Dynamics of unbinding of polymers in a random medium
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We have studied the aging effect on the dynamics of unbinding of a double stranded directed
polymer in a random medium. By using the Monte Carlo dynamics of a lattice model in two
dimensions, for which disorder is known to be relevant, the unbinding dynamics is studied by
allowing the bound polymer to relax in the random medium for a waiting time and then allowing the
two strands to unbind. The subsequent dynamics is formulated in terms of the overlap of the two
strands and also the overlap of each polymer with the configuration at the start of the unbinding
process. The interrelations between the two and the nature of the dependence on the waiting time are
studied. ©1997 American Institute of Physids$0021-960807)51042-7

I. INTRODUCTION vent, where the most important degree of freedom taken into
account is the interstrand base pairing. Our model includes a
The dynamics of polymers near a phase transition pointguenched distribution of impurities in the environmé&ht.
especially in presence of randomness or disorder, is impor-  The main effect of randomness in dynamics is the aging
tant in many situations like denaturation of DNA, protein effect>!! If the system is allowed to equilibrate up to a cer-
folding, collapse of heteropolymers ét€In addition, poly-  tain timet,,, to be called the waiting time, then the subse-
mers and extended elastic manifolds in random media COI"t]uent dynamics under a perturbation depends on this im-
stitute a class of problems which appear in various disguisgosed timet,, in a nontrivial way. We like to explore this
in many problems, as e.g., interfaces in random systems, fluxging effect in the dynamics of unbinding through a Monte
lines in high Tc superconductors, surface growths andcarlo dynamics of a lattice model.
others? Certain aspects of dynamical properties for poly-  we discuss below in Sec. Il the equilibrium properties of
meric objects have been discussed in the past, with emphasisis interacting system of two polymers. There we also point
mostly on the equilibrium or stationary dynamfté ran-  out the connection of this two chain problem with that of a
dom systems, off-equilibrium dynamics has a special roleingle chain via the replica approach. We then discuss the

because the system has to explore the phase space in seafgéthodology of our simulation in Sec. Ill. The results are
of its equilibrium state, if it reaches there at %l[hus, the presented and discussed in Sec. V.

off-equilibrium dynamics near a phase transition is expected
to be different from the pure dynamics. In this paper, we
study a very simple polymer model with a phase transition
for which equilibrium properties are known with a certain Il. EQUILIBRIUM BEHAVIOR

degree of confidence. The particular model we study is the | ot 4s consider two DP in the same random medium so

unbinding transition of two interacting directed polymers in 4+ the Hamiltonian in a path integral approach can be writ-
a random medium. This corresponds to a simplified model ofy, 542

denaturation of DNA in a solution with quenched random
impurities?® =2 0y
Even though the off-equilibrium dynamics in glassy 7= >, J dZ
polymers are known for a long tinfethe peculiarities of 'm0
dynamics of random systems received attention rather re- N
cently through experiments on various systémsAs yet, +f0 dzv 5(ry(2) —r2(2)), @
there is no analytical approach for these problems, but sev-
eral conflicting scenarios have been suggested, with the lackherer;(z) denotes thel dimensional transverse spatial co-
of well accepted equilibrium theories adding to the sore. Inordinate of theith polymer at contour lengthe, and
this respect, the model we are considering is in a rather ern(z) =dr;(z)/dz. The first term denotes the elastic energy
viable position, because of several analytical tools and repart of the Gaussian chains and the second term is the ran-
sults available for equilibrium properties. dom potentialV(r,z) at point {,z), and the last term de-
A (d+1) dimensional directed polymébP) is a poly-  notes the mutual contact interaction between the chains. Note
mer with a preferred direction so that it has random fluctuathat the interaction is always at equal lenfjth.
tion in the transversd directions only. Such an interacting It is known that randomness is relevant wh=1
DP system with homogeneous interaction has been proposefimensior®>®and the polymer has to swell to take advantage
in the past for denaturation of DNARef. 6 in a pure sol- of the favorable energy pockets. The transverse size grows

1.
5 r(2)2+V(ri(z),2)
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K M two different paths on this length is LX, with y=1/3 for
G this 1+ 1 dimensional problem. This gives the scaling vari-
@ Bl unbound ablevL?? as obtained exactly in Ref. 12. We generalize this
2 J \ argument below for dynamics. The excitations we are con-
A sidering here are the loops on a schland this forms the
Bound y basis of the droplet picture for DB.For largeN, the argu-
< - = . < ment approaches the nontrivial fixed point, and being the
G F v unbound phaseq=0, with a finite size scaling form
q="f(AuvN~23). Av is the deviation from the fixed point.
Bound v>0 If we consider the single chain problem, then the over-
(b) ’0 t t=+t lap, in the replica approach, is given by thgsat v=0.

Though this quantity is not available from RG, numerical
computation¥"!8 show thatq+0. This gives the Edwards-
Anderson order parameter for this strong disorder plisse

FIG. 1. (a) Renormalization group fixed point and flow diagram for two below). We therefore see that the order parameter for the
chains. G corresponds to the free pure Gaussian polymers, F: pure, repulsive '

(fermionic or vicious walkerpolymers, K: Strong disorder phase, M: repul- critical point is a simple generalization of the order param-
sive polymers in random medium. The arrows indicate the flows of disordeeter needed for a replica approach of the single chain prob-
and the intgraction under renormalizatidb). The time sequence adopted in |em. In this respect, this DP problem is unique among the
the simulation. known random models.
In spite of these results for the equilibrium behavior,
very little is known about the dynamics of unbinding, though
with the length with an exponemt=2/3 which is bigger than certain aspects of the single chain dynamics have recently
the Gaussian value 1/@xpected for the pure case even in been looked intd®® Our aim is to explore the time evolu-
presence of the interactign tion of the overlap for the unbinding transition, and the effect
This particular problem of two interacting chains in the of aging on this evolution, and correlate with the single chain
same random medium was considered numerically byehavior.
Mezard in an attempt to calculate the overlap of two replicas
for the single chain problem, the overlap being the most
important quantity in a replica approathA general formu-
lation for anyd was given by Mukherji who, in addition to
establishing the exact exponent for overlap in thellcase, To study the dynamics, we consider DPs on a square
also obtained the relevant exponentsder2+ e for the spin - |attice. The polymers start at the origin and are allowed to
glass transition point. This formulation was also used toake steps only in thetx or +y directions without any
study higher order overlap$,and in the strong coupling 4 priori bias. This produces polymers directed along the di-
phase® for d>2. _ o agonal of the lattice. Two polymers interact if they share a
Ina dynamic renormalization ~group approach, point and each contact is assigned an energin addition,
Mukherii'? showed that the interaction is relevant in all di- there is a random energy at each site chosen from a uniform
mensions. Each chain individually behaves as in the singlgjstribution e[ —0.5,0.5. At a given temperature, there
chain problem, i.e. the relevant strong disorder fixed point iyre two parameters;=u/ksT and e=e/kgT. We use the
independent ofv. A straightforward extension of the ap- standard Metropolis single bead flip for the Monte Carlo
proach of Ref. 12 gives the nontrivial fixed point for the two gynamics?® The chains are always anchored at one end but
repelling(i.e., unboungichains in the random mediutAiThe  fiee at the othe? At each step the bead to be moved is
fixed point diagram is shown in Fig. 1, that shows that0  chosen randomly from theNe—2 beads. One MC time step
remains the critical point for the binding-unbinding transition hen consists of ®—2 such attempts. The dynamics is per-
for the two chains. A bound state forms for<0. The rel-  formed for a given disorder realization, averaged over sev-
evant exponents are also obtainable from the RG recursiogra| random number realizatiofthermal averageand initial
relations. configuration, and then averaged over disorder realizations.
The order parameter that describes the critical point is  oyr procedure involves two chains completely bound
the overlap or the number of contacts of the two chains g top of each othgrtogether evolving in the random po-

. w
approaching K approaching M

Ill. MODEL AND METHOD

defined as tential for a timet,, (i.e. MC is done with respect to random
1 (N energy only and then the chains evolve individually in pres-
Av)=5 fo dzv 5(r1(z) —r,(2)). (2)  ence of the interaction algsee Fig. 1b)]. With respect to

the fixed point diagram of Fig. (&), the bound double
The scaling behavior found for this overlapds=f(vN??) stranded chain evolves towards the ‘“strong disorder” fixed
for polymers of lengttN near thev* =0 fixed point*? This  pointK up to timet,,, and after that the evolution is towards
particular scaling can be justified by a simple argument. Arthe stable fixed point. We monitor the average fraction of
overlap on a length scale along the chain costs an energy contactgoverlap$ of the two chains and the overlap of each
vL while the gain from free energy fluctuation by following chain with the configuration at timi, .
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Let us define two quantities self overl@ and mutual andwv is shown in the inset in Fig.(8). Similar scaling is

overlapq as obtained for the self-overlap alsgmot shown. However,
1 there seems to be no ‘“universality” in the sense that the
Ci(v,t+t,)= N 2 (8(ri(t+1,)—ri(ty)), dynamics do depend upon the strength of interaction. It is not

3) possible to go to large values of repulsion in this 1 di-
1 mensional problem because of the log-jamming problem on
Av.t+te) =5 > (8(ry(t+ty) —ra(t+t,))), a lattice.

For t<t,,, the early time dynamics is the “quasi”-
where(:--) denotes thermal average and overbar denotes digquilibrium dynamics. For the largest, we find a linear
order average. The mutual overlggv,t) defined here is a relationship with the self-overlap and the slope decreases
time dependent generalization of the equilibrium overlap ofwith increasing . Figure 3a) shows the early time equality,
Eq. (2), while C; is the overlap of the configuration of chain q(0;t)=C(0,2) for v=0 and its failure fory#0. In fact, if
i at timet—+t,, with its configuration at time;,,. By symme-  we assume that for early timesgt,,, C(t)~t~*, then, one
try C; is independent of the chain indéx can writeq(0,t)=C(2t) =2"*C(t). Assuming such a homo-

It is also possible to relate the overlgpo a correlation geneity relation for nonzerov, we can write
function. Let us define;(t)=1 if at timet there is an over- q(v,t)=bC(v,t) so that by choosing the coefficienh
lap of the two chains at chain length otherwise it is zero. (=27* for v=0) it would be possible to get a data collapse
The overlap at time is then Z;s;(t)/N. If we define an for all v at least for early times. We do see such a collapse at
autocorrelation functiorz (t,,t,) =N"12i(si(t1)si(t,)), we  early times as shown in Fig. 3. This indicates a power law
see thag(v,t+t,)= % (t,,t+t,) becauses(t,)=1 for all  behavior, and we conclude that the early time power law
i. decay of the overlap has the same exponent as the self-

For the single chain problem the self-overldp,, de-  overlap.
fined above is also a quantity of fundamental importance. If  Combining the various forms, a scaling formula for ag-
we take limitt,,—oo first and thent— oo, then forv =0, C; ing can be suggested as
would correspond to the Edwards-Anderson order parameter _
for the strong disorder phase. This is becaGs&vould then A0, t+ty) =TF(UL), ®)
measure the overlap, in equilibrium, of the polymer configu-which for the limitt,,—, and thert—c, would giveq=0
ration at two widely spaced time, and a nonzero value wouldind not a finitegg,. Such a form has been used for various
imply a frozen random configuration, characteristic of arandom systems in spite of this problémand numerical
“strong disorder” phase. We therefore expect simulations are yet to sort this offtFigure 3 suggests that a

lim lim C(Ot+1t,)=0en. 4) similar equation is valid for the self-overt&hwith the same,

P rather small, exponent.

) o For the largest,,, we see a power law decay of the
In fact, forv=0, in the limitt,,—ce, one can also cONNECt \ajan at early times and not a logarithmic decay as would
this overlap with the the self overlap defined above as,q gynected from the droplet pictueln the droplet picture
q(0t)=C(0,2) because in the equilibrium, the overlap of e a5sumes that the dynamics is governed by the typical
the two configurations fo€ will be the same as the overlap paqier and hence is of activated type. So, on a time gcale
needed fom. This is a check on our simulation for<t,, . the system would explore the phase space on length scales

In the simulation,q and C were monitored for various (o \yhich the barrier height8~In t. If one assumes further
values ofv, andt,,, for chains of length up to 300. At this a growth of barriers with length sca~L¥, then the rel-

Igpgth lthe dynamics we report here do not h.ave signif_icanévam length scale at timeis L(t)~(In ). If we now

finite size effects. Note also that by construction there is NQeneralize the scaling picture mentioned in Sec. Il to dynam-

finite size effect in the transverse direction. ics with the hypothesis that the dynamics is governed by the
length scald_(t) at that time, one would expect a dynamic

scaling

We show the results of the simulation in Fig. 2, where _ 23 1—y)/
the overlap for various waiting times amdare plotted. Fig- q(v.H)=a(LM)=qa(v(In ). ©)
ure 2a) shows the results for the pure systee=Q0) for  This is valid for Int<Int,. The simulation results are then
v =1.0, and there is no significant dependence on the waitingot consistent with this dynamic scaling. In fact, no MC
time. For the random case, shown in Figb2we see the simulations have so far produced this log time scale in early
longer the waiting time the slower the relaxation. In otherdynamics in random systems. It has been speculated that the
words, the system develops a stiffness as it ages in the rapower law form, instead of logarithm of time, is a conse-
dom environment. This is the first effect of “aging.” In ab- quence of a logarithmic growth of barrier heights as opposed
sence of detailed theories, we considered various scalintp B~L¥. However, this is ruled out for DP, because it is
forms. The form used for the single chain problem in Ref. 19%nown from transfer matrix calculatiofisthat, in the 1
turns out to be applicable in this interacting problem. A datadimensional case, the typical barrier has the same scaling
collapse is obtained by plottingg(v,t+t,,) vs t/t, with  form as the free energy fluctuatiopi= y=1/3. It is possible
suitable choices of the prefactor The variation ot witht,,  that the early dynamics is not controlled by the typical bar-

IV. RESULTS AND DISCUSSIONS
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FIG. 2. (a) The overlapg(v,t+t,) vst for a pure system with =1. andt,,=10, 1¢, 1¢°, 10" (b) q(v,t+t,) vst for v=1.4 for a random system with
t,=10, 1¢, 1. (c) cq(v,t) vstit, for (8 v=0, (b) v=0.2, (c) v=0.6, (d) v=1.0, and(e) v=1.4. The value ot is chosen for each data s@e., for
eachv andt,). t,, is taken as 10, £0 10°, 10* and 18. The inset shows the variation ofwith t,, for v=0, 0.2, 0.6, 1., 1.4y increasing upwards.

riers but rather by the smallest barriers. If we denote thdime scales studied in these lattice simulations of this paper
probability distribution of barrier heights bi?(B), and if  may not be in the right asymptotic limit to observe the dy-
P(B) diverges(but integrable asB— 0 then early dynamics namics predicted by the droplet picture. In fact, more ana-
would not be activated type but rather like in spinodal de-lytical work is necessary to understand the finite size and
composition where barrierless diffusion is the relevantcrossover effects in early dynamics of random systems in
mechanism. In such situations one finds that the time scale general.

a power law in the barrier heiglitas observed in simulations A bound on the late time decay of the overlap can be
here. obtained by considering each bead independefitty not

In terms of lengthscales, the combin@ebund chains connected as a polymein this case the overlagis just the
equilibrate by crossing barriers over lengthscalds,), probability of reunion of two vicious walkergepulsive ran-

length being measured along the chain. The subsequent udem walker at timet.2>26 This probability for large times
binding then involves the separation of the chains in presdecays as~ ", with ¥ =3/2 for a pure system. Though its
ence of the repulsion within this length scalgt)<<L(t,,). value for a random system is not known, it is expected to be
Oncet~t,,, one observes true nonequilibrium decay. Oursmaller than the pure one due to the disorder induced effec-
data suggest again a power law but the overall decay of thiéve attraction. For the polymer problem, the beads are con-
overlap is rather small to get a reliable estimate of the exponected and therefore this independent particle result gives an
nent or any other functional form. However a scaling vari-upper bound to the decay of overlgdor the polymer prob-
ableL(t)/L(t,) seems to be a natural choice, which we findlem. The data for the pure system in Figa2can be fitted

to be related ta/t,. This also indicates that the relation over the whole range bg=0.6"%, with x=1/3<3/2.
betweenL (t) andt should be a power law type. We would The aging effects we have studied might be realized ex-
like to add that there is the possibility that the length andperimentally also by letting DNA equilibrate in a random
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FIG. 3. Plot ofgq(v,t+t,) vsbC(v,t+t,) for t<t, , for variousv andt,,. Inset A shows the plot of(v,t+t,,) vs C(v,2t), for the largest,, for eachv
(only a few data points are shoyrThe straight line is the equality line satisfiedvat 0.

medium for a certain time and then suddenly changing thelepends on the strength of the interaction. The late time de-
pH to start unbinding of the molecule. Early evolution of this cay that reflects the true nonequilibrium behavior shows also
unbinding will shed light not only on the dynamics of un- a power law behavior. Longer simulations are needed to
binding of DNA but also on the dynamics of random systemsclarify this nonequilibrium dynamics.
in general.
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