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Abstract Let f be a function from R+ into itself. A classic theorem of K. Löwner says

that f is operator monotone if and only if all matrices of the form
[

f(pi)−f(pj)
pi−pj

]
are positive

semidefinite. We show that f is operator convex if and only if all such matrices are conditionally

negative definite and that f(t) = tg(t) for some operator convex function g if and only if these

matrices are conditionally positive definite. Elementary proofs are given for the most interesting

special cases f(t) = tr, and f(t) = t log t. Several consequences are derived.
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1 Introduction

Let f be a continuously differentiable function from the interval (0,∞) into itself, with the

additional property f(0) = limt→0+f(t) = 0. Given any n distinct points p1, . . . , pn in (0,∞),

let Lf (p1, . . . , pn) be the n × n matrix defined as

Lf (p1, . . . , pn) =

[
f(pi) − f(pj)

pi − pj

]
, (1.1)

with the understanding that when i = j the quotient in (1.1) is interpreted as f ′(pi). (We use

the notation [aij ] to mean a matrix whose entries are aij .) Such a matrix is called a Loewner

matrix associated with f.

Of particular interest to us is the function f(t) = tr where r > 0. We use the symbol Lr for

a Loewner matrix associated with this function. Thus

Lr =

[
pr

i − pr
j

pi − pj

]
, (1.2)

assuming that the n distinct points p1, . . . , pn have been chosen and fixed.

The function f is said to be operator monotone on [0,∞) if for two positive semidefinite

matrices A and B (of any size n) the inequality A ≧ B implies f(A) ≧ f(B). Here, as usual,

A ≧ B means that A − B is positive semidefinite (p.s.d. for short).

In 1934 Karl Löwner (later Charles Loewner) wrote one of the most fundamental papers

in matrix analysis [22]. One principal result of this paper is that f is operator monotone if

and only if for all n, and all p1, . . . , pn, the Loewner matrices Lf (p1, . . . , pn) are p.s.d. Another

major result is that the function f(t) = tr is operator monotone if and only if 0 < r ≦ 1.

Consequently, if 0 < r ≦ 1, then the matrix (1.2) is p.s.d., and therefore all its eigenvalues are

non-negative.

Closely related to operator monotone functions are operator convex functions. Assume that

f is a C2 function from (0,∞) into itself, f(0) = 0 and f ′(0) = 0. We say that f is operator

convex if

f ((1 − t)A + tB) ≦ (1 − t)f(A) + tf(B), 0 ≦ t ≦ 1,

for all p.s.d. matrices A and B (of any size n).

Following Loewner’s seminal work there have been several studies of these two classes of

functions; see in particular [1, 7, 8, 15, 16, 17, 19, 20]. The emphasis of the present paper is on

Loewner matrices, their spectral properties, and their role in characterising operator convexity.

Along with p.s.d. matrices we consider conditionally positive definite and conditionally

negative definite matrices. Let Hn be the subspace of C
n consisting of all x = (x1, . . . , xn) for

which
n∑

i=1
xi = 0. An n × n Hermitian matrix A is said to be conditionally positive definite

(c.p.d. for short) or almost positive if

〈x,Ax〉 ≧ 0 for all x ∈ Hn,
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and conditionally negative definite (c.n.d. for short) if −A is c.p.d. We refer the reader to

[5, 16, 19] for properties of these matrices.

We will prove the following:

Theorem 1.1. Let f be an operator convex function. Then all Loewner matrices associated

with f are conditionally negative definite.

One of the interesting relations between operator monotone and convex functions is that

f(t) is operator convex on [0,∞) if and only if g(t) = f(t)/t is operator monotone on (0,∞).

This plays an important role in the analysis of [17]. The class of functions f(t) = tg(t) where g

is operator convex seems equally interesting in this context, as evidenced by our next theorem.

Theorem 1.2. Let f(t) = tg(t) where g is an operator convex function. Then all Loewner

matrices associated with f are conditionally positive definite.

Since the function f(t) = tr, 1 ≦ r ≦ 2 is operator convex, part (i) of the following theorem

is a corollary of Theorems 1.1 and 1.2. We state it as a separate theorem because all the

essential ideas of the proof are contained in this special case.

Theorem 1.3. Let Lr be the n × n Loewner matrix (1.2) associated with distinct points

p1, . . . , pn. Then

(i) Lr is conditionally negative definite for 1 ≦ r ≦ 2, and conditionally positive definite for

2 ≦ r ≦ 3.

(ii) Lr is nonsingular for 1 < r < 2 and for 2 < r < 3.

(iii) As a consequence, for 1 < r < 2 the matrix Lr has one positive and n − 1 negative

eigenvalues, and for 2 < r < 3 it has one negative and n − 1 positive eigenvalues.

Part (iii) of this theorem extends a theorem of Bhatia and Holbrook [11] and reveals the

underlying cause for it. Motivated by some questions in perturbation analysis [14] they ex-

amined the matrices Lr, 1 ≦ r ≦ 2, and showed that in this case Lr has exactly one positive

eigenvalue. Their proof was based on the fact that the function f(t) = tr is operator convex

for r in this range, and they noted that their result is valid for the matrices Lf associated with

all such functions. Theorem 1.3 makes the “why” of this apparent.

It is natural to ask whether the converse of Theorems 1.1 and 1.2 is true. It is, and we

prove:

Theorem 1.4. Let f be a C2 function from (0,∞) into itself with f(0) = f ′(0) = 0.

Suppose all Loewner matrices Lf are conditionally negative definite. Then f is operator convex.

Theorem 1.5. Let f be a C3 function from (0,∞) into itself with f(0) = f ′(0) = f ′′(0) = 0.

Suppose all Loewner matrices Lf are conditionally positive definite. Then there exists an
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operator convex function g such that f(t) = tg(t).

Löwner showed that f is operator monotone if and only if it has an analytic continuation

mapping the upper half plane into itself. Conditions for this continuation to be a one-to-one

map were found by R. Horn [18]. Theorems 1.2 and 1.5 are just a step away from some results

in that paper. The emphasis there is on complex mapping properties and the connection with

operator convex functions is not made.

In Section 2 we give a proof of Theorem 1.3 that is elementary and independent of the general

theory of operator convex functions. We then show how it can be extended to the general case

of Theorems 1.1 and 1.2. A few applications and connections with some important theorems

of matrix theory are given in Section 3.

2 Proofs

Proof of Theorem 1.3. For t > 0 and 0 < r < 1 we have the well known formula [8, p.116]

tr =
sin rπ

π

∫ ∞

0

t

λ + t
λr−1 dλ. (2.1)

For our purpose it is convenient to abbreviate this as

tr =

∫ ∞

0

t

λ + t
dµ(λ), 0 < r < 1, (2.2)

where µ is a positive measure on (0,∞). For each λ > 0 let

hλ(t) =
t

λ + t
.

An n × n Loewner matrix corresponding to this function has as its (i, j) entry

pi

λ+pi
−

pj

λ+pj

pi − pj
,

which on simplification reduces to

λ

(λ + pi)(λ + pj)
.

If E is the matrix with all its entries equal to 1, and Dλ is the diagonal matrix diag

(
1

λ + p1
, . . . ,

1

λ + pn

)
,

then we can express the Loewner matrix above as

Lhλ
(p1, . . . , pn) = λDλEDλ.

Clearly this matrix is p.s.d. The integral in (2.2) is a limit of positive linear combinations of

hλ, and hence the Loewner matrix Lr(p1, . . . , pn) is p.s.d. for every r in (0, 1).
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The simple idea behind this computation can be carried further. From (2.2) we obtain the

formula

tr =

∫ ∞

0

t2

λ + t
dµ(λ), 1 < r < 2. (2.3)

Now for each λ > 0, let

gλ(t) =
t2

λ + t
.

Using the identity
1

a − b

(
a2

λ + a
−

b2

λ + b

)
= 1 −

λ2

(λ + a)(λ + b)
,

one can see that

Lgλ
(p1, . . . , pn) = E − λ2DλEDλ,

where Dλ is the diagonal matrix defined earlier. If x is any vector in the space Hn, then

Ex = 0. The matrix DλEDλ is p.s.d., and hence 〈x,DλEDλx〉 ≧ 0 for every x. This shows

that 〈x,Lgλ
x〉 ≦ 0 for x ∈ Hn, and Lgλ

is c.n.d. The integral in (2.3) is a limit of positive

linear combinations of gλ, and hence the Loewner matrix Lr is c.n.d. for 1 < r < 2.

The next case is slightly more intricate. We have

tr =

∫ ∞

0

t3

λ + t
dµ(λ), 2 < r < 3. (2.4)

For each λ > 0, let

fλ(t) =
t3

λ + t
.

Simple algebraic manipulations show that

1

a − b

(
a3

λ + a
−

b3

λ + b

)
=

λ(a2 + ab + b2) + ab(a + b)

(λ + a)(λ + b)

= a + b −
λ2(a + b) + λab

(λ + a)(λ + b)

= a + b − λ +
λ3

(λ + a)(λ + b)
.

Using this one sees that the Loewner matrix for fλ can be expressed as

Lfλ
(p1, . . . , pn) = DE + ED − λE + λ3DλEDλ,

where D = diag (p1, . . . , pn), and Dλ is the diagonal matrix defined earlier. The matrix DλEDλ

is p.s.d., and for all x ∈ Hn we have Ex = 0 and 〈x,EDx〉 = 〈Ex,Dx〉 = 0. Thus 〈x,Lfλ
x〉 ≧ 0

for all x ∈ Hn, and Lfλ
is a c.p.d. matrix. As before, it follows that Lr is c.p.d. for 2 < r < 3.

Note that L1 = E,L2 = [pi+pj] = DE+ED, and L3 = [p2
i +pipj+p2

j ] = D2E+DED+ED2.

This shows that L1 is both p.s.d. and c.n.d. Since 〈x,L2x〉 = 0 for all x ∈ Hn, the matrix L2 is

both c.n.d. and c.p.d. Similarly, 〈x,L3x〉 ≧ 0 for all x ∈ Hn, and hence L3 is a c.p.d. matrix.

This completes the proof of part (i). For part (ii) we again use the integrals (2.2)-(2.4). We

include the case 0 < r < 1 in our discussion.
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Let x be any element of C
n. Then our analysis for the case 0 < r < 1 shows that

〈x,Lrx〉 =

∫ ∞

0
〈x,DλEDλx〉 dµ(λ)

=

∫ ∞

0

n∑

i,j=1

λ

(λ + pi)(λ + pj)
xixj dµ(λ)

=

∫ ∞

0
λ

∣∣∣∣∣

n∑

i=1

xi

λ + pi

∣∣∣∣∣

2

dµ(λ).

This expression is equal to zero if and only if

n∑

i=1

xi

λ + pi

= 0

for almost every λ > 0. Since the functions ϕi(λ) =
1

λ + pi
, 1 ≦ i ≦ n on [0,∞) are linearly

independent, this can happen if and only if xi = 0 for all i. This means that Lr is nonsingular.

When r > 1 the matrix Lr is not p.s.d. Since all its entries are positive it cannot be negative

semidefinite either. Once we know that Lr is c.n.d. or c.p.d., then the idea of the preceding

paragraph works. According to Lemma 4.3.5 in [5] if A is a matrix which is c.p.d. but not

p.s.d., then A is nonsingular if and only if for x ∈ Hn we have 〈x,Ax〉 = 0 only when x = 0.

For 1 < r < 2 we have seen that

Lr =

∫ ∞

0

(
E − λ2DλEDλ

)
dµ(λ).

So for x ∈ Hn we have

〈x,Lrx〉 = −

∫ ∞

0
λ2〈x,DλEDλx〉 dµ(λ)

= −

∫ ∞

0
λ2

∣∣∣∣∣

n∑

i=1

xi

λ + pi

∣∣∣∣∣

2

dµ(λ).

If this is 0, then we must have x = 0 by the same argument as we used for the case 0 < r < 1.

Thus Lr is nonsingular.

For 2 < r < 3 we have shown that

Lr =

∫ ∞

0

(
DE + ED − λE + λ3DλEDλ

)
dµ(λ).

Hence for x ∈ Hn we have

〈x,Lrx〉 =

∫ ∞

0
λ3

∣∣∣∣∣

n∑

i=1

xi

λ + pi

∣∣∣∣∣

2

dµ(λ).

This is 0 if and only if x = 0. Again the conclusion is that Lr is nonsingular. This proves part

(ii).
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To prove part (iii) we observe that for 1 < r < 2, the matrix Lr is c.n.d., nonsingular, and

has positive entries. Hence, it must have one positive and n − 1 negative eigenvalues. See e.g.

[5] Corollary 4.1.5. For 2 < r < 3 the role of negative and positive is reversed. This completes

the proof of Theorem 1.3. �

We emphasize that we have used nothing from the general theory of operator monotone and

convex functions in the proof above. The integral (2.1) is a standard one derived using contour

integration. If we drop the conditions f(0) = f ′(0) = 0 and f(t) > 0 from the definition, the

general theory tells us that an operator convex function on [0,∞) has the form

f(t) = α + βt + γt2 +

∫ ∞

0

t2

λ + t
dν(λ), (2.5)

where α, β, γ are real numbers with γ ≧ 0, and ν is a positive measure on (0,∞). See [8, p.147].

The Loewner matrix corresponding to such an f is also c.n.d. This is seen by observing that

the Loewner matrix corresponding to the function g(t) = α + βt + γt2 is βE + γ(DE + ED),

and this is c.n.d. In particular, this proves Theorem 1.1.

In the same way if f(t) = tg(t) where g is operator convex on [0,∞) with no special

conditions imposed on its values at 0, then f has the form

f(t) = αt + βt2 + γt3 +

∫ ∞

0

t3

λ + t
dν(λ), (2.6)

where γ ≧ 0. The Loewner matrix corresponding to g(t) = αt+βt2+γt3 is αE+β(DE+ED)+

γ(D2E + DED + ED2). This is a c.p.d. matrix. Hence every Loewner matrix corresponding

to the function f in (2.6) is also c.p.d. In particular, this proves Theorem 1.2.

The function f(t) = t log t is especially important because of its connections with classical

and quantum entropy. It is known to be operator convex on [0,∞), and the corresponding

Loewner matrices Lf are c.n.d. This fact can also be derived in a simple way from Theorem

1.3. For each x ∈ Hn, and 1 < r ≦ 2 we have

〈x, (Lr − L1)x〉 ≦ 0.

Divide by r − 1, let r → 1+, and use the fact that

limr→1+

tr − t

r − 1
= t log t,

to get from the inequality above

〈x,Lf x〉 ≦ 0 for all x ∈ Hn.

In other words Lf is c.n.d.

Proof of Theorem 1.4. We exploit the connection between c.n.d. and p.s.d. matrices and

that between operator convex and monotone functions. If A is an n × n c.p.d. matrix, then
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the (n − 1) × (n − 1) matrix B with entries

bij = aij − ain − anj + ann (2.7)

is p.s.d. See [5, p.193] or [16, p.134]. Choose p1, . . . , pn in (0,∞) with pn = ε > 0. Then the

matrix B(ε) associated with Lf (p1, . . . , pn) via the prescription (2.7) has entries

bij(ε) =
f(pi) − f(pj)

pi − pj

−
f(pi) − f(ε)

pi − ε
−

f(pj) − f(ε)

pj − ε
+ f ′(ε).

Since Lf is c.n.d. the matrix −B(ε) is p.s.d. Let ε ↓ 0; then B(ε) converges to the matrix B

with entries

bij =
p2

jf(pi) − p2
i f(pj)

pi(pi − pj)pj
, (2.8)

and −B is p.s.d. Let D be the diagonal matrix with entries pi/f(pi), 1 ≦ i ≦ n − 1 on its

diagonal. Then the matrix

−DBD =

[
p2

i /f(pi) − p2
j/f(pj)

pi − pj

]

is p.s.d. But this is a Loewner matrix associated with the function g(t) = t2/f(t). The positive

definiteness of all such matrices implies that the function g(t) is operator monotone on (0,∞).

Since g is operator monotone on (0,∞), so is the function t/g(t) = f(t)/t. See [17] Corollary

2.6. This, in turn implies that f is operator convex, by a theorem of Bendat and Sherman [7];

see also [17] Theorem 2.4. �

Proof of Theorem 1.5. The argument is similar to that in the preceding proof. If the

Loewner matrices Lf are c.p.d. then every (n − 1) × (n − 1) matrix B given in (2.8) is p.s.d.

Let D be the diagonal matrix with entries 1/pi, 1 ≦ i ≦ n−1 on its diagonal. Then the matrix

DBD =

[
f(pi)/p

2
i − f(pj)/p

2
j

pi − pj

]

is p.s.d. In other words all Loewner matrices associated with the function h(t) = f(t)/t2

are p.s.d. and consequently this function is operator monotone on (0,∞). Again by [17], the

function g(t) = th(t) is operator convex, and we have f(t) = tg(t). �

Remark. Theorems 1.1, 1.2, 1.4 and 1.5 together say the following. Let f be a C3 function

from (0,∞) into itself with f(0) = 0. Let g(t) = tf(t), h(t) = t2f(t). Then the following three

conditions are equivalent.

(i) All Loewner matrices Lf are p.s.d.

(ii) All Loewner matrices Lg are c.n.d.

(iii) All Loewner matrices Lh are c.p.d.
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3 Applications

A matrix A with nonnegative entries aij is said to be infinitely divisible if for every r > 0

the Hadamard power A◦r = [ar
ij ] is p.s.d. Such matrices have been studied in various contexts

in probability and harmonic analysis. See [9], [10, Chapter 5] for several examples of such

matrices. According to Loewner’s theory all matrices Lf are p.s.d. if and only if f has an

analytic continuation mapping the upper half plane into itself. Horn [18] has proved that

this continuation is a univalent map on the upper half plane if and only if the matrices Lf

are infinitely divisible. Thus the Loewner matrices Lr are infinitely divisible for 0 < r ≦ 1.

Alternate proofs of this fact have been given in [12]. One more can be based on Theorem 1.3.

Theorem 3.1. Every Loewner matrix Lr, 0 < r ≦ 1, is infinitely divisible.

Proof. By a theorem of R. Bapat [4] (see also [5, Section 4.4], [19, p.458]) if a symmetric

matrix A has positive entries and exactly one positive eigenvalue, then the Hadamard reciprocal

matrix [1/aij ] is infinitely divisible. So, together our Theorem 1.3 (iii) and Bapat’s theorem

imply that for 1 ≦ r ≦ 2, the matrix [
pi − pj

pr
i − pr

j

]
,

is infinitely divisible. This is the same as saying that for 1
2 ≦ r ≦ 1, the matrix

[
pr

i − pr
j

pi − pj

]
,

is infinitely divisible. Now suppose 1
4 ≦ r ≦ 1

2 . We have

[
pr

i − pr
j

pi − pj

]
=

[
1

pr
i + pr

j

]
◦

[
p2r

i − p2r
j

pi − pj

]
, (3.1)

where ◦ stands for the Hadamard (entrywise) product of matrices. The first matrix on the

right hand side of (3.1) is a Cauchy matrix and is infinitely divisible [9], [10, p.24]. The second

matrix is infinitely divisible since 1
2 ≦ 2r ≦ 1. The Hadamard product of two infinitely divisible

matrices is infinitely divisible. Hence the matrix (3.1) is infinitely divisible. The argument can

be repeated to complete the proof. �

Remark. Our method gives one more proof of the infinite divisibility of the Cauchy matrix.

We have [pi + pj] = DE +ED, which is a c.n.d. matrix, and hence by Bapat’s theorem
[

1
pi+pj

]

is infinitely divisible. The same idea leads to a simple proof of the infinite divisibility of some

nice functions. A complex valued function f on R is said to be positive definite if for all n and

for all x1, . . . , xn in R the matrix [f(xi − xj)] is p.s.d. If f takes only nonnegative values, then

f is called infinitely divisible if every matrix [f(xi − xj)] is infinitely divisible.
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Theorem 3.2. For every b > 0 the function

g(x) =
1

b + |x| + |x|2

on the real line is infinitely divisible.

Proof. Consider the matrix

[ϕ(xi − xj)] = [b + |xi − xj | + |xi − xj|
2].

If all xi are replaced by xi + α, then this matrix does not change. So we may assume all xi are

positive. Write the last expression as

ϕ(xi − xj) = b + xi + xj − 2min(xi, xj) + x2
i − 2xixj + x2

j ,

to obtain

[ϕ(xi − xj)] = bE + DE + ED − 2M + D2E − 2DED + ED2,

where M = [min(xi, xj)]. This matrix is p.s.d.[9], and so is DED. All the other matrices on

the right hand side are c.n.d. So [ϕ(xi − xj)] is c.n.d., and therefore [g(xi − xj)] is infinitely

divisible by Bapat’s theorem. �

Remark. The infinite divisibility of g can be proved in another way. The function

e−|x|a is positive definite for 0 < a ≦ 2. See [10, p.151]. Hence for every r > 0 the function(
e−|x|a

)r
= e−|r1/ax|a is also positive definite. In other words e−|x|a is infinitely divisible. Hence

by Theorem 6.3.13 in [18] the function |x|a is c.n.d. for 0 < a ≦ 2. This shows that if αj are

positive numbers and 0 ≦ aj ≦ 2, then

g(x) =
1

α0 + α1|x|a1 + · · · + αk|x|ak

is an infinitely divisible function on R. In fact more is true. A famous theorem of Schoenberg

[23] says that if x1, . . . , xn are vectors in R
d, ‖ · ‖ is the Euclidean norm, and 0 < a ≦ 2, then

the matrix [‖xi − xj‖
a] is c.n.d. So the function g defined above with | · | replaced by ‖ · ‖ is

infinitely divisible. Baxter [6, Lemma 2.9] shows that if 0 < p < 2 then the matrix [‖xi − xj‖
p
p]

is c.n.d. So our argument shows that for all positive numbers αj and 0 ≦ pj ≦ 2, the function

g(x) =
1

α0 + α1‖x‖
p1
p1

+ · · · + αk‖x‖
pk
pk

on R
d is infinitely divisible.

Another consequence of our discussion is the following.

Theorem 3.3. Let f be a C1 function on (0,∞) and suppose f ′(t) > 0. If for all p1, . . . , pn

the Loewner matrix Lf (p1, . . . , pn) has exactly one positive eigenvalue, then the inverse function

g = f−1 is operator monotone.
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Proof. By the theorem of Bapat mentioned above the matrix

[
pi − pj

f(pi) − f(pj)

]

is p.s.d. Putting qi = f(pi) we see that the matrix

[
g(qi) − g(qj)

qi − qj

]

is p.s.d. Loewner’s theorem then implies that g is operator monotone. �

Corollary 3.4. Let f be a map from (0,∞) into itself such that f(0) = 0 and f is operator

convex. Then the inverse function g = f−1 is operator monotone.

Proof. By Theorem 1.1, every Loewner matrix Lf is c.n.d. and, therefore, has exactly one

positive eigenvalue. Since f ′(t) > 0 the assertion follows from Theorem 3.3. �

Theorem 3.3 in a slightly different form has been proved by Horn [18, Theorem 5]. Corollary

3.4 has also been proved by Ando [2] using a completely different argument. See also [3]. He

shows that for every nonnegative operator monotone function g on (0,∞) the inverse function

of tg(t) is operator monotone. By the theorem of Bendat-Sherman that we have used in Section

2 a nonnegative function f on [0,∞) with f(0) = 0 is operator convex if and only if f(t)/t is

operator monotone. So Ando’s result and our Corollary 3.4 can be derived from each other.

Besides Loewner matrices the matrices

Kf (p1, . . . , pn) =

[
f(pi) + f(pj)

pi + pj

]
(3.2)

also have been of some interest. Kwong [21] has shown that if a function f from [0,∞) into

itself is operator monotone, then all Kf are p.s.d. The arguments introduced in the proof of

Theorem 1.3 lead to a simple proof of this. If hλ(t) = t/(λ + t), then

Khλ
(p1, p2, . . . , pn) =

[
pi/(λ + pi) + pj/(λ + pj)

pi + pj

]

=

[
λ(pi + pj) + 2pipj

(λ + pi)(pi + pj)(λ + pj)

]

= λDλEDλ + 2DDλCDλD.

This matrix is p.s.d. for every λ > 0, and hence so is the matrix Kf for every operator monotone

function f. (This has been pointed out earlier in [10, p. 195].) For the functions considered

in Theorems 1.1 and 1.2 there is a bit of surprise: the matrices Kf associated with both the

classes are c.n.d.

Theorem 3.5. Let f be a real valued function on [0,∞). Suppose either (i) f is operator

convex and f(0) ≦ 0, or (ii) f(t) = tg(t) where g is operator convex and f ′′(0) ≧ 0. Then all

matrices Kf associated with f are conditionally negative definite.
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Proof. We use the integral representations (2.5) and (2.6). Let gλ(t) = t2/(λ + t). Then

Kgλ
(p1, p2, . . . , pn) =

[
p2

i /(λ + pi) + p2
j/(λ + pj)

pi + pj

]
.

Using the identity

1

a + b

(
a2

λ + a
+

b2

λ + b

)
= 1 −

λ2

(λ + a)(λ + b)
−

2λab

(λ + a)(a + b)(λ + b)

we can express Kgλ
as

Kgλ
(p1, . . . , pn) = E − λ2DλEDλ − 2λDDλCDλD,

where D = diag (p1, . . . , pn),Dλ = diag

(
1

λ + p1
, . . . ,

1

λ + pn

)
and C is the Cauchy matrix

[
1

pi + pj

]
. This shows that Kgλ

is c.n.d. Hence the matrices Kg corresponding to the function

g represented by the integral in (2.5) are c.n.d. Let h(t) = α + βt + γt2. A simple calculation

shows that

Kh(p1, . . . , pn) = 2αC + βE + γ(DE + ED) − 2γDCD.

Since α = f(0) ≦ 0 and γ ≧ 0, this matrix is c.n.d. Thus each matrix Kf corresponding to an

operator convex function f with f(0) ≦ 0 is c.n.d.

Now consider f given by (2.6). The identity

1

a + b

(
a3

λ + a
+

b3

λ + b

)
=

a2

λ + a
+

b2

λ + b
−

λab

(λ + a)(λ + b)
−

2a2b2

(λ + a)(a + b)(λ + b)

can be easily verified. Using this one sees that for the function hλ(t) = t3/(λ + t) we have

Khλ
(p1, . . . , pn) = D2DλE + EDλD2 − λDDλEDλD − 2D2DλCDλD2.

It follows from arguments given before that this matrix is c.n.d. We have already seen that

every matrix Kϕ corresponding to the function ϕ(t) = αt + βt2 is c.n.d. whenever β ≧ 0. This

condition on β in (2.6) translates to the hypothesis f ′′(0) ≧ 0 in the statement of our theorem.

Finally, if h(t) = γt3, then

Kh(p1, . . . , pn) = γ(D2E + ED2 − DED),

and this matrix is c.n.d. if γ ≧ 0. Combining all these observations we see that Kf is c.n.d. �

Remark. Again for the special functions f(t) = tr, r > 0 we use the notation

Kr(p1, . . . , pn) =

[
pr

i + pr
j

pi + pj

]
.

A special case of Theorem 3.5 says that for 1 ≦ r ≦ 3 all these matrices are c.n.d. Compare

this with Theorem 1.3 (i). The arguments in the proof of parts (ii) and (iii) of that theorem

12



can be modified to serve for the matrices Kr. Let 1 < r < 2, or 2 < r < 3. It is easy to see

that a vector x in Hn satisfies 〈x,Krx〉 = 0 only if x = 0. We already know that Kr is c.n.d.

All of its entries are positive and so it cannot be negative definite. Hence by Lemma 4.3.5 and

Corollary 4.1.5 in [5] this matrix is nonsingular and admits just one positive eigenvalue.

Similarly we can modify the arguments of our Theorem 3.1 to show that for 0 < r ≦ 1

the matrices Kr are infinitely divisible. This has been proved in [12] using entirely different

arguments.
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