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Abstract. A genetic algorithm-based recipe involving minimization of the Rayleigh quotient is propo-
sed for the sequential extraction of eigenvalues and eigenvectors of a real symmetric matrix with and 
without basis optimization. Important features of the method are analysed, and possible directions of de-
velopment suggested. 
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1. Introduction 

Solution of the time-independent Schrödinger equa-
tion H ^ψn = Enψn, in principle, provides us with 
complete knowledge of the system. Exact solution 
of the equation is feasible only for a handful of pro-
blems, while for most of the systems one is com-
pelled to introduce a basis, preferably an orthonormal 
basis {φ} in terms of which the stationary state ψ is 
expanded, viz. ψ = ∑iciφi. A variational ansatz then 
leads to a matrix eigenvalue problem, 

 HC = EC, ψ = φC, 

H being a real symmetric matrix constructed in the 
basis {φ}. Diagonalization of H leads to the eigen-
values En and the corresponding eigenvectors Cn. 
Many numerical methods are available1–5 for diago-
nalization of H, all of them being deterministic 
methods. It is not always relevant to find all the  
eigenvalues and eigenvectors – only a few eigenval-
ues and vectors including the lowest one may often 
be the target. Can we develop a direct search method 
for extracting the few eigenvalues and eigenvectors 
of interest from the total search space? It is indeed 
possible to do so by reducing the eigenvalue pro-
blem to an extremization problem. Even then, no de-

terministic search seems feasible as the best-known 
ones require computation of gradient and/or Hessian 
of the function being minimized or maximized during 
the search.6 Non-deterministic or stochastic search 
methods may be good candidates if one can construct 
a suitable function whose maximization or minimi-
zation would be equivalent to finding the desired  
eigenvalue and would thus be the target of the 
search. We must mention here that such a direct sto-
chastic search-based scheme of diagonalization 
would not generally be competitive with the tradi-
tional deterministic diagonalization techniques when 
a fixed basis set is used. Stochastic diagonalization 
could be the method of choice when combined with 
simultaneous basis optimization, for diagonalization 
along with basis optimization is a complex nonlin-
ear problem and it is for such nonlinear problems, 
that stochastic diagonalization schemes could out-
perform traditional techniques. 
 In quantum chemistry, one often makes use of the 
linear variation method which leads to a real sym-
metric matrix eigenvalue problem. In a traditional 
CI method the basis set is fixed. 
 The search space in the problem of diagonali-
zation in a fixed basis {φ} consists of linear expan-
sion parameters {ci} only. To cut down the length of 
the expansion, it may also be necessary to search for 
the optimal nonlinear parameters in basis functions 
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for expansion while diagonalizing H. This immedi-
ately brings us to the problem of a complex simulta-
neous search for optimal linear and nonlinear para-
meters in the search space to determine the optimal 
expansion parameters for {ψn} that make H diago-
nal. In what follows, we explore the possibility of 
developing a genetic algorithm7,8 driven method for 
extracting a few eigenvalues of a real symmetric 
Hamiltonian matrix with a simultaneous search for 
an optimal basis set of expansion. Earlier, we repor-
ted9 a modified Jacobi–GA route to eigenvalues and 
vectors. In the present communication, we explore a 
method based on the minimization of Rayleigh quo-
tient which is easier to implement. 

2. The method 

Genetic algorithms7,8 simulate evolution of a popu-
lation of probable solutions on a fitness landscape 
under the action of a set of genetic operators like  
selection (mimicking natural selection), crossover 
(mimicking chromosomal crossover in genetics) and 
mutation (mimicking sudden changes in one or more 
genes). The genetic operators act on individual 
members of the evolving population, each member 
being represented in the form of a linear string, an 
integer string or a string of floating point numbers. 
In our problem, each member of the population 
would represent a distribution of probability ampli-
tudes of the evolving wavefunction solution strings 
projected on members of the particular basis set of 
expansion. Let ψi be the ith member of the evolving 
population when 
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The string Si corresponding to ψi is given by 

 Si ≡ (c0i, c1i, c2i … cpi … cmi), (2) 

while for another member ψk of the population, we 
have the string Sk where 

 Sk ≡ (c0k, c1k, c2k … cpk … cmk). (3) 

Each one of the strings (Si) is characterized by a 
unique value of fitness ( fi) which is assigned in the 
following way. The Rayleigh quotient ρi for the ith 
wavefunction string (Si ≡ ψi), we note, is defined as 
follows2 
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If Ci happens to be the ground eigenvector of H (i.e. 
ψi is the ground eigenvector of H ^ ),4,5 
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Condition (5) would not generally be satisfied by 
any wavefunction string in the initial population, 
except by accident. We may exploit this fact to gen-
erate a fitness landscape f by taking, 
 
 exp( ( ) ).i

i if ρλ ρ ∇= − ∇  (6) 

 
Clearly, fi → 1, as ∇ρi → 0, signalling that the evo-
lution has hit the true ground state eigenvector of H 
in the vector Ci. The factor λ in (6) is chosen to en-
sure that there is no exponential over flow or under 
flow. There are many other ways of constructing the 
fitness landscape. One needs experimentation to as-
certain the best form of f. In our case, the present 
form has been found to be adequate. The corres-
ponding eigenvalue E0 is simply the value of the 
Rayleigh quotient for Ci: 

 0 0†
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The evolution on the fitness landscape, would not 
however take place automatically. It is to be brought 
about by the action of a well-defined set of genetic 
operators. The first among these operators to act 
upon the initial population is the selection operator. 
A roulette wheel with slot widths proportional to fit-
ness values is spun n times, n being the number of 
strings in the population. The string Si is selected if 
the pointer points to the ith slot. It is expected that 
the selection operator allows us to copy a larger 
number of strings with higher fitness onto the mat-
ing pool, since higher fitness means wider slots on 
the wheel. Once the mating pool with n strings is 
created by the selection process, the crossover ope-
ration is allowed to take place with a preset probabi-
lity pc. Suppose, a pair of strings (Sk, Sl) have been 
randomly chosen to undergo crossover at the pth site 
with a probability pc. The crossover creates a pair of 
new strings (Sk′, Sl′) where,  
 
 Sk′ ≡ (c1k, c2k, … cpk′ cp+1,k … cnk), 
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 Sl′ ≡ (c1l, c2l, … cpl′ cp+1,l … cnl), (8) 

and 

 cpk′  = fcpk + (1 – f )cpl, 
 
 cpl′  = (1 – f )cpk + fcpl, (9) 
 
with f (0 < f < 1) being drawn from a set of randomly 
distributed values. f thus plays the role of a mixing 
parameter, that creates new information. The cross-
over operator is allowed to act on a certain fraction 
of the strings (70–75%), the remaining ones being 
allowed to remain unchanged. Once the crossover 
operation is complete, the strings are made to un-
dergo a low intensity and low probability event called 
mutation. In our case, we define the mutation opera-
tion in the following way. Let the qth site on the kth 
string be chosen to undergo mutation with probabi-
lity pm. The amplitude to suffer mutation is then cqk′  
which is randomly mutated to cqk″ , where 
 
 cqk″  = cqk′  + (– 1)Lr.∆, (10) 
 
L being a random integer, r a random number (0 ≤ 
r ≤ 1) and ∆ the intensity of mutation (10–2–10–3). 
Every string in the post-crossover operation is allo-
wed to mutate with a probability pm. The conclusion 
of one sequence of selection-crossover-mutation op-
erations signals that one generation has elapsed. We 
enforce now the most strongly elitist criterion of se-
lecting n-strings out of a population of n-parents and 
n-offspring. Accordingly, the best n among the set 
of n parent strings and n offspring strings are chosen 
for the selection operation and the entire sequence 
of operation is repeated, till the average fitness of 
the population has converged. The wavefunction 
string with the highest fitness at this stage is likely 
to be the ground eigenvector of the problem. Let us 
note that one of the consequences of the strongly 
elitist strategy is that the highest fitness value avail-
able in the population at any stage continuously 
rises up to a maximum of 1 – it never oscillates. It 
may, however, force premature convergence in 
some cases. The scheme outlined concerns only the 
ground eigenvalue. For extracting excited eigenval-
ues the scheme has to be modified. Let us note that 
the Rayleigh quotient has a minimum at the ground 
vector (co) corresponding to the lowest eigenvalue 
and a saddle point for every other eigenvector. Ex-
traction of excited eigenvalues and associated eigen-
vectors therefore requires a saddle-point search which 

is much more difficult. Instead, we may still use the 
search for a minimum of {(∇ρi)

†∇ρi} but use a pro-
jected Hamiltonian Hp for extracting the higher  
eigenvalues. 
 Let |ψ0〉 be the ground eigenvector of the problem 
and P0 = |ψ0〉〈ψ0| be the corresponding projector. Let 
the eigenvalues of H satisfy the following inequali-
ties (Ei ≤ 0, i = 0, 1, …) and 
 
 E0 < E1 < E2 … Ek–1 < Ek < … < En. 
 
The projected Hamiltonian Hp, where 
 
 Hp = (1 – P0)

†H(1 – P0), 
 
has clearly the following eigenvalue structure: 
E1 < E2 … En < E0, as H ^

p|ψ0〉 = 0. The lowest eigen-
value of Hp is clearly E1 and the procedure outlined 
above for extracting the lowest eigenvalue of H can 
be applied to extract E1 and |ψ1〉, by working with 
Hp in place of H. The procedure can be applied se-
quentially, to extract |ψ2〉, |ψ3〉.... etc. For the 
(k + 1)th eigenstate, Hp would be then given by 
 
 Hp = (1 – P)†H0(1 – P), (11) 

where 
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If all the eigenvalues of H are positive (Ei > 0), a 
simple recipe that works would be to replace H by 
Hs

k, where 
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Hs obviously has all but the first k eigenvalues 
shifted by –λ so that the eigenvalue structure of Hs 
is (with properly chosen –λ), 

 Ek+1 < Ek+2 … En < E0 < E1
…

 . 

We may also optimize the basis set used simultane-
ously by merely extending the definition of the 
strings so as to allow each string to carry informa-
tion concerning basis parameters as well as the linear 
expansions coefficients. The generalized solution 
string now would have the following structure, 
 
 Sk = (c0k, c1k, … cmk | αk, βk, γk …), 
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where the vertical bar separates the linear parameters 
ciks from the nonlinear ones. The rest of the proce-
dure remains unaltered. In what follows, we give re-
sults that indicate the workability of the GA-based 
method both with and without basis optimization. 

3. Results and discussion 

We present here two sets (A and B) of results and 
applications of the GA-driven diagonalization based 
on minimization of Rayleigh quotient. The first set 
makes use of a fixed basis while the second set refers 
to diagonalization with simultaneous optimization of 
the basis set. The applications are not spectacular – 
they only demonstrate workability of the method 
proposed and its advantages when coupled with the 
basis optimization problem. 

3.1 (Set A) Ground and excited eigenvalues and 
vectors of a Harmonic oscillator – diagonalization 
in a fixed basis 

We have used the Fourier Grid Hamiltonian method 
(FGH) for constructing the H-matrix in a coordinate 
representation, using 101 grid points over a grid 
length of 21 a.u. The population contains 20 indivi-
dual strings (n = 20), and a crossover probability 
pc = 0⋅75 and mutation probability pm = 0⋅5 are used 
uniformly for all generations. The initial population 
was created randomly from a set of nodeless ampli-

tude distributions and the best string in the initial 
population had a fitness f j 0⋅1. 
 Figure 1a shows the profile of evolution of the fit-
ness of the best string during a typical GA run. One 
can see the steep rise in the fitness value from 0⋅1 to 
0⋅98 in the first 5000 generations. Figure 1b shows 
how the energy eigenvalue corresponding to the same 
string evolved during the generations. The rapid rise 
in fitness and fall in energy during the first 5000 
generations and the subsequent slowdown of the 
rate of improvement is typical of a GA-run. The ini-
tial phase is dominated by crossover when gross 
changes take place in the strings. The evolution is 
mutation-dominated in the final stages. 
 After obtaining the ground eigenvector, |ψ0〉 and 
hence p0, we construct the shifted Hamiltonian of 
(12) with a shift λ = 3⋅0 a.u. of energy. 
 
 Hs = H – 3⋅0 (1 – |ψ0〉〈ψ0|) 

   = H – 3⋅0 (1 – P ^
0). 

 
The initial population is made up of wavefunction 
strings with one node, each being made orthogonal 
to that already computed |ψ0〉 by Schmidt orthogo-
nalization. The evolution profiles for the fitness and 
energy are displayed in figures 2a and b respectively. 
A comparison with corresponding profiles for the 
ground state reveals that the search is relatively 
slow – presumably because of the need to satisfy 
two mutually competing constraints – the need to 

 
 

  

Figure 1. (a) Fitness evolution of the best string during the calculation of the lowest eigenvalue of a Harmonic Oscil-
lator in an 101 point Fourier Grid Hamiltonian based calculation. (b) Evolution of the lowest eigenvalue of the same 
Harmonic Oscillator as in 1(a). 
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Figure 2. (a) Fitness evolution of the best string while calculating the first excited state of a Harmonic oscillator during 
a GA–RQ run. (b) Evolution of energy for the excited state (shifted by –3⋅0 a.u.) of the same Harmonic oscillator. 
 

 
minimize energy as well as the cost of computation. 
We note here that the lowest energy reached with Hs 
is –1⋅5 a.u. (figure 2b). In fact, this is the shifted 
value E1′ = (E1 – λ) of E1 where λ = 3. If the shift 
value is subtracted from E1′, we get the true first ex-
cited eigenvalue. The fitness evolution profiles sug-
gest that the present method would ultimately turn 
out to be slower compared to the methods of David-
son5 or Lanczos,4 although the initial rise of fitness 
is remarkable. The growth of fitness slows down 
towards the end when fine-tuning of the eigenvector 
takes place. We note, however, that even if it is 10 
times slower, straightforward parallelization of the 
string evaluation step would easily make up for this 
slowness. One can further cut down the cost of com-
putation by stopping the GA-based search as soon as 
the fitness value has increased to 0⋅8–0⋅9 and use an 
inverse iteration procedure2 that can shorten the pla-
teau region of the fitness evolution profile drasti-
cally. Both the option are now being evaluated. 

3.2 (Set B) Ground state of H– by diagonalization 
along with basis optimization  

The trial wavefunction strings ψk(r1, r2) for the 
ground state H(–) has been chosen in the following 
form: 
 

 
1 2
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is (1,2)
spinφ  singlet (s = 0) spin eigenfunction for the two 

electrons. We have used only six distinct ni values 
(ni = 0, 2, 4, 6, 8, 10). Each string now consists of M 
amplitudes c ij

(k) and m nonlinear parameters (αni), all 
of them being allowed to evolve simultaneously. 
χ(αn)s are actual eigenfunctions of the appropriate 
3-D oscillator. We have used li = lj = 0 for this cal-
culation. The limiting energy is thus expected to be 
the s-limit energy. 
 Figures 3a and b exhibit the profiles of fitness and 
the corresponding energy eigenvalue of the best 
evolving string in the population representing the 
ground state of the H(–) ion. Diagonalization with 
simultaneous basis optimization proceeds smoothly – 
the initial improvement being rather steep. The fine 
adjustment takes place in the at regions of the pro-
files. Since the nonlinear parameters of the basis 
functions undergo evolution due to crossover and 
mutation, the Hamiltonian matrix needs to be recal-
culated whenever the αni’s undergo changes. The 
advantage here is that we need not completely di-
agonalize the corresponding H whenever it is recon-
structed. The search treats all the parameters on an 
equal footing and the genetic algorithm uses the in-
formation present in the search space to drive the 
evolution to the desired goal. 
 It appears that extracting a few eigenvalue of a 
real symmetric Hamiltonian matrix of moderate 
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Figure 3. (a) Fitness evolution of the best string during the calculation of the lowest eigenvalue of a Morse oscillator 
(101 point FGH calculation). (b) Evolution of the lowest eigenvalue of the same Morse oscillator. 
 
 

  

Figure 4. (a) Fitness profile for the H(–) – ground state where diagonalization is carried out with simultaneous opti-
mization of basis parameters (3D-harmonic oscillator basis is used). (b) Evolution of the energy for the same H(–) prob-
lem during the GA–RQ run. 
 
sizes by a GA-based minimization of Rayleigh quo-
tient is feasible along with simultaneous basis opti-
mization. To become competitive with the standard 
recipes now available, the proposed algorithm needs 
to be parallelized as completely as possible and 
coupled to an inverse iteration procedure. For the 
‘few eigenvalues’ problem, one can effectively make 
use of the partitioning10–12 method according to 
which the desired ‘a’ eigenvalues can be found from 
the partitioned equation, 

 {Haa + Hab(E.1b – Hbb)
–1Hba}|ψa〉 = E|ψa〉, 

 Heff (E) |ψa〉 = E|ψa〉, 

where 
 
 |ψ〉 = (|ψa〉|ψb〉), 
 
 〈ψa|H|ψa〉 = Haa, 〈ψa|H|ψb〉 = Hab, 
 
 〈ψb|H|ψa〉 = Hba, 〈ψb|H|ψb〉 = Hbb. 
 
Since Heff(E) acts on the a-dimensional subspace 
(a Ú a + b), it can reduce the computational labour. 
However, Heff(E) depends on the unknown E, making 
it a nonlinear problem. The genetic algorithm can 
handle such nonlinear optimization problem rather 
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well and our experience so far confirms the expecta-
tion. 

4. Conclusion 

GA-based minimization of the Rayleigh quotient 
leads to a workable algorithm for extracting a few 
eigenvalues and vectors of a real symmetric matrix. 
The method is specially useful when a simultaneous 
search for optimal basis is carried out. For realizing 
the full power of the algorithm, the string evaluation 
step needs to be parallelized. It appears that the par-
titioning method together with parallelization could 
make the GA-based search for a few eigenvalues a 
viable alternative to the presently available methods. 
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