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Nonlocality in Kinetic Roughening
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We propose a phenomenological equation to describe kinetic roughening of a growing surface in the
presence of long range interactions. The roughness of the evolving surface depends on the long range
feature, and several distinct scenarios of phase transitions are possible. Experimental implications are
discussed. [S0031-9007(97)04170-7]
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“Suppose that we take a bin and gently and uniformlyequation with an additional noise term. If, instead of the
pour in granular material. As the material in the binglobal, the local normal is favored, the KRX#)? term
builds up we can identify a surface and ask the questions needed [2]. This nonlinear term describes the lateral
‘What is the magnitude of the fluctuation in the heightgrowth at a point that can be seen from the height pro-
of surface (measured from the base of the bin)?’ Alsdile [3,4]. We now extend this physical interpretation and
of interest is the length scale of the surface fluctuationsake the gradient (or its magnitude) as a measure of the lo-
and how they behave dynamically as more material isal density of deposited particles. The long range effect is
added” [1]. And thus was born the Edwards-Wilkinsonnow incorporated by coupling these gradients at two dif-
(EW) model for surface growth—a solvable linear modelferent points. Based on this intuitive picture, the equation
at the heart of our current understanding of numerousve propose is the following:
growth processes. A relevant nonlinear term, added to
this by Kardar-Parisi-Zhang (KPZ) [2—4], brought to light 9h(r, 1) = kV2h(r, 1) + n(r,1)
the nuances of growth phenomena to the extent that the 9?

KPZ equation very soon became a paradigm, in particular 1 o , ,

for dynamic phase transitions. The applicability of the +§ fdr FE)VA(e +r' 1) - Vale —r'1), (1)
KPZ equation seems to encompass length scales from an

atomic level to macroscopic phenomena of everyday lifewhere x is the diffusion constant for the particles on
but still a specter is haunting the field: Why is the KPZthe surface, andn is a random space-time depen-
behavior not observed [3]? dent white noise of zero mean afg(r, 1)y’ t')) =

Many of the experimental situations, however, involve2As(r — r')6(r — t'). The kerneld(r) is of long range
complex processes which beg to go beyond the idealizaand, in principle, connected to the underlying interactions
tion, as pouring of noninteracting particles. This is espefll]. So, we taked(r) to have a short range (SR) part
cially true if medium or fluctuation induced interactions Ao6(r) and a long range (LR) part-r?~¢, or more
interfere with the process as, for example, in the severgirecisely, in Fourier space(k) = Ao + A,k *. Equa-
recently studied systems involving proteins, colloids ortion (1) then smoothly [12] goes over to the KPZ equation
latex particles [5—8], or in sedimentation. The major in-for A, = 0. We show that this leading term introduced
teraction one has to reckon with, as detailed numericak sufficient to yield a new fixed point with continuously
computations suggest [9,10], is theng rangedhydrody-  varying exponents, and different phase transitions not
namic interaction. Are such long range interactions relefound in the KPZ problem. The connection with experi-
vant for the roughness of the surface? This question, thments is discussed near the end of this paper.
absence of a formalism to handle such interactions in the A central quantity of interest in growth problems is the
growth process, and the elusiveness of the KPZ behavioscaling behavior of fluctuation of the heigliti(r,r) —
led us to propose a simple phenomenological model by(0,0)|%), which on a large length and time scale has a
focusing on the long range nature of the extra force. scaling form|r|>X F(|¢t]/Ir|?). Here y is the roughness

We developed a Langevin equation-type descriptionexponent of the growing surface andis the dynamic
where long range aspects can be simulated by a force akponent. These two exponents define the universality
each point of the growing surface exerted by the particleslasses of roughening.
away from it—a hint to go beyond a strict local descrip- At d = 1, for the local growth (i.e., KPZ) equation a
tion. In the linear EW model, the growth is along the disorder dominated rough phase is found forAglby sev-
global normal to the surface without any overhang. Theeral exact treatments [13,14] providing= 1/2 andz =
heightx(r, 1), at pointr and timez, satisfies the diffusion 3/2. The nonlinearity is marginally relevant at= 2,
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and ford > 2 there is a phase transition from a strong dis-disorder. Next we look for the terms contributing to the
order dominated phadgy + z = 2 for all d) to a weak effective nonlinearity. Note that the RG transformation,
coupling phase where nonlinearity is irrelevant, i.e., a flabeing analytic in nature, cannot generate a singular term
phase withz = 2. The perturbation theory is inadequate to renormalizer, for p > —2. In fact, there is no renor-
for the strong coupling phase @t= 2 due to the lack of a malization of A, either. A contribution to\y could come
perturbative fixed point [15]. Numerical simulations [16] from terms ofO(A9¥?), and a straightforward calculation
predictz = 1.6 atd = 2. The phase transition is, how- [21] shows that such terms do cancel each other [22].

ever, under control, with = 2V 4 > 2 [17,18], with a Following the above procedure, we arrive at the flow
rather complicated critical behavior [19,20]. equations fork andA as
A simple scaling analysis indicates that both and dx AK,
Ao are relevant ford < 2 at the Gaussian fixed point — = K|: - <2 + —5 9291
(EW) where one expectsy = (2 — d)/2 and z = 2. dl K
This follows from the scale invariance of Eq. (1) under cd=-2+ 3f(1)>} (3)
the transformatiorr — br, t+ — b%t, h — bXh, where 4d ’
k= b2k, A— bITITXA, g — bXTIT2),, and JA AZK
Ap = bITXTP72) . Also, for any nonzeroA, with i (z —d—-2y)A + 4K3d 3(2)%, 4

p > 0, the local KPZ theory X, =0 and y + z = 2)

is “unstable” under renormalization and a non-KPZwhere f(a) = 9In 9(k)/0 Inkli—,, the (effective) expo-
behavior is expected. Fa <d <2+ 2p, only A,  nent of (k) andK,; = S;/(2m)¢, S4 being the surface
is relevant at the EW fixed point. In the following we area of ad-dimensional unit sphere. The flow equations
adopt a dynamic renormalization group (RG) procedurefor A, and A,, having contribution only from the rescal-
Our results show a new stable fixed pointdat= 1, for ing, aredA,/dl = (y + z — 2 + x)A,, (x = 0 or p).

any p > 0. Another interesting consequence of thisThe two parametery andz are chosen to keep and
nonlocality is the possibility of a stable fixed point at one of A, invariant.

d = 2 for a certain range op. The marginal relevance In terms of U? = AA2K,/k?, andR = Uo/U,, with
of nonlinearity in the original KPZ theory is destroyed.  the choicey + z =2 (or 2 — p) and z equal to the

The renormalization procedure is most succinctly deexpression inside the big round bracket of Eq. (3), the
scribed through the Fourier modes momentgrand fre-  flow equations can be combined into two as
guencyw, in terms of which Eq. (1) becomes

dUy (2 — d) 2d — 3,
s =0 _ Uy + U;
b, ) = Gola, ) mla,0) — (1/2) 2m) di 2 4d
UoU,

+ coUg + 1U,], 5
% ]dq’dw’ﬁ(Zq’)m “q- sg 0% eith] ©
anddR/dl = —pR, wherecy = (5d — 6)(1 + 27°P) —
X h(q+,w+)h(q,w)}, (2) 2d—9p, andc; =[3+27°)d —6—9p]27". The

equation forR rules out the existence of any off-axis

where, symbolically,X- = X/2 = X’ with X = q or fixed pointin thel, andU, parameter space (except for
w. HereGy(q, w) = 1/(kq® — iw) represents the bare P = 0, when there is a trivial marg_lnal_ fixed I|r_1e).
propagator or the Green function for the diffusion equa- There are only two sets of axial fixed poinSR =
tion. We follow the usual iterative perturbation scheme{Us~ = 2d(d — 2)/(2d — 3),U,;?> = 0}, with x + z =
where’ in the right-hand side of Eq. (2) is replaced by2, and LR = {U;? = 0, U? =4d(d — 2 — 2p)/c1}
Eq. (2) itself up toO(¥?). A convenient diagrammatic with y + z =2 — p. The first set (SR), with, = 0,
representation can be set up from this scheme, and thmrresponds to the known KPZ fixed point, whose
renormalization of the various parameters can be obtaingoroperties have already been mentioned. However,
from appropriate vertex functions. We skip the detailswe see a relevant perturbatidn, which grows at this
as they are very similar to Ref. [21]. In the subsequenfixed point. The stable fixed point fod < 2 + 2p,
renormalization procedure, we integrate out small lengttwith p > 0, is LR, except for the region bounded by
scale fluctuations over a momentum sh&kt! = ¢’ =  d=p +6)/277 +3) andd =2 + 2p. This ex-
A to obtain the effective parameters for a similar equatiorcluded region is, like the KPZ case, an artifact of one
but with a smaller cutoffAe !, whereA (set to 1) is re- loop renormalization [15]. At the new fixed point LR,
lated to the microscopic cutoff. A subsequent rescaling . .
then restores the cutoff t. ¢=2+®, and y=-p-®, (6)

The effective propagato6(q, w) = h(q, w)/n(q,w) whered = (d —2 —2p)(d —2 — 3p)/[d277 +3) —
gives the renormalization of tensiork. The ef- 6 — 9p] This fixed point admits < 1 (not unexpected
fective noise, obtained from(i*(q,w)h(q,w)) =  for long range cases) but, by virtue of the relatipn+
2AG(q, w)G(—q, —w), gives the renormalization of the z =2 — p, y need not be greater than 1, a requirement

2503



VOLUME 79, NUMBER 13 PHYSICAL REVIEW LETTERS 29 BPTEMBER1997

for ignoring higher order terms in Eq. (1). At= 2, the | @ a<z ay [BRe20502 K| €242
marginal relevance of/, of the KPZ theory is lost, and LR rough LR rough T\ LR rough
there is a stable fixed point (LR) for > 0.194. % A,
To discuss the surface morphology and the phase LR rough LR rough LRrough
transitions [23], we consider different valuesdofnd )
p > —2 (see Fig. 1). Also note that the invariance of & D) d<2 22 A B4 2p<d2 ®lmas2
Eq. (1) underh — —h andA — — A is respected by the SRrough 1 SRroush i
fixed point equations. Since the nonlinear term is like a N n
force, the change in sign of corresponds to a “push- SR rough ISR rough SR rough

pull” change or a growing to a receding surface case. We
therefore consider both positive and negative values,of FIG. 1. A, vs A, phase diagram. (A)—(C) correspond to
and, without any loss in generality, takg = 0. p >0, while (D)—(F) correspond tgp < 0. The thick line
Case l—d < min(2,2 + 2p): Forp > 0, the stable alpng_they axis represents the LR phase, while the medium
. AR . . p) P . thick line along thex axis represents the SR phase. In (D) and
fixed point, if it exists, is LR with the dynamic exponent (g) the phase is SR (KPZ) type for all, # 0. The dashed
given by Eq. (6). Even if it does not exist in this one loopline in (B) and (E) represents a smooth phase, which extends
approach, still, from the flow, the phase is the “strong”over a region in (C) and (F).
disorder type. We call this a LR phase to distinguish
it from the SR or KPZ phase. It is possible to have a
transition between two identical LR rough phases (pushthere is a phase transition between a SR rough and smooth
pull). The critical behavior is EW type if there is strictly phase only if) is less than a critical value, as shown in
no short range nonlinearity, otherwise it is a KPZ (SR)Fig. 1(F).
type [see Fig. 1(A)]. In contrast, fgg < 0 [Fig. 1(D)], Experiments on colloids [5] have yielded a value
the LR is irrelevant and the surface behavior is always @f y = 0.71 which is also the value obtained from
SR (KP2Z) type, except foky = 0, when it is a LR phase. paper burning experiments [24]. These are taken as the
There is no phase transition fag # 0. exponent for a driven surface (line in tde= 1 example).
Case ll—min(2,2 + 2p) < d < max(2,2 + 2p):  For the colloid problem, hydrodynamic interaction (HI)
The phases are LR or SR depending on the sigm of is important, while in the paper burning experiment, it
[Figs. 1(B) and 1(E)]. Fomp > 0, the critical behavior is possible to have a long range interaction through the
depends on the strength of the SR nonlineadigy For  microstructure of the paper. With thig, Eq. (6) at
small Ap < Ag., the critical surface is a smooth one, the LR fixed point ind = 1 givesp = —0.12. At this
while for Ay > A it is KPZ. There is no transition if point, it is difficult to conclude if this is the transient
p < 0andi, # 0. However, forAg = 0, there is a LR exponent seen, eventually going over to the KPZ value on
rough-to-smooth transition fg5 < 0 [see Fig. 1(E)]. large length and time scales [Fig. 1(D)], or a ttue= 0
Case lll—d > max(2,2 + 2p). Forp > 0,the LR case. In other cases where HI is known to play a role,
fixed point is unstable. A small nonlinearity dies down, namely, the deposition of latex particles or proteins, the
yielding a smooth surface, while a large nonlinearity will experiments have not been done for the roughness of the
produce a LR rough phase. Unfortunately, the absencgrowing surface. We believe such experiments will shed
of a fixed point forbids any prediction of the behavior new light on growth phenomena.
of the LR phase. The unstable LR fixed point controls For the KPZ problem, it is known that anisotropy of
the transition between the rough and smooth surfacthe substrate can lead to an overall irrelevance of the
with a dynamic exponent, = 2 + cpe + O(€?), where  nonlinearity in two dimensions [25]. To see if anisotropy
e=d—2—2pandc = -2°/[(2 + 2p)(1 + 32?) —  can have a major effect in the long range case, we now
32°(2 + 3p)]. This is in striking contrast with the consider a variation of the problem, where the long range
believed to be exact result af = 2 for the KPZ case. interaction has different amplitudes in different directions.
The phase diagram is shown in Fig. 1(C). For< 0, | Restricting ourselves td = 2, we take

oh(r,1)
ot

1
= K||8|2|h(r,t) + k102 h(r,1) + n(r,1) + Z ]dr'z Dy )oyh(r + v, t)ogh(x —x',t)  (7)
v=||,L

as the anisotropic version of Eq. (1). In the isotropic caseto r, — ¢2!=9!r,. For nonzeror, the scale invariance
ry = Y)(r)/9.(r) =1 andr, = k| /k. = | reproduce consequently restricté = 1. Forr, = 0, this constraint
Eq. (1). For simplicity, let us concentrate only on acannot be imposed, and the analytical tractability is lost.
case of anisotropy in the long range part, with = 0,  To avoid this complexity here, we takg # 0 and{ = 1.
A(q) = A ,q7 7, andAj(q) = Aj,q ”. An anisotropic The RG procedure follows as before, only a new flow
scaling of the surface; — e'x, and x; — ¢'“x lead equation forr, is required. The recursion relations are
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dKl:(Z—Z)K L _8LKL <1_r_,\>+3pgﬂ<l (re + ra + 27%) @®
a7 CaeneN o P Ly
dr, 1/2 2 3pg 2P 2 50
Tx —&< - %) - 1/2ng 2r£/2 + r,% + FAFe — Ty — o 2 , (9)
dl 16 X 2¢ rz 4rd T+ 1) e  AJTx
d 2277 (3ry + 3r2 + 2rr, re + 1+ 27
9L _ppe, + 8L 12 Bry + 3r; “r)—3<1—r—">—36p A T 2T ’ (10)
dl 167 r2alte re (1 + Jre)?

whereg, = A2 AK>k1>. Forr, > 0, Eq. (9) has a fixed!
point with »; > 0, which is a continuation of the isotropic
fixed point ry, =r, =1 for p =0. The important
fixed point for us isr; = —r,, which is physical, from
the stability requirement of the surface, only if is
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