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We propose a phenomenological equation to describe kinetic roughening of a growing surface in th
presence of long range interactions. The roughness of the evolving surface depends on the long ra
feature, and several distinct scenarios of phase transitions are possible. Experimental implications
discussed. [S0031-9007(97)04170-7]
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“Suppose that we take a bin and gently and uniform
pour in granular material. As the material in the bi
builds up we can identify a surface and ask the questio
‘What is the magnitude of the fluctuation in the heigh
of surface (measured from the base of the bin)?’ Als
of interest is the length scale of the surface fluctuatio
and how they behave dynamically as more material
added” [1]. And thus was born the Edwards-Wilkinso
(EW) model for surface growth—a solvable linear mode
at the heart of our current understanding of numero
growth processes. A relevant nonlinear term, added
this by Kardar-Parisi-Zhang (KPZ) [2–4], brought to ligh
the nuances of growth phenomena to the extent that
KPZ equation very soon became a paradigm, in particu
for dynamic phase transitions. The applicability of th
KPZ equation seems to encompass length scales from
atomic level to macroscopic phenomena of everyday lif
but still a specter is haunting the field: Why is the KPZ
behavior not observed [3]?

Many of the experimental situations, however, involv
complex processes which beg to go beyond the idealiz
tion, as pouring of noninteracting particles. This is esp
cially true if medium or fluctuation induced interactions
interfere with the process as, for example, in the seve
recently studied systems involving proteins, colloids o
latex particles [5–8], or in sedimentation. The major in
teraction one has to reckon with, as detailed numeric
computations suggest [9,10], is thelong rangedhydrody-
namic interaction. Are such long range interactions rel
vant for the roughness of the surface? This question, t
absence of a formalism to handle such interactions in t
growth process, and the elusiveness of the KPZ behavi
led us to propose a simple phenomenological model
focusing on the long range nature of the extra force.

We developed a Langevin equation-type descriptio
where long range aspects can be simulated by a force
each point of the growing surface exerted by the particl
away from it—a hint to go beyond a strict local descrip
tion. In the linear EW model, the growth is along the
global normal to the surface without any overhang. Th
heighthsr, td, at pointr and timet, satisfies the diffusion
0031-9007y97y79(13)y2502(4)$10.00
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equation with an additional noise term. If, instead of th
global, the local normal is favored, the KPZs=hd2 term
is needed [2]. This nonlinear term describes the later
growth at a point that can be seen from the height pro
file [3,4]. We now extend this physical interpretation and
take the gradient (or its magnitude) as a measure of the
cal density of deposited particles. The long range effect
now incorporated by coupling these gradients at two di
ferent points. Based on this intuitive picture, the equatio
we propose is the following:

≠hsr, td
≠t

­ k=2hsr, td 1 hsr, td

1
1
2

Z
dr0q sr0d=hsr 1 r0, td ? =hsr 2 r0, td , (1)

where k is the diffusion constant for the particles on
the surface, andh is a random space-time depen-
dent white noise of zero mean andkhsr, tdhsr0, t0dl ­
2Ddsr 2 r0ddst 2 t0d. The kernelq srd is of long range
and, in principle, connected to the underlying interaction
[11]. So, we takeq srd to have a short range (SR) part
l0dsrd and a long range (LR) part,rr2d, or more
precisely, in Fourier space,q skd ­ l0 1 lrk2r. Equa-
tion (1) then smoothly [12] goes over to the KPZ equatio
for lr ­ 0. We show that this leading term introduced
is sufficient to yield a new fixed point with continuously
varying exponents, and different phase transitions n
found in the KPZ problem. The connection with experi
ments is discussed near the end of this paper.

A central quantity of interest in growth problems is the
scaling behavior of fluctuation of the heightkjhsr, td 2

hs0, 0dj2l, which on a large length and time scale has
scaling formjrj2xF sjtjyjrjzd. Here x is the roughness
exponent of the growing surface andz is the dynamic
exponent. These two exponents define the universal
classes of roughening.

At d ­ 1, for the local growth (i.e., KPZ) equation a
disorder dominated rough phase is found for alll0 by sev-
eral exact treatments [13,14] providingx ­ 1y2 andz ­
3y2. The nonlinearity is marginally relevant atd ­ 2,
© 1997 The American Physical Society
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and ford . 2 there is a phase transition from a strong dis
order dominated phasesx 1 z ­ 2 for all dd to a weak
coupling phase where nonlinearity is irrelevant, i.e., a fl
phase withz ­ 2. The perturbation theory is inadequat
for the strong coupling phase atd $ 2 due to the lack of a
perturbative fixed point [15]. Numerical simulations [16
predict z ø 1.6 at d ­ 2. The phase transition is, how-
ever, under control, withz ­ 2 ; d . 2 [17,18], with a
rather complicated critical behavior [19,20].

A simple scaling analysis indicates that bothlr and
l0 are relevant ford , 2 at the Gaussian fixed point
(EW) where one expects,x ­ s2 2 ddy2 and z ­ 2.
This follows from the scale invariance of Eq. (1) unde
the transformationr ! br , t ! bzt, h ! bxh, where
k ! bz22k, D ! bz2d22x D, l0 ! bx1z22l0, and
lr ! bz1x1r22lr. Also, for any nonzerolr with
r . 0, the local KPZ theory (lr ­ 0 and x 1 z ­ 2)
is “unstable” under renormalization and a non-KP
behavior is expected. For2 , d , 2 1 2r, only lr

is relevant at the EW fixed point. In the following we
adopt a dynamic renormalization group (RG) procedur
Our results show a new stable fixed point atd ­ 1, for
any r . 0. Another interesting consequence of thi
nonlocality is the possibility of a stable fixed point a
d ­ 2 for a certain range ofr. The marginal relevance
of nonlinearity in the original KPZ theory is destroyed.

The renormalization procedure is most succinctly d
scribed through the Fourier modes momentumq and fre-
quencyv, in terms of which Eq. (1) becomes

hsq, vd ­ G0sq, vd
∑

hsq, vd 2 s1y2d s2pd2d21

3
Z

dq0dv0q s2q0dq1 ? q2

3 hsq1, v1dhsq2, v2d
∏

, (2)

where, symbolically,X6 ­ Xy2 6 X 0 with X ­ q or
v. Here G0sq, vd ­ 1yskq2 2 ivd represents the bare
propagator or the Green function for the diffusion equa
tion. We follow the usual iterative perturbation scheme
whereh in the right-hand side of Eq. (2) is replaced b
Eq. (2) itself up toOsq 2d. A convenient diagrammatic
representation can be set up from this scheme, and
renormalization of the various parameters can be obtain
from appropriate vertex functions. We skip the detai
as they are very similar to Ref. [21]. In the subseque
renormalization procedure, we integrate out small leng
scale fluctuations over a momentum shellLe2l # q0 #

L to obtain the effective parameters for a similar equatio
but with a smaller cutoffLe2l , whereL (set to 1) is re-
lated to the microscopic cutoff. A subsequent rescalin
then restores the cutoff toL.

The effective propagatorGsq, vd ; hsq, vdyhsq, vd
gives the renormalization of tensionk. The ef-
fective noise, obtained from khpsq, vdhsq, vdl ­
2D̃Gsq, vdGs2q, 2vd, gives the renormalization of the
-
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disorder. Next we look for the terms contributing to th
effective nonlinearity. Note that the RG transformation
being analytic in nature, cannot generate a singular te
to renormalizelr for r . 22. In fact, there is no renor-
malization ofl0 either. A contribution tol0 could come
from terms ofOsDq 3d, and a straightforward calculation
[21] shows that such terms do cancel each other [22].

Following the above procedure, we arrive at the flo
equations fork andD as

dk

dl
­ k

∑
z 2

µ
2 1

DKd

k3
q s2dq s1d

3
sd 2 2d 1 3fs1d

4d

∂∏
, (3)

dD

dl
­ sz 2 d 2 2xdD 1

D2Kd

4k3 q s2d2, (4)

where fsad ­ ≠ ln q skdy≠ ln kjk­a, the (effective) expo-
nent of q skd and Kd ­ Sdys2pdd, Sd being the surface
area of ad-dimensional unit sphere. The flow equation
for l0 and lr, having contribution only from the rescal-
ing, are dlxydl ­ sx 1 z 2 2 1 xdlx , (x ­ 0 or r).
The two parametersx and z are chosen to keepk and
one oflx invariant.

In terms ofU2
x ­ Dl2

xKdyk3, and R ­ U0yUr , with
the choicex 1 z ­ 2 (or 2 2 r) and z equal to the
expression inside the big round bracket of Eq. (3), th
flow equations can be combined into two as

dU0

dl
­

s2 2 dd
2

U0 1
2d 2 3

4d
U3

0

1
U0Ur

8d
fc0U0 1 c1Urg , (5)

and dRydl ­ 2rR, wherec0 ­ s5d 2 6d s1 1 22rd 2

2d 2 9r, and c1 ­ fs3 1 22rdd 2 6 2 9rg22r . The
equation forR rules out the existence of any off-axis
fixed point in theU0 andUr parameter space (except fo
r ­ 0, when there is a trivial marginal fixed line).

There are only two sets of axial fixed points,SR ;
hUp2

0 ­ 2dsd 2 2dys2d 2 3d, Up2
r ­ 0j, with x 1 z ­

2, and LR ; hUp2
0 ­ 0, Up2

r ­ 4dsd 2 2 2 2rdyc1j
with x 1 z ­ 2 2 r. The first set (SR), withlr ­ 0,
corresponds to the known KPZ fixed point, whos
properties have already been mentioned. Howev
we see a relevant perturbationUr which grows at this
fixed point. The stable fixed point ford , 2 1 2r,
with r . 0, is LR, except for the region bounded by
d ­ s9r 1 6dys22r 1 3d and d ­ 2 1 2r. This ex-
cluded region is, like the KPZ case, an artifact of on
loop renormalization [15]. At the new fixed point LR,

z ­ 2 1 F , and x ­ 2r 2 F , (6)

whereF ­ sd 2 2 2 2rd sd 2 2 2 3rdyfds22r 1 3d 2

6 2 9rg This fixed point admitsz , 1 (not unexpected
for long range cases) but, by virtue of the relationx 1

z ­ 2 2 r, x need not be greater than 1, a requireme
2503
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for ignoring higher order terms in Eq. (1). Atd ­ 2, the
marginal relevance ofU0 of the KPZ theory is lost, and
there is a stable fixed point (LR) forr . 0.194.

To discuss the surface morphology and the ph
transitions [23], we consider different values ofd and
r . 22 (see Fig. 1). Also note that the invariance
Eq. (1) underh ! 2h and l ! 2l is respected by the
fixed point equations. Since the nonlinear term is like
force, the change in sign ofl corresponds to a “push
pull” change or a growing to a receding surface case.
therefore consider both positive and negative values oflr

and, without any loss in generality, takel0 $ 0.
Case I.—d , mins2, 2 1 2rd: For r . 0, the stable

fixed point, if it exists, is LR with the dynamic expone
given by Eq. (6). Even if it does not exist in this one loo
approach, still, from the flow, the phase is the “stron
disorder type. We call this a LR phase to distingui
it from the SR or KPZ phase. It is possible to have
transition between two identical LR rough phases (pu
pull). The critical behavior is EW type if there is strictl
no short range nonlinearity, otherwise it is a KPZ (S
type [see Fig. 1(A)]. In contrast, forr , 0 [Fig. 1(D)],
the LR is irrelevant and the surface behavior is alway
SR (KPZ) type, except forl0 ­ 0, when it is a LR phase
There is no phase transition forl0 fi 0.

Case II.—mins2, 2 1 2rd , d , maxs2, 2 1 2rd:
The phases are LR or SR depending on the sign or

[Figs. 1(B) and 1(E)]. Forr . 0, the critical behavior
depends on the strength of the SR nonlinearityl0. For
small l0 , l0c, the critical surface is a smooth on
while for l0 . l0c it is KPZ. There is no transition if
r , 0 andl0 fi 0. However, forl0 ­ 0, there is a LR
rough-to-smooth transition forr , 0 [see Fig. 1(E)].

Case III.—d . maxs2, 2 1 2rd: For r . 0, the LR
fixed point is unstable. A small nonlinearity dies dow
yielding a smooth surface, while a large nonlinearity w
produce a LR rough phase. Unfortunately, the abse
of a fixed point forbids any prediction of the behavi
of the LR phase. The unstable LR fixed point contr
the transition between the rough and smooth surf
with a dynamic exponentzc ­ 2 1 cre 1 Ose2d, where
e ­ d 2 2 2 2r andc ­ 22ryfs2 1 2rd s1 1 32rd 2

32rs2 1 3rdg. This is in striking contrast with the
believed to be exact result ofzc ­ 2 for the KPZ case.
The phase diagram is shown in Fig. 1(C). Forr , 0,
2504
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FIG. 1. lr vs l0 phase diagram. (A)–(C) correspond to
r . 0, while (D)–(F) correspond tor , 0. The thick line
along they axis represents the LR phase, while the mediu
thick line along thex axis represents the SR phase. In (D) an
(E) the phase is SR (KPZ) type for alllr fi 0. The dashed
line in (B) and (E) represents a smooth phase, which exten
over a region in (C) and (F).

there is a phase transition between a SR rough and smo
phase only ifl0 is less than a critical value, as shown i
Fig. 1(F).

Experiments on colloids [5] have yielded a valu
of x ­ 0.71 which is also the value obtained from
paper burning experiments [24]. These are taken as
exponent for a driven surface (line in thed ­ 1 example).
For the colloid problem, hydrodynamic interaction (HI
is important, while in the paper burning experiment,
is possible to have a long range interaction through t
microstructure of the paper. With thisx, Eq. (6) at
the LR fixed point ind ­ 1 gives r ­ 20.12. At this
point, it is difficult to conclude if this is the transient
exponent seen, eventually going over to the KPZ value
large length and time scales [Fig. 1(D)], or a truel0 ­ 0
case. In other cases where HI is known to play a ro
namely, the deposition of latex particles or proteins, th
experiments have not been done for the roughness of
growing surface. We believe such experiments will sh
new light on growth phenomena.

For the KPZ problem, it is known that anisotropy o
the substrate can lead to an overall irrelevance of t
nonlinearity in two dimensions [25]. To see if anisotrop
can have a major effect in the long range case, we n
consider a variation of the problem, where the long ran
interaction has different amplitudes in different direction
Restricting ourselves tod ­ 2, we take
≠hsr, td
≠t

­ kk≠
2
khsr, td 1 k'≠2

'hsr, td 1 hsr, td 1
X

C­k,'

Z
dr0 1

2
qCsr0d≠Chsr 1 r0, td≠Chsr 2 r0, td (7)
s

st.

w

as the anisotropic version of Eq. (1). In the isotropic ca
rl ; qksrdyq'srd ­ 1 and rk ; kkyk' ­ 1 reproduce
Eq. (1). For simplicity, let us concentrate only on
case of anisotropy in the long range part, withl0 ­ 0,
l'sqd ­ l'rq2r , andlksqd ­ lkrq2r . An anisotropic
scaling of the surfacex' ! elx' and xk ! elz xk lead
e,

a

to rl ! e2s12z dlrl. For nonzerorl the scale invariance
consequently restrictsz ­ 1. For rl ­ 0, this constraint
cannot be imposed, and the analytical tractability is lo
To avoid this complexity here, we takerl fi 0 andz ­ 1.

The RG procedure follows as before, only a new flo
equation forrl is required. The recursion relations are
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dk'

dl
­ sz 2 2dk' 1

g'k'

16r
1y2
k 2r

µ
1 2

rl

rk

∂
1

3rg'k'

4r
1y2
k 2r

srk 1 rl 1 2
p

rkd
s1 1

p
rkd2

, (8)

drk

dl
­ 2

g'r1y2
k

16 3 2r

µ
1 2

r2
l

r2
k

∂
2

3rg'22r

4r
1y2
k s1 1

p
rkd2

√
2r3y2

k 1 r2
k 1 rlrk 2 rl 2

r2
l

rk

2
2r2

l
p

rk

!
, (9)

dg'

dl
­ 2rg' 1

g2
'22r

16r
1y2
k

"
s3r2

l 1 3r2
k 1 2rlrkd

r2
k211r

2 3

µ
1 2

rl

rk

∂
2 36r

rk 1 rl 1 2
p

rk

s1 1
p

rkd2

#
, (10)
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whereg' ­ l
2
'DK2k

23
' . Forrl . 0, Eq. (9) has a fixed

point with rp
k . 0, which is a continuation of the isotropic

fixed point rl ­ rk ­ 1 for r ­ 0. The important
fixed point for us isrp

k ­ 2rl, which is physical, from
the stability requirement of the surface, only ifrl is
negative. We consider only this anisotropic case he
The flow equation forg' now allows a fixed point,
unlike the isotropic case discussed earlier. For sm
r, the anisotropic fixed point is atgp

' ø 8r
p

jrlj, with
z ­ 2 2 ry2 1 Osr2d from Eq. (8).

The effect of different signs oflr is to have opposing
(push-pull) effects in the two orthogonal directions. I
the KPZ case, they cancel each other, producing
EW surface [25]. In the LR case, we predict a ne
type of rough surface withz , 2 for r . 0, though,
on the whole, it may be flat but singular withx , 0.
Surprisingly, this case seems to be better controlled
the RG approach than the isotropic case. This, in tu
calls for further studies of therl ­ 0 situation entailing
anisotropic scaling of spacesz fi 1d.

In summary, we have proposed a simple phenome
logical model, Eq. (1), that incorporates, as a minim
model, long range interactions in growth problems. W
have shown thatany interaction decaying slower than
1yrd makes the KPZ or the short range nonlinear ca
unstable, and asymptotically the surface will have diffe
ent roughness with exponents depending on the power
of the interaction. The critical behavior in going from
growing to a receding surface can be of various type
depending on the dimensionality and strength of the int
action, as shown in Fig. 1. Power laws decaying fas
than1yrd are suppressed by any local or short range no
linearity yielding a KPZ-like roughness but, when alon
it can produce a still rougher surface.
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