Corners of normal matrices

RAJENDRA BHATIA and MAN-DUEN CHOI*

Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, New Delhi 110 016, India
*Department of Mathematics, University of Toronto, Toronto M5S 2E4, Canada
E-mail: rbh@isid.ac.in; choi@math.toronto.edu

To Kalyan Sinha on his sixtieth birthday

Abstract

We study various conditions on matrices B and C under which they can be the off-diagonal blocks of a partitioned normal matrix.

Keywords. Normal matrix; unitary matrix; norm; completion problem; dilation.
The structure of general normal matrices is far more complicated than that of two special kinds - hermitian and unitary. There are many interesting theorems for hermitian and unitary matrices whose extensions to arbitrary normal matrices have proved to be extremely recalcitrant (see e.g., [1]). The problem whose study we initiate in this note is another one of this sort.

We consider normal matrices N of size $2 n$, partitioned into blocks of size n as

$$
N=\left[\begin{array}{ll}
A & B \tag{1}\\
C & D
\end{array}\right] .
$$

Normality imposes some restrictions on the blocks. One such restriction is the equality

$$
\begin{equation*}
\|B\|_{2}=\|C\|_{2} \tag{2}
\end{equation*}
$$

between the Hilbert-Schmidt (Frobenius) norms of the off-diagonal blocks B and C. If T is any $m \times m$ matrix with entries $t_{i j}$, then

$$
\|T\|_{2}=\left(\sum_{j=1}^{m}\left|t_{i j}\right|^{2}\right)^{1 / 2}
$$

The equality (2) is a consequence of the fact that the Euclidean norm of the j th column of a normal matrix is equal to the Euclidean norm of its j th row.

Replacing the Hilbert-Schmidt norm by another unitarily invariant norm, we may ask whether the equality (2) is replaced by interesting inequalities. Let $s_{1}(T) \geq \cdots \geq s_{m}(T)$ be the singular values of T. Every unitarily invariant norm $\||T|\|$ is a symmetric gauge function of $\left\{s_{j}(T)\right\}$ (see chapter IV of [1] for properties of such norms). Much of our concern in this note is with the special norms

$$
\|T\|_{2}=\left(\operatorname{tr} T^{*} T\right)^{1 / 2}=\left(\sum_{j=1}^{m} s_{j}^{2}(T)\right)^{1 / 2}
$$

and

$$
\begin{equation*}
\|T\|=s_{1}(T)=\sup _{x \in \mathbb{C}^{m},\|x\|=1}\|T x\| . \tag{3}
\end{equation*}
$$

The latter is the norm of T as a linear operator on the Euclidean space \mathbb{C}^{m}. Clearly

$$
\begin{equation*}
\|T\| \leq\|T\|_{2} \leq \sqrt{m}\|T\| \tag{4}
\end{equation*}
$$

for every $m \times m$ matrix T.
If the matrix N in (1) is hermitian, then $C=B^{*}$, and hence, $\||C|\|=\|\mid\|\| \|$ for all unitarily invariant norms. If N is unitary, then $A A^{*}+B B^{*}=A^{*} A+C^{*} C=I$. Hence, the eigenvalues λ_{j} satisfy the relations

$$
\begin{aligned}
\lambda_{j}\left(B B^{*}\right) & =\lambda_{j}\left(I-A A^{*}\right)=1-\lambda_{j}\left(A A^{*}\right) \\
& =1-\lambda_{j}\left(A^{*} A\right)=\lambda_{j}\left(I-A^{*} A\right)=\lambda_{j}\left(C^{*} C\right)
\end{aligned}
$$

Thus B and C have the same singular values, and again $\|\|B\|\|=\|C\| \|$ for all unitarily invariant norms.

This equality of norms does not persist when we go to arbitrary normal matrices, as we will soon see. From (2) and (4) we get a simple inequality

$$
\begin{equation*}
\|B\| \leq \sqrt{n}\|C\| . \tag{5}
\end{equation*}
$$

One may ask whether the two sides of (5) can be equal, and that is the first issue addressed in this note.

When $n=2$, it is not too difficult to construct a normal matrix N of the form (1) in which $\|B\|=\sqrt{2}\|C\|$. One example of such a matrix is

$$
N=\left[\begin{array}{rr|rr}
0 & 0 & \sqrt{2} & 0 \tag{6}\\
1 & 0 & 0 & 0 \\
\hline 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

When $n=3$, examples seem harder to come by. One that preserves some of the features of (6) is given by the matrix

$$
N=\left[\begin{array}{ccc|ccc}
0 & \sqrt{\frac{2}{\sqrt{3}}-1} & 0 & \sqrt{3} & 0 & 0 \tag{7}\\
0 & 0 & \sqrt{\frac{2}{\sqrt{3}}} & 0 & 0 & 0 \\
\frac{\sqrt{\frac{2}{\sqrt{3}}+1}}{} & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & \sqrt{\frac{2}{\sqrt{3}}+1} \\
0 & 1 & 0 & \sqrt{\frac{2}{\sqrt{3}}-1} & 0 & 0 \\
1 & 0 & 0 & 0 & \sqrt{\frac{2}{\sqrt{3}}} & 0
\end{array}\right] .
$$

It can be seen that N is normal and plainly $\|B\|=\sqrt{3}$ while $\|C\|=1$. When $n=4$, it is impossible to find such a matrix, and that is our first theorem.

The following elementary lemma (which can be verified by induction on the integer k) is used repeatedly in our proof.

Lemma. Let V be an n-dimensional vector space and let V_{1}, \ldots, V_{k} be subspaces of V the sum of whose dimensions is larger than $(k-1) n$; i.e.,

$$
\sum_{j=1}^{k} \operatorname{dim} V_{j}>(k-1) n
$$

Then the intersection of these k subspaces is nonzero.
Theorem 1. There exists a normal matrix N of the form (1) with

$$
\begin{equation*}
\|B\|=\sqrt{n}\|C\| \tag{8}
\end{equation*}
$$

if and only if $n \leq 3$.
Proof. Note first that if equalities (2) and (8) hold simultaneously, then rank B must be one and C must be unitary. So, after applying a unitary similarity by $\left[\begin{array}{ll}C & O \\ O & I\end{array}\right]$, we may assume that

$$
N=\left[\begin{array}{cc}
A & B \tag{9}\\
I & D
\end{array}\right]
$$

The normality condition $N^{*} N=N N^{*}$ leads to two equations

$$
\begin{align*}
A-D & =A^{*} B-B D^{*} \tag{10}\\
2 I & =A A^{*}-A^{*} A+B B^{*}+B^{*} B+D^{*} D-D D^{*} \tag{11}
\end{align*}
$$

Since B is of rank one,

$$
\operatorname{dim}(\operatorname{ker} B)=\operatorname{dim}\left(\operatorname{ker} B^{*}\right)=n-1
$$

where $\operatorname{dim} X$ stands for the dimension of a space X. So, if $n \geq 3$, then the dimensions of ker B and ker B^{*} add up to more than n. Hence their intersection is nonzero, and we may choose a unit vector x in this intersection. For this vector, we obtain from (10)

$$
\begin{equation*}
(A-D) x=-B D^{*} x \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
(A-D)^{*} x=B^{*} A x \tag{13}
\end{equation*}
$$

Equation (11) leads to the condition

$$
\begin{equation*}
2=\left\|A^{*} x\right\|^{2}-\|A x\|^{2}+\|D x\|^{2}-\left\|D^{*} x\right\|^{2} \tag{14}
\end{equation*}
$$

The rest of the proof shows that if $n>3$, then we can choose a vector $x \in($ ker $B) \cap$ (ker B^{*}) for which these conditions cannot be satisfied.

The two matrices $B D^{*}$ and $B^{*} A$ have rank at most 1 , so their kernels have dimension at least $n-1$. Hence

$$
\begin{equation*}
\operatorname{dim}(\operatorname{ker} B)+\operatorname{dim}\left(\operatorname{ker} B^{*}\right)+\operatorname{dim}\left(\operatorname{ker} B D^{*}\right)+\operatorname{dim}\left(\operatorname{ker} B^{*} A\right) \geq 4 n-4 \tag{15}
\end{equation*}
$$

This is larger than $3 n$ whenever $n>4$. So, in this case the four kernel spaces involved in (15) have a nonzero intersection. Let x be a unit vector in this intersection. Then from (12) and (13) we find that

$$
(A-D) x=0 \quad \text { and } \quad(A-D)^{*} x=0
$$

Hence, $\|A x\|=\|D x\|$ and $\left\|A^{*} x\right\|=\left\|D^{*} x\right\|$. This contradicts the condition (14).
Now consider the case $n=4$. The spaces ker B and ker B^{*} have dimension 3 each, while the space ker $B(A+D)^{*}$ has dimension at least 3 . The three dimensions add up to more than 8 . Hence, we can find a unit vector x in the intersection of these three spaces. For this vector we have

$$
\begin{align*}
\left\|A^{*} x\right\|^{2}-\left\|D^{*} x\right\|^{2} & =\operatorname{Re}\left\langle(A+D)^{*} x,(A-D)^{*} x\right\rangle \\
& =\operatorname{Re}\left\langle(A+D)^{*} x, B^{*} A x\right\rangle \\
& =\operatorname{Re}\left\langle B(A+D)^{*} x, A x\right\rangle \\
& =0 \tag{16}
\end{align*}
$$

Here the second equality is a consequence of (13), and at the last step we have used the fact that $B(A+D)^{*} x=0$.

Using (12) instead of (13) we get

$$
\begin{align*}
\|D x\|^{2}-\|A x\|^{2} & =\operatorname{Re}\langle(A+D) x,(D-A) x\rangle \\
& =\operatorname{Re}\left\langle(A+D) x, B D^{*} x\right\rangle \\
& =\operatorname{Re}\left\langle B^{*}(A+D) x, D^{*} x\right\rangle \tag{17}
\end{align*}
$$

Since B is a matrix with rank equal to 1 and norm equal to 2 , we have $B^{*} B B^{*}=4 B^{*}$. (Use the polar decomposition $B=U P$. In some orthonormal basis P is diagonal with only one nonzero entry 2 on the diagonal. So $B^{*} B B^{*}=P^{3} U^{*}=4 P U^{*}=4 B^{*}$.) Hence we have

$$
\begin{aligned}
4 B^{*} A x & =B^{*} B B^{*} A x \\
& =B^{*} B(A-D)^{*} x \quad(\operatorname{using}(13)) \\
& =B^{*} B(A+D)^{*} x-2 B^{*} B D^{*} x \\
& =-2 B^{*} B D^{*} x \\
& =2 B^{*}(A-D) x \quad(\operatorname{using}(12)) \\
& =4 B^{*} A x-2 B^{*}(A+D) x
\end{aligned}
$$

This shows that $B^{*}(A+D) x=0$, and we get from (17)

$$
\begin{equation*}
\|D x\|^{2}-\|A x\|^{2}=0 \tag{18}
\end{equation*}
$$

Clearly the relations (14), (16) and (18) cannot be simultaneously true.
We have shown that when $n \geq 4$, there cannot exist a $2 n \times 2 n$ normal matrix of the form (9) in which B is an $n \times n$ matrix of rank one. This proves the theorem.

Our discussion leads to some natural questions.
Problem 1. For $n \geq 4$, evaluate the quantity

$$
\alpha_{n}=\sup \left\{\|B\| /\|C\|: \exists A, D \text { for which }\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right] \text { is normal }\right\}
$$

We have seen $\alpha_{n}<\sqrt{n}$ for $n \geq 4$. It would be of interest to know whether α_{n} is a bounded sequence.

Problem 2. What matrix pairs B, C can be the off-diagonal entries of a normal matrix N as in (1)? In other words, when does $\left[\begin{array}{cc}? & B \\ C & ?\end{array}\right]$ have a normal completion?
Example 1. Consider the 2×2 matrices

$$
B=\left[\begin{array}{ll}
1 & \varepsilon \\
0 & 0
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0 \\
0 & \varepsilon
\end{array}\right]
$$

Then, $\|B\|_{2}=\|C\|_{2}$. However, there do not exist any 2×2 matrices A and D for which $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ is normal. We leave the verification of this statement to the reader. Thus the equality (2) is only a necessary condition for normality of the matrix (1).

We consider some special cases of the question raised in Problem 2. We assume either $B=C$, or $B=C^{*}$.

For every B, the matrix $\left[\begin{array}{ll}? & B \\ B & ?\end{array}\right]$ has a normal completion, and this completion may be chosen to be of the special type $\left[\begin{array}{cc}A & B \\ B & A\end{array}\right]$. Indeed, if U is the unitary matrix $U=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}I & I \\ -I & I\end{array}\right]$, then

$$
U\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right] U^{*}=\left[\begin{array}{cc}
A+B & 0 \\
0 & A-B
\end{array}\right]
$$

So $\left[\begin{array}{ll}A & B \\ B & A\end{array}\right]$ is normal if and only if $\left[\begin{array}{cc}A+B & 0 \\ 0 & A-B\end{array}\right]$ is normal, and this is the case if and only if $A+B$ and $A-B$ both are normal. The most obvious choice of A that assures this is $A=B^{*}$. Thus

$$
\widetilde{B}=\left[\begin{array}{cc}
B^{*} & B \tag{19}\\
B & B^{*}
\end{array}\right]
$$

is a normal completion of $\left[\begin{array}{ll}? & B \\ B & ?\end{array}\right]$. We have the norm inequality

$$
\begin{equation*}
\|B\| \leq\|\widetilde{B}\| \leq 2\|B\| \tag{20}
\end{equation*}
$$

When $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ we have $\|\widetilde{B}\|=\|B\|$. On the other hand, if B is any hermitian matrix, then $\|\widetilde{B}\|=2\|B\|$. In this case, and more generally when B is normal, $\left[\begin{array}{ll}0 & B \\ B & 0\end{array}\right]$ is normal and has norm equal to $\|B\|$. This raises the question of finding completions of $\left[\begin{array}{ll}? & B \\ B & ?\end{array}\right]$ that are 'optimal' in various senses.

Problem 3. Given a matrix B find a matrix A such that

$$
N=\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]
$$

is normal and has the least possible norm. This is equivalent to asking for a matrix A such that $A+B$ and $A-B$ are normal and the quantity $\max (\|A+B\|,\|A-B\|)$ is minimised. It might be difficult to find all solutions to this problem. The following considerations lead to one solution.

We assume that B is a contraction, i.e. $\|B\| \leq 1$ and ask for an A so that $\left[\begin{array}{ll}A & B \\ B & A\end{array}\right]$ is unitary. This is a unitary completion of the matrix $\left[\begin{array}{ll}? & B \\ B & ?\end{array}\right]$. Let $B=U S V$ be the singular value decomposition of B. Then

$$
\left[\begin{array}{cc}
U^{*} & 0 \\
0 & U^{*}
\end{array}\right]\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right]\left[\begin{array}{cc}
V^{*} & 0 \\
0 & V^{*}
\end{array}\right]=\left[\begin{array}{cc}
U^{*} A V^{*} & S \\
S & U^{*} A V^{*}
\end{array}\right] .
$$

So, the problem reduces to finding an A^{\prime} such that $\left[\begin{array}{cc}A^{\prime} & S \\ S & A^{\prime}\end{array}\right]$ is unitary. A familiar idea from the theory of unitary dilations (p. 232 of [2]) suggests the choice $A^{\prime}=i\left(I-S^{2}\right)^{1 / 2}$.

This tells us how to find for any matrix B one of the least-norm normal completions of $\left[\begin{array}{ll}? & B \\ B & ?\end{array}\right]$. Assume $\|B\|=1$ and find a unitary completion as proposed above.

Next we consider the case $B=C^{*}$, and ask for matrices A and D such that

$$
N=\left[\begin{array}{ll}
A & B \tag{21}\\
B^{*} & D
\end{array}\right]
$$

is normal. A calculation shows that the matrices A and D must be normal and satisfy the equation

$$
\begin{equation*}
\left(A-A^{*}\right) B=B\left(D-D^{*}\right) . \tag{22}
\end{equation*}
$$

Let $A=H_{1}+i K_{1}$ and $D=H_{2}+i K_{2}$ be the Cartesian decompositions of A and D. Here (H_{1}, K_{1}) and (H_{2}, K_{2}) are two pairs of commuting hermitian matrices. Equation (22) is equivalent to $K_{1} B=B K_{2}$. This shows that

$$
B^{*} B K_{2}=B^{*} K_{1} B=\left(K_{1} B\right)^{*} B=\left(B K_{2}\right)^{*} B=K_{2} B^{*} B .
$$

So K_{2} commutes with $B^{*} B$, and hence with the factor P in the polar decomposition $B=U P$.

Thus the general solution to (22) is obtained as follows: Choose K_{0} and K_{2}, both hermitian, satisfying the conditions

$$
K_{0} P=P K_{0}, \quad K_{2} P=P K_{2}, \quad\left(K_{0}-K_{2}\right) P=0 .
$$

Let $K_{1}=U K_{0} U^{*}$. This condition ensures

$$
K_{1} B=U K_{0} U^{*} B=U K_{0} P=U K_{2} P=U P K_{2}=B K_{2} .
$$

Choose hermitian matrices H_{1} and H_{2} that commute with K_{1} and K_{2}, respectively. Let $A=H_{1}+i K_{1}$ and $D=H_{2}+i K_{2}$. This leads to N in (21) being normal.

As before, we also consider the special case $\|B\| \leq 1$ and ask for A and D such that the matrix (21) is unitary. This can be solved as follows: Let $B=U P$ be any polar decomposition. Choose hermitian matrices K_{0} and K_{2} that commute with P and satisfy the inequalities

$$
K_{0}^{2} \leq I-P^{2}, \quad K_{2}^{2} \leq I-P^{2} .
$$

Then choose hermitian matrices H_{0} and H_{2} that commute with K_{0} and K_{2}, respectively, and satisfy the conditions

$$
H_{0}^{2}+K_{0}^{2}=H_{2}^{2}+K_{2}^{2}=I-P^{2} .
$$

Let $A=U\left(H_{0}+i K_{0}\right) U^{*}$ and $D=H_{2}+i K_{2}$. Then the matrix (21) is unitary.
Example 1 shows that the equality $\|B\|_{2}=\|C\|_{2}$ is not a sufficient condition for the existence of a normal completion of $\left[\begin{array}{ll}? & B \\ C & ?\end{array}\right]$.

Our next proposition shows that equality between all unitarily invariant norms is a sufficient condition.

PROPOSITION

Let B, C be $n \times n$ matrices with $\||B|\|=\||C|\|$ for every unitarily invariant norm. Then the matrix $\left[\begin{array}{ll}? & B \\ C & ?\end{array}\right]$ has a completion that is a scalar multiple of a unitary matrix.

Proof. If $\left\|||B|\|=\|||C|\left|\mid\right.\right.$ for every unitarily invariant norm, then $s_{j}(B)=s_{j}(C)$ for all $j=1,2, \ldots, n$. Hence, there exist unitary matrices $U_{1}, U_{2}, V_{1}, V_{2}$ such that $B=U_{1} S U_{2}$, and $C=V_{1} S V_{2}$. Divide B and C by $\|S\|$, and thus assume $\|S\|=1$. Then $I-S^{2}$ is positive, and has a positive square root. It is easy to see that the matrix

$$
\left[\begin{array}{cc}
\left(I-S^{2}\right)^{\frac{1}{2}} & S \\
S & -\left(I-S^{2}\right)^{\frac{1}{2}}
\end{array}\right]
$$

is unitary. Multiply this matrix on the left by the unitary matrix $U_{1} \oplus V_{1}$, and on the right by the unitary matrix $V_{2} \oplus U_{2}$. This gives a unitary matrix whose off-diagonal blocks are B and C.

While the condition in the Proposition is not necessary, it is sensitive to small perturbations. The matrices B and C in Example 1 satisfy the conditions $\|B\|_{2}=\|C\|_{2}$, $\|||B|\|=\| C|\|+O(\varepsilon)$, but for $\varepsilon \neq 0$, there is no possible normal completion of $\left[\begin{array}{ll}? & B \\ C & ?\end{array}\right]$.

Acknowledgement

The second author thanks the Indian Statistical Institute and NSERC of Canada for supporting a visit to New Delhi during which this work was initiated.

References

[1] Bhatia R, Matrix Analysis (Springer) (1997)
[2] Halmos P R, A Hilbert Space Problem Book, 2nd edition (Springer) (1982)

