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Abstract

We discuss various aspects of the randomly interacting directed polymers with

emphasis on the phases and phase transition. We also discuss the behaviour

of overlaps of directed paths in a random medium.
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I. INTRODUCTION

Polymers with randomness can be classified into two categories: (1) random medium,
and (2) random interaction, analogous to the random field and random bond problems for
magnets. These random problems remain notoriously difficult [1]. Attention has therefore
gradually shifted to simpler models, and for the past ten years directed polymers played a
crucial role in unraveling various issues concerning disordered systems. This model is also
important because of its rich behavior, and connection with nonequilibrium surface growth
problem with noise, flux line pinning in dirty samples etc [2]. We like to give an overview
of the problem of randomly interacting directed polymers.

The pure problem is discussed in the second section. The randomly interacting model
and its field theoretic study can be found in section III. An exact real space renormalization
group approach to study the finite size effect is given in section IV. The question of overlap
of two paths in a random medium that can be recast as a problem of interacting directed
polymers in a random medium is explored in section V. A summary is given in section VI.

II. PURE PROBLEM: BINDING-UNBINDING

Directed polymers (DP) are lines or polymers with a preferred direction. For m such
DPs a general Hamiltonian with many body interaction can be written as:

Hm =
1

2

m
∑

i=1

N
∫

0

dz ṙ2
i +

N
∫

0

dz vm
m−1
∏

i=1

δd(rii+1(z)) +
m

∑

i=1

N
∫

0

dz V (ri, z), (1)

where ṙi = ∂ri/∂z, and rij(z) = ri(z) − rj(z), ri(z) being the d dimensional transverse
coordinate of a point at z on the contour of the ith chain [3–6]. The first term is the
elastic energy, taking care of the connectivity of the chains. The polymers interact with a
coupling constant vm if all the m chains meet at a point. There can also be an external
potential V (r, z) which in the random potential problem is a stochastic variable. For most
of this paper we will consider only m = 2 and m = 3 cases. The external random potential
problem will be considered in the last section.

With V = 0, the polymers undergo a binding unbinding transition as the strength of
the potential is varied. For the two body (m = 2) problem, the transition takes place at
v2 = 0 for d < 2, while a minimum strength of attraction is needed for binding at d > 2.
This is reflected in the renormalization group (RG) approach through the unstable fixed
point for the β function for the coupling constant. This β function tells us the flow of the
coupling as the system is probed at a bigger length scale. It is now well known that the field
theoretic RG can be implemented exactly for this class of many body problems. Introducing
a dimensionless coupling constant u2 = v2L

2−d, the exact β function is given by

β(u) ≡ L
∂u

∂L
= 2ǫ′u

(

1 −
u

4πǫ′

)

, (2)

where u is the renormalized dimensionless coupling constant [3]. Note that 2ǫ′ = (2 − d).
The flow diagram for the dimensionless coupling constant u is shown in Fig.1a. The fact

that for d < 2 any small attractive interaction is able to form a bound state is reflected by
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the flow to the nonperturbative regime for any negative u. The repulsive or the positive
u region is dominated by the stable, “fermionic” fixed point u∗(= 4πǫ′). For d > 2 there
exists a nontrivial unstable fixed point u = u∗ which separates the bound and the unbound
states for the two polymers. In short, the unstable fixed point represents the critical point
for the binding-unbinding transition. The correlation length, ξ‖ for the transition describes
the average separation of two contacts along the chain, and it diverges as the critical point
is approached with an exponent ν = 1/| ǫ′ | for 1 ≤ d < 4, except for d = 2, where the
correlation length diverges exponentially as exp(1/v2). Other approaches seem to suggest
that d = 4 is the upper critical dimension for this problem [7,8], however RG is yet to give
us that result. We would like to point out that the exact β function of Ed. 2 is obtained by
absorbing the poles at d = 2 in a dimensional regularization scheme. This, of course, leaves
the poles at d = 4 untreated. Is it the signal for an upper critical dimension at d = 4?

The stable fixed point describes, in this problem, the unbound phase. A way of charac-
terizing the phase is to look at the asymptotic behaviour of the reunion partition function,
ZR(N). This partition function describes the situation where the chains are tied together
at both the ends, and the end points can be anywhere in space. The asymptotic behaviour
of ZR(N) ∼ N−Ψ was studied long ago for d = 1 in a different context [9,10]. It is known
that Ψ = 3/2 for two chains in 1 dimension with repulsive two body interaction. It fol-
lows from an exact random walk analysis or from a use of fermionic nature of the quantum
particles. These methods are restricted to one dimension only. RG is the appropriate frame-
work to obtain the asymptotic behaviour for other d, and the exponent follows form the
multiplicative renormalization constant for the partition function. In this framework, the
Huse-Fisher 1 dimensional exponent can be recovered as an O(ǫ′) result which is, in fact,
exact [11,12]. Furthermore, this RG analysis also shows that because of the marginality
of the coupling at d = 2, there is a special log correction to the Gaussian behaviour, and
ZR(N) ∼ N−1(log N)−2. More general results can be found in Ref. [12]. This log correction
in two dimensions has recently been recovered by Guttmann and Essam in an exact lattice
calculation [13].

If we now go to the three body interaction, then again a similar exact analysis can
be carried out [4]. We, in this paper, however, restrict ourselves only to d = 1 which
turns out to be the marginal case for v3. The critical exponent for unbinding transition is
ν = 2/ | 1 − d |, except for d = 1 where the correlation length diverges like exp(1/v3). The
three chain reunion partition function will have a log correction, identical to the marginal
two chain case, namely, ZR(N) ∼ N−2(log N)−2. The similarity in the behaviour of the
many-body interactions, if proper variables are used, is a novel feature of the multicritical
directed polymers, and has been termed “Grand Universality” [5]. We will see that such a
grand universality is preserved also for the random case.

Since there is only one fixed point at d = 2(d = 1) for the two (three) chain problem,
one can identify the fixed point at zero as the critical point while the approach to the fixed
point as describing the phase of the system.

III. RANDOM INTERACTION

We now consider the random version where the polymers interact with a random coupling
constant and there is no external potential. For simplicity we consider randomness to be
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dependent only on z. A physical realization would be a random distribution of monomers
(or charges) along the backbone. The interaction is given by

∫ N

0
dz v0 [1 + b(z)] δ(r12(z)), (3)

where the randomness is introduced through b(z). We take uncorrelated disorder with a
Gaussian distribution

P (b(z)) = (2π∆)−1/2 exp[−b(z)2/(2∆)], (4a)

〈b(z)〉 = 0, and 〈b(z1)b(z2)〉 = ∆ δ(z1 − z2). (4b)

For the many body interaction problem, the random Hamiltonian would be similar to
Eq. 1 except that the coupling constant vm is to be replaced by vm(1 + b(z)) inside the
integral.

The approach we take is to study the various cumulants of the partition function. The
first cumulant, as one might expect, behaves like the pure problem but with a shifted critical
point. Since there are sites with attractive interaction, the critical point for unbinding
occurs not at zero average interaction but at a certain nonzero repulsion. It would also
mean that even if the chains are on the average repulsive, (i.e., v2 > 0), a binding-unbinding
transition can be induced by tuning the disorder or changing the temperature. Such a
thermal unbinding is not possible in the pure case for d ≤ 2. Apart from that, the critical
behaviour remains the same. The situation is different for the second cumulant.

When we consider the second cumulant of the partition function, we require four (six)
chains for the two (three) body case. On averaging over the disorder, an interaction (“inter
replica” interaction) is generated that couples the original chains with the replica. For
example, for the two body problem, the interaction is of the type

Hrep = −r̄0

∫ N

0
dz δ(r12(z)) δ(r34(z)), (5)

with r̄0 = v2
0∆. This interaction, different from the four body multicritical interaction of

Eq. 1, is a correlation effect. If chains 1 and 2 meet at length z, then it is favourable for 3
and 4 also to have a contact at that same z though not necessarily at the same transverse
space coordinate. The importance of the disorder can therefore be understood if we know
the flow of this interaction as the probing length scale is changed. If we are at the critical
point of the average interaction, then RG can be implemented exactly [14,15]. Defining the
dimensionless coupling constant r0 through an arbitrary length scale L as r0 = r̄0L

2ǫ(4π)−d,
ǫ = 1 − d, and denoting the renormalized coupling as r, the RG β function is given by

β(r) ≡ L
∂r

∂L
= 2(ǫr + r2). (6)

There are two fixed points: (i) r = 0 and (ii) r∗ = −ǫ. See Fig. 1b. The bare coupling
constant r0 which originates from v2

0∆, where ∆, the variance of the distribution, is strictly
positive, requires a positive r. Therefore, the nontrivial fixed point for d < 1 in negative r
is unphysical. It however moves to the physical domain for d > 1. The main feature that
comes from the analysis is that the disorder is marginally relevant at d = 1. This means

4



that even a small disorder will change the nature of the unbinding transition and take the
critical system to a “strong” coupling regime. There is however no perturbative fixed point
to describe the strong coupling regime. A marginally relevant variable means that a new
critical feature would appear for higher dimensions. This is reflected in the new unstable
fixed point. For small enough disorder, the β function for d > 1 takes ∆ to zero, reproducing
a pure type behaviour. If however, the starting disorder is higher than the fixed point value,
then it goes to the strong coupling regime. The unbinding transition is therefore pure type
for small disorder (“weak” disorder) and beyond a critical disorder, in the “strong” disorder
regime, a new critical behaviour is expected.

The exact nature of the RG is lost if v2 6= 0. In a one loop approach, there are indications
of the existence of a fixed point for the stable fixed point of v2 [16]. Since the flows are
different on the two sides, one wonders whether this indicates a new phase also.

The exact β function of Eq. 6 tells us also that around the critical disorder, the relevant
length scale exponent is 1/ | 1 − d | along the chain. In one dimension, the length scale
diverges exponentially around r = 0. These exponents have been verified numerically.

A dynamic renormalization group approach has also been developed for the two chain
problem. In this approach, instead of looking at the moments of the partition function, the
free energy is probed directly. This approach yields the same results and shows that there
is no special fluctuation exponent for the free energy. [17]

IV. REAL SPACE RG

Due to the absence of any fixed point for the strong coupling regime, it is necessary to
study the problem using nonperturbative methods. One such method is the real space RG
(RSRG), which can be implemented exactly on hierarchical lattices [18,19] as shown in Fig
2. To avoid unnecessary approximations, we work with these lattices from the beginning.
As per construction, we consider the partition function for two chains tied at the both ends
and with a random site interaction. We want to study the various moments of the partition
function.

It is again clear that for the nth moment, we require 2n chains and they will be coupled by
the disorder. An effect of this is that there is an analog of the binding-unbinding transition
for each moment, and the higher the moment (n) the higher is the transition temperature.
In the high temperature phase for the nth moment, the free energy is expected to approach
the free entropy of 2n chains. Subtracting out this free part, the free energy approaches zero
in the thermodynamic limit for high temperatures while, it has an O(1) value per bond in
the low temperature phase. Let us define Zµ(n) = Z

n
µ/S

2n
µ , where µ is the generation, Sµ

is the entropy of a single chain of length Lµ = 2µ−1, the overline representing the disorder
average. If we keep the temperature fixed (above the critical point for the first moment),
then there exists a critical n, nc, so that for n < nc the moments are in the high temperature
phase. We want to study the finite size correction to the moments of as n → nc−.

The approach to the thermodynamic limit can be written as

Zµ(n) = Z∗(n) + Bz(n) L−ψ
µ + ..., (7)

where Z∗(n) is the thermodynamic limit (µ → ∞), and Bz(n) is the amplitude of the finite
size correction.

5



For a given realization of the disorder, the partition function can be written as (see Fig
2)

Zµ+1 = bZ(A)
µ yZ(B)

µ + b(b − 1)S2
µ. (8)

The first term originates from the configurations that require the two DPs to meet at C,
while the second term counts the ”no encounter” cases. There are no energy costs at the two
end points. The Boltzmann weight is random, and for a Gaussian distribution of energy,
ym = ym

2

. Note also that Sµ = bLµ−1, where Lµ = 2µ is the length of DP.
The moments of the partition function, from Eq. 8, are

Zµ+1(n) = b−n
n

∑

m=0

PnmZ
2
µ(m), (9)

where Pnm =
(

n
m

)

(b − 1)n−mym, with the initial condition Z0(n) = 1 for all the moments

because there is no interaction in the zeroth generation (one single bond). By iterating
these recursion relations, the moments are calculated exactly and the finite size correction
is estimated. As shown in Fig. 2, the amplitude has a power law divergence as nc is
approached, namely

Bz(n) ∼ (nc − n)−r, for n → nc−, (10)

with r = .71± .02. The exponent is independent of temperature but depends on the effective
dimensionality of the system. We call this a scar left by disorder in the high temperature
phase.

V. OVERLAP IN A RANDOM MEDIUM

Much has been achieved in the problem of directed polymer in a random medium
(DPRM). Unlike the random interaction case, carrying out a systematic RG beyond one
loop is extremely hard [20]. On the other hand a remarkable extra gain in the DPRM case
is the exact knowledge of the nontrivial geometric and thermal properties at least at d = 1.
It is known through the mapping of DPRM problem to the nonlinear noisy growth equation
of a surface (KPZ equation) [21] that at d = 1 the transverse extension of the polymer and

the free energy fluctuation scale as < x >21/2
∼ N ζ=2/3 and f ∼ xχ=1/2. These results can

be proved to be exact through the fluctuation dissipation theorem. At d = 1 this new value
of ζ 6= 1/2 persists for all temperatures and the system is always at the strong disorder or
“low temperature” phase. For d > 2 there is a transition from a high temperature phase
(free polymer) to a low temperature ( ‘spin glass’ type) phase. Though the unstable fixed
point is well under control, the strong disorder fixed point is not reachable through pertur-
bation. Numerical approaches intensified the controversies about the strong disorder phase.
Another unsolved question is the existence of an upper critical dimension (UCD) which, in
some approaches, seems to be 4. There is a hope that if RG can resolve the question of UCD
for the pure interacting DP problem, as mentioned in section II, then the UCD problem for
DPRM can also understood.
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Here we discuss how the overlap behaves in this problem. Since the low temperature
phase is a spin glass type phase we expect the overlap to serve as an order parameter. The
m chain overlap is in general defined as

qm = −
1

t

∫ t

0
dz <

m−1
∏

i=1

δ(xi,i+1(z)) >, (11)

where xi,i+1(z) = xi(z) − xi+1(z), bar and the angular brackets denote the disorder and
thermal average respectively. In the replica language, this overlap describes the common
configurations of the valleys (i.e. common to m) of a rugged free energy landscape. The
overlap comes from the common path of m chains in the same random medium. The
behaviour of the overlap is nontrivial because the disorder induces an attraction among the
replicas. We consider only the two chain overlap here.

The main key to solve the problem is to introduce a 2 body interaction in the Hamil-
tonian of DPRM problem and use a mapping that leads to a KPZ type nonlinear equa-
tion [22]. Defining the quenched free energy as f2(v2, z), the overlap can be obtained
as q2 = −z−1 df2(v2, z)/dv2 |v2=0. With the scaling hypothesis for the free energy,
f2 = zχ/ζ f(v2t

−φζ) we find the scaling of the overlap as q2 ∼ zΣ with Σ = (χ− φ− 1)ζ . Our
interest here is in finding out Σ.

The working Hamiltonian is therefore similar to Eq. 1 with m = 2. For convenience,

we introduce a line tension γ so that the elastic part of Eq. 1 is of the type
γṙ2

i

2
and

also choose the coupling constant as λv2/(2γ) and λV/(2γ) as the random potential. The
random potential is with zero mean and 〈V (r, τ)V (r′, τ ′)〉 = ∆δ(r − r′)δ(τ − τ ′). The free
energy defined as h({xj}, t) = (2γ/λ) lnZ({xj}, t), where Z({xj}, t) is the partition function,
satisfies

∂h

∂t
=

2
∑

j=1

(γ∇2
jh +

λ

2
(∇jh)2) + g0, (12)

where g0 =
∑2
j=1 V (xj, t) + v2δ(x12(t)). In order to bring out the similarity with growth

equation we use t instead of z as the variable for the special direction. A dynamic renormal-
ization group calculation upto O(λ2) and O(v2) for the above equation in the Fourier space
leads to the following crucial results [22]. (i.) There is no change in the single chain behav-
ior. The renormalization of the single chain propagator, and the nonlinearity is the same as
that of a single chain in a random medium. (ii.) The coupling constant gets renormalized
even at O(v2) as given below

v2R = v2 + 8(−
λ

2
)2(2v2∆)

∫

p,Ω
p4G0(p, Ω)[G0(−p,−Ω)]2G0(p,−p, 0). (13)

Here G0 is the bare propagator, defined as G0({kj}, ω) = [γ
∑

j k2
j − iω]−1, (k, ω) being the

Fourier conjugate variables for (r, t). A short hand notation
∫

pω ∼
∫

dpdω/(2π)d+1 is used.
In the above equation only the nonzero momentum vectors are written explicitly as the
arguments of G0.

The next obvious point is the presence of an anomalous dimension in the coupling con-
stant as is apparent from the recursion relation
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dv2

dl
= [z − χ − d + U ]v2. (14)

Here the term proportional to U = Kdλ
2∆/(2γ3) is the anomalous part from the RG and

Kd = (2π)−dSd, with Sd being the surface area of the unit d dimensional sphere. Since we
find that the single chain properties remain unaffected, we use in the following the KPZ
fixed point value for U . Let us first consider d = 1. It has been shown that the KPZ fixed
point is a stable one and indicates a glassy behavior at all temperatures. By substitution
U∗ = 1, we find that Σ = 0, which one would expect in the low temperature phase, as one
finds numerically [23]. For d = 2 + ǫ the KPZ fixed point U∗ = 2ǫ, being an unstable fixed
point, corresponds to the spin glass transition. The exponent for the overlap can be readily
obtained at this fixed point as Σ = −[d + η], where η = −2ǫ. The analysis can be extended
to m chain overlap also.

VI. CONCLUSION

Randomly interacting directed polymers exhibit a weak to strong disorder transition
for d > 1. This can be established by an exact renormalization group approach. Real
space renormalization group approach for hierarchical lattices reveals a diverging finite size
correction. This might indicate the existence of a phase with no counterpart in the pure
system. Could it be a Griffiths phase? This is an open question. Using interacting directed
polymers in a random medium, we have calculated the decay of overlap at the spin glass
transition point in 2+ǫ dimensions. In one dimension, this analysis recovers the result based
on fluctuation arguments and numerical simulation.
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FIGURES

FIG. 1. Flow diagrams for (a) the pure coupling u for two chains, and (b) the disorder rm for

m chains. Here dm = 1/(m − 1). In both cases, * denotes nontrivial fixed points.

Plot of Bz(n)−1/r vs n for b = 4 and various temperatures. (a) log y = 0.065, and r = 0.73,
(b) log y = 0.04, and r = .73 (c) log y = 0.03, and r = 0.72 (d) log y = 0.02, and r = 0.72.
Inset shows the construction of a hierarchical lattice with b = 2. .
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