaction system behave classically. In the

intermediate-temperature regime (regime II) the transfer of an atom (a particle)

across the barrier is treated quantum mechanically, while the medium is allowed to

respond classically. The result is an expression for the rate constant that grows

exponentially with temperature

kII ¼ k0e
aT: ð2Þ

When the temperature is further lowered, both the atom transfer process and the

response of the environment are to be treated quantum mechanically. Two types of

behaviour emerge as T! 0K. It is the intermolecular vibrations that determine the type

of response. If only local modes are excited the plot of ln K versus T results in a plateau.

On the other hand, if the continuum of phonon modes of the surroundings couple to the

reactive mode, the rate constants reveal an exponential dependence on high powers of

temperature (ðkI ¼ k0e
�Tn

,4 � n � 8Þ [20a,b]. We have so far restricted our attention to

atom transfer reactions in atom–diatom systems where tunnelling seems to contribute

rather significantly to the reaction rate at low temperatures where non-classical

behaviour of the rate constant as a function of temperature manifests itself quite clearly.

Since a rate process is involved, the question of ‘time characteristics’ of the tunnelling
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contribution naturally crops up. There are examples in the literature where a
unimolecular decomposition at low temperatures seems to occur purely by tunnelling
although the reactants and products are separated by a fairly large barrier. The
elimination of an H2 molecule from a 2, 2 dimethyl ethane cation with the formation of
2, 2 dimethyl ethylene cation is a typical example [20b]. The reactant cation is thus
metastable and has a finite lifetime (�) which is just the inverse of the tunnelling reaction
rate constant, ktunnelling. The question of defining, interpreting and computing
tunnelling time in the context of a rate process therefore becomes imperative and
significant.

2. Signatures of tunnelling dynamics

Experimental determination of ‘tunnelling time’ is extremely difficult. One usually
infers about ‘tunnelling time’ characterizing a process indirectly. Thus, tunnelling often
leaves its signature in the spectroscopic properties of a molecule. Proton or H-atom
transfer reactions have long been explored in the context of tunnelling [21]. A common
spectral signature of tunnelling here lies in the tunnel-splitting of spectral lines in double
or triple wells. If an energy barrier exists along the reaction coordinate of the proton
transfer path, and it takes place at energies below the barrier, the mechanism must
involve quantum mechanical tunnelling. In large molecules, the motion of the proton is
coupled to the motion of many atoms, and the potential surface on which the proton
tunnels is multidimensional in the majority of cases. The dynamics of multidimensional
tunnelling and the characteristic time associated with the motion under the barrier, if
any, have not been fully understood as yet. Experimentally, laser spectroscopic
techniques have opened up a number of avenues of probing the dynamics of tunnelling
on multidimensional surfaces and constructing the surfaces. The majority of the
tunnelling systems studied belong to the class of molecules in which the proton or the H
atom moves in a symmetric double well potential (SDWP).

The well-known signature of tunnelling in these systems lies in the presence of the so-
called tunnelling doublet (figure 1) or tunnelling splitting. These splittings have been
experimentally determined by measuring the laser-induced fluorescence excitation
spectrum, resonance enhanced multiphoton ionization spectroscopy, hole burning UV
spectroscopy, or by IR-UV double resonance spectroscopy [23–27]. If proton transfer
occurs in a symmetric double well, the electronic spectrum provides only the difference
in the tunnel doublet splitting between the upper and lower electronic states (����0, in
figure 1). Accurate estimates of �0 can be obtained by measuring rotational transitions
between 0þ and 0� levels by microwave or submillimetre spectroscopy. IR-UV double
resonance spectroscopy has also been used to determine tunnelling splitting [27]. Time-
resolved spectroscopic techniques, specially, the ultrafast femtosecond pump and probe
technique, are very powerful tools for determining the rate of proton transfer reactions
in the gas or condensed phases. The kinetic data leads to mapping of the PES on which
the proton transfer takes place [27].

Tropolone (TRN) is one of the most extensively studied symmetric doublewell
proton-transfer systems, for which the ground and excited state tunnelling splitting have
been accurately determined [28, 29]. The magnitude of the tunnelling splitting
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remarkably depends on the excited vibronic state. In fact, experimental �� values of

TRN have led to the classification of vibrational modes into three distinct categories [9]:

(a) tunnelling suppressing modes (e.g �11, �25 and �26);
(b) tunnelling promoting modes (e.g �13 and �14);
(c) modes inert to tunnelling (e.g �12).

The modes (a), (b) must be responsible in some ways in reshaping the barrier height

and the distance through which the proton travels. How do they affect the time spent by

the proton or H atom under the barrier? There is no direct experimental evidence to

answer this question. One can, however, invoke the Fermi Golden rule and show that

the ‘tunnelling time’, if it is there, would be inversely proportional to the square of the

tunnelling splitting.
Tunnelling splitting has also been known to be affected by the substitution in

different positions of the seven-member ring system of TRN. In a low-barrier

symmetric tunnelling system (like TRN), substitution in an asymmetric position could

localize the proton in one of the wells rather easily and strongly, leading to quenching of

tunnelling. Substitution in a symmetric position (with respect to the tunnelling system)

may cause electron withdrawal through the � bonding network thereby strengthening

the intramolecular hydrogen bond and decreasing the tunnelling barrier height.

0+

hν+
+

ν+

ν−

hν−
−

∆ν

∆0
E0

S1

S0 0−

Figure 1. Schematic representation of tunnel splitting.
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Apart from the indirect evidence through tunnelling splitting the dynamical features of
tunnelling, tunnelling time and their effects on the properties of the interacting
subsystems (double or triple wells) have not been studied systematically. As the proton
on the H atoms moves through the barrier from subsystem A to subsystem B (well-A to
well-B), it spends a certain amount of time under the barrier. What happens to the
subsystem A or B, during the interval? How does the ‘tunnelling time’ affect the
dynamics of relaxation of the subsystems? It appears that new experiments must be
designed to probe these questions and answer unambiguously whether ‘tunnelling time’
has a definite signature of its own on the properties (observables) of the system. In order
to analyse the results of such experiments it is necessary to have a well-
defined scheme for computing tunnelling time in a specific context.

3. The concept of tunnelling time

We may take the simple stand that ‘tunnelling time’ is just the temporal difference
between two events–the particle impinging on the barrier and the particle coming out of
the barrier. The task of computing tunnelling time then boils down to observing the two
events, recording the times and measuring the difference. The first problem is that ‘time’
in quantum mechanics is not represented by an operator. It enters quantum mechanics
in the guise of a parameter. The second problem is that the systems are microscopic and
measurements are quantum measurements capable of demolishing the tunnelling state
under consideration. The question of the operation of the uncertainty principle in ‘time
measurements’ on microscopic systems therefore assumes a significance in the context
of tunnelling time analysis. In what follows we briefly review different suggestions
relating to and interpretations of tunnelling time (�) which range from the rather simple
to the more sublime ways of handling the problem.

3.1. Uncertainty and tunnelling time

The first candidate for a measure of the tunnelling time relates to the time–energy
uncertainty principle. Let us now consider the tunnelling configuration in figure 2,
wherein a particle of mass m and energy E tunnels through a barrier of height V0

(V0>E) and width a. The process is thus characterized by an energy defect
�E¼ (V0�E). We may assume that the particle, during a short time interval ��

T1/2eiαeikx, x>b

k1/2eiβe−ikx

eikx

V0

φ(x, k)

x
ba

x2x1
d

Figure 2. Rectangular opaque barrier V(x).
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(tunnelling duration), recovers the energy defect �E through quantum fluctuations,
where �E and �� are related by the time–energy uncertainty principle:

�E�� � �h: ð3Þ

Equation (3) then leads to an estimate of the ‘tunnelling time’ �� ’ �h=ðV0 � EÞ. The
particle seems to travel a distance a in time �� with a ‘tunnelling velocity’
vt ¼ a=�� ¼ aðV0 � EÞ=�h. The simple interpretation of tunnelling time implies that vt
would increase linearly with a and any tunnelling velocity, low and high, would be
achievable. That implies the possibility of superluminal communication and a
breakdown of causality [30, 31]. The argument has been used by critics to demolish
the very idea of tunnelling being associated with a characteristic time ��. We will return
to this aspect later in the review and reexamine the issue from a different angle.

3.2. Dwell time (sD) as a measure of tunnelling time

It appears quite straightforward to ask the question ‘What is the time spent by the
tunnelling particle under the barrier’. Dwell time (�D) is an estimate of precisely the time
spent under the barrier assuming that the spatial extension and shape of the barrier is
known along with the features of the wavepacket that describes the particle [32]. To be
precise, let us consider a one-dimensional scattering configuration for a particle with
fixed energy (E) as displayed in figure 2, for a rectangular opaque barrier V(x).

For a rectangular barrier of height V0 and width d(¼ b� a), the transmission
probability of a particle (T(k)) with momentum �hk is [2, 4]

TðkÞ ¼
4k2�2

D

¼ 1� RðkÞ

ð4Þ

where R(k) is the reflection probability, and D ¼ 4k2�2 þ k20 sinh
2
ð�dÞ and

V0 � E ¼ �h2ðk20 � k2Þ=2m ¼ �h2�2=2m [32]. Let the particle be described by the
wavepacket  (x, t). The probability of finding the particle in a definite region of
space (x1, x2) at time t is given by

Pðx1, x2; tÞ ¼

Z x2

x1

j ðx, tÞj2 dx: ð5Þ

The time spent by the particle in the given region of space (x1, x2) is then obtained by
integrating the probability P(x, t) over time:

�Dðx1, x2Þ ¼

Z 1
0

dtPðx1, x2; tÞ ð6Þ

¼

Z 1
0

dt

Z x2

x1

j ðx, tÞj2 dx: ð7Þ
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Decomposing the packet into its scattering components, we have

 ðx, tÞ ¼

Z
dk

2�
�ðkÞ ðx, kÞeð�i�hk

2tÞ=2m, ð8Þ

which is ploughed back into the definition of �D through the definition of P(x1,x2, t) to

obtain, after integration over time has been carried out, an expression for the so-called

dwell time:

�Dðx1, x2Þ ¼

Z
dk

2�
j�ðkÞj2

1

vðkÞ

Z x2

x1

dxj ðx, kÞj2 ð9Þ

where vðkÞ ð¼ �hk=mÞ represents the incoming particle flux. If we note that j�ðkÞj2=2� is

the probability distribution of an arbitrary initial wavepacket over the wavenumbers

(k), we immediately get a dwell time for the particle with momentum �hk [32]:

��Dðx1,x2, kÞ ¼
1

vðkÞ

Z x2

x1

dx= ðx, kÞj2: ð10Þ

The dwell time is thus the average time that the particle in the scattering state  (x, k)
spends in a definite region of space (x1, x2). When averaging is done over all the

scattering channels that become open for the measurement, we get an average dwell

time ��Dðx1, x2Þ. If we use x1¼ a, and x2¼ b in equation (10) we get an estimate of the

dwell time, that is, the time spent by the particle under the barrier during the course of

tunnelling. The dwell time is very closely related to what has been known as the phase

time or time-delay characterizing the tunnelling process. The idea is to identify a typical

feature of the wavepacket just as it impinges on the barrier and look for the delay in the

appearance of the same feature on the other side of the barrier.

3.3. Delay time (phase time) as a measure of tunnelling time

Let us start by considering �D(x1, x2, k) of equation (10). If x1¼ a, and x2¼ b we get an

estimate of the time spent just under the barrier – the dwell time ð ��Dða, b, kÞÞ. Could it

not be accepted as a measure of tunnelling time? One problem with ��Dða, b, kÞ is that it
averages over the total incoming flux without caring to take into account the fraction of

the incident particles that get reflected and the fraction that ultimately get transmitted.

�D therefore has contributions both from the transmitted as well as the reflected

components of the flux. Transmission and reflection being mutually exclusive events,

the following relation must hold [2]:

�D ¼ TðkÞ�t þ RðkÞ�r ð11Þ
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where T(k)¼ 1�R(k) is the transmission probability, R(k) the probability of reflection,

�t is the time spent by the transmitted particles under the barrier, and �r is counterpart
for the reflected particles.

Let us consider a wavepacket sharply peaked around k hitting the barrier (figure 2)

and try to follow the motion of the peak of the packet (xp(t)) which, we suppose, will be

dominated by a few Fourier components of the form TðkÞ
1
2 exp if�ðkÞ þ kxp � EðkÞt=hg.

Using the stationary phase approximation [33] we have [2, 4]

d�

dk
þ xpðtÞ �

1

�h

dE

dk
� t ¼ 0: ð12Þ

Let us note that the tunnelling causes a spatial as well as a temporal delay. The spatial

delay is measured by 	�¼�0 ¼ d�/dk while the temporal delay is given by

	� ¼ �h
d�

dE

¼
1

vðkÞ

d�

dk

¼ vðkÞ�1�0:

ð13Þ

v(k) is the group velocity given by

vðkÞ ¼
1

�h

dE

dk
¼

�hk

m
:

A delay time (a phase time) for the tunnelling process can now be defined for the

transmitted particles [33]:

�tðx1ðx < aÞ, x2ðx > bÞ, kÞ ¼
1

vðkÞ
½x2 � x1 þ �

0ðkÞ�: ð14Þ

A delay time can similarly be associated with the reflected particles:

�rðx1,x2, kÞ ¼
1

vðkÞ
½�2x1:


0ðkÞ�, ð15Þ


 being the appropriate phase shift. If the tunnelling process distorts the packet,

following xp is not an entirely acceptable way of describing the tunnelling dynamics.

Furthermore, the phase times just defined are meaningful only when a� x1 and x2� b

are much larger than the spatial width of the packet. The wavepacket based approach is

beset with numerous difficulties. Büttiker and Landauer [34] emphasized that an

incoming peak or centroid does not get transformed into the transmitted peak or

centroid in any physically causative sense. The composition of the wavepacket affects

Tunnelling time and tunnelling dynamics 655

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
1
4
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



the computed delay time. The high energy components of the packet may have energies
above the barrier. In that event the concept of delay time being a measure of the
tunnelling time loses meaning. It has been argued that the barrier may act as an
accelerator speeding up the propagation [2, 4].

3.4. Barrier interaction time (traversal time) as a measure of tunnelling time

3.4.1. Bohm trajectory based interpretation. Let us suppose that we have somehow
determined a set of dynamic paths, x(t), found the time spent by each path under the
barrier and averaged over all such paths. The result is a traversal time which one may be
tempted to equate with the tunnelling time. As to the calculation of the paths, we may
use the Bohm approach [35], the Feynman path integral method [36] or the Wigner
function [37] based approach.

In the Bohm approach articulated by Leavens and Aers [35a], we take  ¼ ReiS=�h (R,
S real) and obtain S as a solution of the Hamilton–Jacobi equation for a potential V(x)
modified by a quantum potential

VQ ¼ �
�h2

2m
R�1

@2R

@x2

with R2 determined by the density variation of a set of quantum particles following the
paths with velocity

� ¼ m�1@S=@x: ð16Þ

The time spent under the barrier (between x¼ a, b) is defined by

�clab ¼

Z t

0

dt0�Bðxðt
0ÞÞ ð17Þ

where

�B ¼ 1, a < x < b

¼ 0, otherwise:

It has been argued that the velocity under the barrier evaluated as proposed has
contributions both from the transmitted and reflected stream, and there are suggestions
for extracting a velocity applicable to the transmitted beam only [35b]. The Bohm
trajectory velocity for an eigenstate of Ĥ is always directed in the direction of the
particle flux.

3.4.2. Path integral interpretation. If the right-hand side of equation (17) is averaged
with a weight exp½iSðxðtÞÞ=�h�, where S is the action associated with the path x(t), then
�ab can be expressed as a functional derivative of the logarithm of the Feynman
amplitude with respect to the potential

�ab ¼ i�h

Z t

0

dt0
Z
B

dx
@ lnhx1, t

0jx0, 0i

@V
: ð18Þ
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As a measure of the barrier traversal time, �ab suffers from the difficulty that it is

complex.
Sokolovsky and Conor [38] adapted the path integral approach to the wavepacket

analysis and proposed that the traversal time should be given by

�ab ¼ h�Ijt
cl
abj�Ti ð19Þ

where �I and �T are the initial and the final states, respectively. For a square potential

barrier Fertig [39] made use of the path decomposition of Auerbach and Kivelson [40]

and introduced a propagator G(x1, x0,E) that represents the amplitude of tunnelling

between two points on the opposite sides of the barrier (x0, x1), with energy E.

After summing over the Feynman trajectories that spend precisely an amount of time �
inside the barrier, the average traversal time is given by

h�i ¼

R1
0 G�ðE,x1, x0Þ� d�R1
0 d�G�ðE, x1, x0Þ

: ð20Þ

Once again h�i turns out to be complex. The complex barrier traversal time is not the

characteristic of the Feynman approach alone.
Pollak and Miller [41] and Pollak [42] showed that the collision time may be

interpreted as the time average of the flux–flux correlation function. This interpretation

leads quantum mechanically to a complex time of which the real part (�R) coincides
with the usual definition given by Smith [32a]. The imaginary part (�I) where

�I ¼ Im �
i�h

tE

@tE
@E

� �� �
ð21Þ

has been shown to be identical, in the semiclassical limit, to the imaginary

time associated with tunnelling (tE is the complex transmission coefficient). There are

others [43] who advocate that the barrier interaction is characterized by one real

and one imaginary time. The beauty of the mathematical schemes not withstanding, one

feels a certain amount of unease with two sets of tunnelling times. In a

proton tunnelling reaction, for example, how would the imaginary and the real parts

of the traversal time affect the overall rate? Would they have separately recognizable

signatures?

3.4.3. Wigner function based approach. For a stationary barrier traversal problem, the
Wigner function based approach seeks to determine a set of phase-space trajectories by

demanding that the Wigner function remains constant along these trajectories which

satisfy Hamiltons’s equation with a modified potential. These trajectories can be used to

compute a tunnelling time for stationary scattering [44]. The Wigner function, however,

fails to satisfy Liouville’s theorem globally [45].
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3.5. Modulated barrier interaction time as a measure of tunnelling time

Let us assume that tunnelling takes place across a barrier of height (V0) that has

superimposed on it an oscillatory component, let us say, of small amplitude (figure 3).

At very low frequency of oscillation, the particle incident on the barrier sees only a very

small part of the modulation cycle. In other words, it sees, so to say, the static barrier.

At low modulation frequency, therefore, the particle interacts with the barrier

effectively adiabatically. As the modulation frequency increases, eventually a critical

frequency is reached when the particle gets affected by a large part of the modulation

cycle or even by more than one such cycle. The adiabatic picture then breaks down. The

inverse of the critical frequency ð!�1c Þ, at which large deviation from adiabatic

behaviour starts appearing, indicates approximately the length of time (�c) during which
the particle has interacted with the barrier. �c can therefore be used as a measure of the

‘tunnelling time’. For an opaque rectangular barrier of static height V0, width d and

particle mass m, this approach yields [4, 34a], for frequencies that are not too high,

� ¼
ðdmÞ

�hk
ð22Þ

where �hk is the imaginary momentum under the barrier. If the WKB approximation is

valid, �WKB for the same problem would be

�WKB ¼

Z
barrier

dx
m

�hkðxÞ
: ð23Þ

�WKB has often been termed the bounce time in the literature. It is possible to encounter

a situation where there is a long region where free propagation is possible and a rather
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Figure 3. Fluctuating barrier of height V0.
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short region containing the barrier. If the WKB approximation holds it is possible to
show that [46]

� ¼ ð�2P þ �
2
BÞ

1
2 ð24Þ

where �P is the classical transit time in the region with V<E and �B is the barrier
traversal time given by �WKB of equation (23). Going back to equation (22), we note
that the oscillating barrier produces particles that have gained or lost one or more
modulation quanta, 	 nh!m, where !m is the modulation frequency. The adiabatic
behaviour breaks down when these new particles (components of the wavepacket) differ
in phase or amplitude, from transmission at the pre-absorption or pre-emission energy.
The � of equation (22) simply measures this energy dependence of the transmission
independent of the form of modulation (barrier height, location, width, etc.). It has
been shown that

� ¼ �h
@2tE=@E

2

@tE=@E

� �����
���� ð25Þ

where tE is the ratio of the wavefunction at the far end of the interval to that of incident
wave at the front. The modulated barrier approach of Bütikker and Landauer [4, 34]
has the important ingredient of clock-based approaches to the problem of defining or
estimating tunnelling time. The basic idea is to couple the tunnelling process to another
dynamical or time-dependent event which serves as the clock. It would be worthwhile
therefore to analyse the quantum clock-based approaches to tunnelling time.

3.6. Quantum clock-based estimate of tunnelling time

Let us refer to figure 4 in which a particle has a clock attached to it while it tunnels
through the barrier (V0) of width x2� x1¼�x. The particle is a quantum particle and
the clock is a quantum clock. If one registers the difference in the positions in the hand
of the clock as it impinges on the barrier (x¼ x1) and leaves it (x¼ x2) the difference

V0

0

E

T

a

Figure 4. Quantum clock.

Tunnelling time and tunnelling dynamics 659

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
1
4
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



may be taken to define the duration of tunnelling [47–50]. The point to note is that the

expectation of the difference in the positions of the hand of the clock is a quantum entity

that relates naturally to the time taken by the particle to travel through the distance

�x¼x2�x1. If the particle is a free one, the momentum eigenstate eikx describes it as it

moves to the right with the mass m and energy E (figure 4). The phase accumulated in

traversing the same distance �x in the potential free region (V¼ 0) is

	E ¼ k�x ¼ ð2mEÞ1=2�x, (�h¼ 1). If we consider the attached clock, the phase difference

is 	(Eþ ") where " is the energy shift due to the coupling between the clock and the

particle (tunnelling system). Assuming "
 E

	ðEþ "Þ ¼ 	ðEÞ þ "	0ðEÞ

¼ xþ "
1

2

�x

ð2mEÞ
1
2

2
4

3
5:2m

¼ k�xþ "
m�x

ð2mEÞ
1
2

¼ k�xþ "
�x

v
since

m

ð2mEÞ
1
2

¼
1

v

¼ k�xþ "�

ð26Þ

where � is the analogue of the ‘classical time’ taken in traversing the length �x, v being

the velocity of the particle during transit through the region x1! x2 [10].
Let us now consider the case where x1¼ 0, x2¼ a, and there is a square potential

barrier of constant height V>0 between 0< x< a. The phase shift is given by [10]

	ðEÞ ¼ arctan
ð�2 � 
2Þ

2�
 tanhð
aÞ

� �
ð27Þ

where �, 
 are phase factors of the wavefunctions in different regions of space as

detailed below:

x < 0;
0 < x < a;

x > a;

 ðxÞ ¼ ei�x þ A1e
�i�x

 ðxÞ ¼ a2e

x þ a3e

�
x

 ðxÞ ¼ Bei�x:
ð28Þ

	0(E) then leads to �, the tunnelling time (traversal time between 0< x< a) given by

� ¼
2m½�ð
2 � �2Þaþ ð
2 þ �2Þ=2�
�ðsinh 2�
Þ

ð�2 þ 
2Þ2 cosh2 
a� ð
2 � �2Þ2
: ð29Þ

The previously derived expression for � (free particle) is recovered from equation (29)

by setting V¼ 0, 
¼ i� and �¼ma/�¼ a/v. It has been demonstrated [10] that for

E¼V/2, �! 0 as a! 0. However, for small a, � is>0 demonstrating the fact that the

barrier has slowed the particle down (vunderbarrier< voutside).
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In the special case of a barrier described by a delta-function potential with a2V
remaining constant even as a! 0 and V!1, equation (29) predicts �¼ 0 in the
corresponding limiting situation. Even for an array of delta-function potentials, �¼ 0
has been predicted [12]. In the opposite limit a!1, �! 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðV� EÞ

p
so that the

effective under-barrier velocity vub ¼ a½EðV� EÞ�
1
2. vub can, in principle, increase

without limit, even exceeding the velocity of light (c) and thus unfolding the spectre of
violation of causality. However, as argued by Davies [10] we are here measuring only
the time difference and not the departure and arrival times of the particle from one side
of the barrier to the other. In the absence of the latter information, superluminal
signalling and the associated question of physically violating causality do not simply
arise, at least as long as we are dealing with energy eigenstates. For wavepackets, the
analysis has not yet been convincingly done by anyone. The stationary phase method
encounters certain difficulties here. Recently, Bernardini [51] has suggested that the
multiple peak decomposition technique [52] can be used within the framework of the
stationary phase method to obtain an estimate of the tunnelling time when wavepackets
are used. The standard tunnelling phase time or the scattering phase time allow the
possibility of a superluminal interpretation for the peak of the transmitted wave.

In this context it is worth recalling the superluminal phenomena, observed in
tunnelling experiments with photons and evanescent electromagnetic waves [54–57].
Olkhovsky et al. [57] suggested a simple way of understanding the problem in terms of a
reshaping of the pulse, with attenuation. The later parts of the incoming pulse are
preferentially attenuated in a way that makes the outgoing peak appear shifted toward
earlier times even though it is nothing but a part of the forward tail of the incident
pulse.

3.7. Tunnelling time via presence time formalism

A self-adjoint time operator is not defined in the standard formulation of quantum
mechanics. The existence of such an operator, it was argued by Pauli [58], would imply
an unbounded energy spectrum. Nevertheless, there has been various attempts to
construct time operators and develop formalisms for estimating arrival times within the
framework of quantum mechanics [58–60]. The average presence time for a spatial
wavepacket  (x, t), in terms of a time-operator based approach, at the position x, is
given by (assuming that the integrals involved exist)

tðxÞ
	 


¼

Rþ1
�1

 ðx, tÞ
�� ��2t dtR þ1

�1
 ðx, tÞ
�� ��2 dt : ð30Þ

The tunnelling time through a barrier can be easily estimated by computing the local
value of the operator defined above [61]. Such estimates agree well with those provided
by the ‘arrival time’ method of Leon et al. [61]. It has been shown that the numerically
computed tunnelling time of electronic wavepackets in nanostructures is sensitive to the
finite size of the incident wavepacket [62]. The presence time method, however, has been
shown to yield results that are equivalent to what has been obtained by the standard
methods for very long wavepackets [63], and that it enables us to calculate the
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tunnelling time for wavepackets of arbitrary shape and length. The tunnelling time for

such a packet is simply the average of the standard phase times over the energy

components.
In view of its performance, we would like to elaborate on the method of calculation

of tunnelling time via presence time formalism. The integrals in equation (30) can be

converted to integrals over energy easily, if only scattering states with positive momenta

are considered. Under such conditions, the energy wavepacket is related to the spatial

packet  (x, t) as

�ðx,EÞ ¼ ð2��hÞ�1=2
Z þ1
�1

 ðx, tÞeiEt=�h dt: ð31Þ

The average presence time is then given by

tðxÞ
	 


¼
1

N

Z 1
0

��ðx,EÞ �i=�h
@

@E

� �
�ðx,EÞdE ð32Þ

where the normalization factor N is defined as follows

N ¼

Z 1
0

�ðx,EÞ
�� ��2 dE: ð33Þ

If �ðx,EÞ is assumed to be a continuous, differentiable and square integrable function

of energy, and �ðx, 0Þ ¼ 0, then �i�hð@=@EÞ ¼ T̂ is a hermitian operator and our interest

is to compute TðxÞ
	 


. Now, the energy wavepacket may be assumed to be peaked at x0,

at t¼ 0 with a spatial width �x and moving to the right in free space. Then

�ðx,EÞ ¼ gðEÞeikðx�x0Þ ð34Þ

g(E) being the normalized weight function peaked at E¼E0, with an energy width �E,

and wavenumber kðEÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2mE
p

=�h. If we now go back to equation (32) with �ðx,EÞ of
equation (34) we have [63],

T̂
D E
¼

1

N

Z 1
0

g2ðEÞ½�clðx,EÞ � i�gðEÞ�dE ð35Þ

where �cl(x, E) is the classical time that a particle with velocity
ffiffiffiffiffiffiffiffiffiffi
2mE
p

=m takes to travel

through the distance (x� x0), i.e.

�clðx,EÞ ¼ mðx� x0Þ=
ffiffiffiffiffiffiffiffiffiffi
2mE
p

ð36Þ

while �g(E) is the partial energy derivative of the weight function g(E), i.e.

�gðx,EÞ ¼ �h
@ ln gðEÞ

@E
: ð37Þ
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Turning our attention to propagation of the spatial wavepacket in space with a
rectangular barrier of width a and height V0, placed between x¼ 0 and x2, the
tunnelling time � would just be the difference between the expectation values of T(x) at
x¼ a with and without the barrier being present (specific and correct choice of phases
are assumed). It is straightforward now to show that the tunnelling time for a general
wavepacket of finite width is just the Buttiker time (longitudinal characteristic time) �x
averaged over the energy weighted by the probability density in the energy
representation at x�L. Similar results have been obtained by others in the momentum
representation.

3.8. Tunnelling time, Hartman effect and superluminality

We have already encountered how a simple minded estimate of tunnelling time through
the time–energy uncertainty relation leads to a paradoxical situation admitting to the
possibility of superluminal propagation. In fact, a large part of the confusion and
controversy concerning the very idea of tunnelling time centres round the Hartman
effect [65] or the Hartman–Fletcher effect [66]. Hartman started by writing down the
solution of the time-dependent Schrödinger equation of the tunnelling system as an
integral over the energy of stationary states weighted by a Gaussian momentum
distribution function. The integral over energy extends from 0!1. The regime E>V0

(barrier height) accounts for the non-tunnelling contributions while the region E<V0

represents tunnelling components. Hartman showed [65] that for thin barriers, the
transmitted packet has essentially the same form as the incident packet and its delay is
greater than the time taken by the packet to traverse a distance equal to the barrier
width. As the barrier thickness increases the peak of the transmitted packet shifts to
slightly higher energy and the delay time becomes independent of the thickness and
shorter than the ‘free space delay’ for equal length. For very thick barriers the under-
barrier components are suppressed so that the propagating above-barrier components
begin to dominate resulting in an increase of delay time. It can be shown that for
E¼V0/2, the group delay is �g¼ 2 tanh(�L)/�v. In the limit �L!1, the limiting group
delay �g1 for all E is given by �g1¼ 2/�v which is independent of the barrier width, L. If
the group delay is accepted as the transit time across the length L, the particle is implied
to travel with a group velocity (vg)

vg ¼
L

�g
:

Since �g saturates as L increases, vg increases with length, L. Since L can increase
without limit, vg can grow to exceed the speed of light in vacuum. The Hartman effect is
also displayed by the dwell time (�d), that is as �L!1

�d! �d1 ¼
2

�v

E

V0

� �
:

Recently, the Hartman effect has been reanalysed [8, 67]. It has been claimed that the
group delay in tunnelling is not a transit time at all. In reality, it represents a ‘lifetime’
and must not be used to assign a speed of barrier traversal. In that case, the question of
superluminality in tunnelling becomes irrelevant. The reanalysis asserts that the origin
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of the Hartman effect lies in the presence of stored energy within the barrier. The group
delay (�g) is proportional to the stored energy and it saturates as the stored energy
saturates. The delay, under quasi-static conditions, is just the lifetime of stored energy
leaking out at both ends of the barrier [67].

3.9. A simple route to tunnelling time

Let us consider a particle of mass m moving in a systematic double well potential as the
tunnelling system. The equation of motion is

i�h
@ ðx, tÞ

@t
¼ �

�h2

2m

@2

@x2
þ vðxÞ

� �
 ðx, tÞ

¼ H0 ðx, tÞ:

ð38Þ

Let us consider an initial state  ðx, 0Þ ¼ �ðxÞ localized entirely in one of the two
equivalent wells (say the left well, L). The stationary states of H0 satisfy the eigenvalue
equation

H0nðxÞ ¼ EnnðxÞ, 0, 1, 2, . . . ð39Þ

n can be exploited as an orthogonal basis and  (x, t) expanded in terms of n:

 ðx, tÞ ¼
X1
n¼0

CnðtÞnðxÞe
�iEnt=�h ð40Þ

where cn ¼ hn  ðx, tÞ
�� i.  (x, t) of equation (40) may be used in equation (38) leading to

the evolution equation for the superposition amplitudes cn(t), which can be solved.
Once cn(t) are known, we can compute any quantity of interest at any time. Let us
suppose that equation (38) has been solved and we have at our disposal the
instantaneous quantum averages hxi and hpxi. Let the idealized width of the barrier
separating the two equivalent wells be l0 (figure 5). We may now define an average
barrier interaction time (�av) as

�av ¼
l0

d
dt xðtÞ
	 
 ’ l0

vðtÞ
	 


¼
ml0

pxðtÞ
	 


ð41Þ

where xðtÞ
	 


, pxðtÞ
	 


denote the time-averaged velocity and momentum of the tunnelling
particle.
�av is manifestly real. The question that naturally arises at this point concerns the

contribution of the intrinsic decay time �d of the initially localized state (wavepacket) to
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the computed barrier interaction time �av. We assume that �av can be resolved into
a sum of �d and �b, where �b is the barrier-traversal time and �d is the intrinsic decay
time [68]:

�av ¼ �d þ �b: ð42Þ

An independent estimate of �b is provided by the energy spread �E of the
wavepacket where �E ¼ fhH2i � hHi2g1=2 which immediately defines the decay time �d
for the packet as

�d ¼
�h

�E
: ð43Þ

Since H is the hamiltonian of the tunnelling system, the barrier parameters enter into
the calculation of �d through the hamiltonian H. The computation of �av, on the other
hand, requires one to follow the instantaneous average position hxðtÞi or momentum
hpxi of the particle throughout the course of evolution including the passage through
the barrier. The barrier acts like an experimental device observing the packet and causes
a delay (�b). We propose that this delay �b¼ �av� �d is the barrier crossing time. We

have shown previously that �b closely follows the WKB estimates of the barrier crossing
time [68]. Depending upon the energy of the particle, the WKB method, however, may
sense a width of the barrier (separation between two classical turning points at energy
E) that is very different from the idealized width l0 that we propose to use (l0 is fixed by
the geometry). The difference may manifest itself in �WKB< �b. Thus, for the Eckart
potential V(x)¼V0/cosh

2(ax) with V0¼ 0.03 a.u., a¼ 2.54 a.u., if we consider the

evolution of a wavepacket initially localized at x¼�3.773 a.u. with energy equal to
0.00015 a.u. moving under the action of the Hamiltonian � (�h2/2m)(@2/@x2)þ v(x)
(figure 6). The tunnelling trajectory, hxi, is shown in figure 7. The average tunneling

l0

0.004

0.002

0.000

0.0

Coordinate (in a.u.)

0.5 1.0−0.5−1.0

E
ne
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y 
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.)

−0.002

−0.004
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Figure 5. Symmetric double well.
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velocity hvi turns out to be 0.266� 10�3 a.u. The idealized barrier width (l0) is 4.20 a.u.

in our model and that leads to �av¼ 1.69� 104 a.u. of time. If we subtract the intrinsic

decay time �d of the packet which is 1.171� 104 a.u. we are left with a barrier traversal

time �b¼ 0.5190� 104 a.u. of time. For the same case, a WKB estimate of �WKB
b is

0.3989� 104 a.u. of time. A part of the difference between our estimate of �b and �
WKB
b

certainly comes from the difference in barrier width sensed by the WKB compared to

the value of l0 used by us [68]. The same scheme may be applied to tunnelling in a

double-well potential.
In figure 8, a symmetrical double well based tunnelling system with a barrier

height of V0 and width of 2a is displayed. The ground tunnelling doublet ð 	0 Þ can
be described as superpositions of the states  L and  R localized in the left and

0.4

0.2

0.0

0 500 1000 1500

Time (in a.u.)

<
x(

t)
>

2000 2500

−0.2

−0.4

Figure 7. The tunnelling trajectory.

X0 l0

Figure 6. Eckart potential.
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right wells, respectively,  	0 ¼ ð1=
ffiffiffi
2
p
Þð L þ  RÞ, with energy E	0 . The tunnelling

splitting is �E	0 ¼ ðE
�
0 � Eþ0 Þ. The tunnelling rate is proportional to ð�E	0 Þ

2 and the
tunnelling time � / �E	0 Þ

�2.
The tunnelling trajectory, for an initially localized state with energy � 0.00166 a.u. is

depicted in figure 9 and the volume of the phase space accessed by the tunnelling
‘particle’ is shown in figure 10. The semiclassical estimate of the barrier crossing time
(�SC) and �b of our model are compared in table 1.

In general, �b increases with a decrease in tunnelling splitting in a symmetrical
double-well potential as expected. Recently, Maji and Bhattacharyya [69] investigated

0.4
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0.0

0 500 1000 1500
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<
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t)
>

2000 2500

−0.2

−0.4

Figure 9. The tunnelling trajectory.

a

V0

L R

x

E

−a
0

Figure 8. The symmetric double-well potential.
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the behaviour of �av in symmetric triple-well systems. It has been demonstrated that in a
perturbation produced by coupling a triple-well tunnelling system to a harmonic mode,
�av generally decreases as the coupling strength increases. In the weak coupling regime,
however, a tunnelling delay may appear (�av increases). A periodically varying well-
depth was shown [68] to lead to an enhancement of the tunnelling duration (�av) in triple
wells and create a ‘resonance-like’ suppression of tunnelling at a critical frequency (!c)
of oscillation.

Mondal et al. [68] investigated how �av responds to change in ! of a generalized
time-dependent double well potential V(x, t)¼ bx4� a(1þ �a sin !t)x2þ �bx. It was
shown that �av passes through a well-defined minimum at !¼!c. It appears that !c

demarcates the high and low frequency regimes in much the same way as !¼ �h�/md
in the Landauer–Buttiker theory. It would be interesting to probe if �0av ¼ !

�1
c of

Mondal et al. [68] is related in some way to the Landauer–Buttiker tunnelling time.
There are many other questions concerning �av, �b and �d that need further careful
exploration although �av or �b do not appear to lead to any obvious contradiction.
It appears to be more like the (group) delay time or the semiclassical bounce time,
rather than the ‘lifetime’ of the stored energy leaking out from the barrier at both
ends (67).
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>
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−0.2

−0.4

<px(t)>

Figure 10. The quantum phase space in symmetric double-well potential.

Table 1. Energy dependence of �av, �b and �SC in SDWP.

Energy of the
tunnelling state
(in a.u.)

Velocity hvi
(in a.u.)

Tunnelling time �av
(in a.u.)

�d Energy
variance
(in a.u.)

Barrier crossing
time �b¼

�av� �d (in a.u.)

Barrier crossing
time �SC (a.u.)

calculated by the
WKB method

�0.0016634 3.88546� 10�4 2364.1 248.97 2115.2 2074.1
�0.00083919 3.95659� 10�4 2321.1 324.19 1996.9 1972.0
�0.00076848 4.28395� 10�4 2143.7 373.22 1770.5 1925.0
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4. Postscript

The various prescriptions for computing tunnelling time and various interpretations of
tunnelling delay continue to present a confused picture. Tunnelling of a quantum
particle is an attribute of its wave nature. Just like matter waves, electromagnetic waves
or acoustic waves too, display the phenomenon of ‘classical tunnelling’ and experiments
on ‘tunnelling time’ available in the literature have been mostly on tunnelling of an
electromagnetic wave as it encounters an electromagnetic barrier. The present review
has been restricted to matter waves that follow the Schrödinger equation. Whether the
very concept of ‘tunnelling time’ is an experimentally testable construct for massive-
particle tunnelling can only be decided by experiments. It is in this context that proton,
or hydrogen atom transfer reactions could be important. If the relaxation dynamics of
the subsystem from which the hydrogen atom or the proton moves out can be followed
during the time of its barrier traversal, a signature of tunnelling time can identified. The
tunnelling of an electron from a metal through an insulator similarly raises the
possibility of following the dynamics of the image charge on the metal surface spreading
out after the electron leaves the metal surface into the insulator by tunnelling. These
experiments are hard to perform and even harder to analyse. The resolution of all
controversies and debates concerning ‘tunnelling time’ for particles (non-zero rest mass)
depends on the outcome of such experiments. Till then, newer ideas would continue to
be proposed, older ideas continue to be sharpened.
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