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Dirac (1938) has shown that by considering the conservation of energy and
momentum, equations can be derived for the motion of a point charge in an
electromagnetic field which are the same as those derived by Lorentz for the
appioximate motion in an external field of an electron whose charge is
distributed in a finite volume. As derived by Dirac, the mass appears in
these equations as an arbitrary constant, and the term containing it is not
uniquely dotermined in its form. There are an infinite number of possi-
bilities which fulfil the conditions required of this term, of which Dirac

himself has given two. Only one of these, namely the simplest, leads to the -

equations of Lorentz. 7The puiposc of this note is to show that there are
other conditions which this term has to satisfy which have not been considered
by Dirac, and which very drastically cut down the possible choice for this
term. Ncvertheless there is an infinite choice still possible. If however
it is demandcd that the equations shall not contain higher derivatives of the
velocity than the second explicitly, then there is only one set of equations
possible, namely those of Lorentz-Dirac. If the third derivative of the
velocity is allowed to appear explicitly but not higher ones, then again an
infin.te number of equations becomes possible. But being equatipns in which
the thitd derivative of the velocity appears explicitly, three data are neces-
sary before the trajectory is propeily determined, and it does not seem possi-
ble to give these in any natural way. 7There is, however, one exception,
namely an equation much more complicated than the Lorentz-Dirac equa-
tion which leads to a motion of the point charge quite unlike the known
behaviour of electrons.

In physics, besides the encrgy and momentum, the angular momentum
is also coaserved, so that in finding new equations for the motion of a point
charge in an clectiomagnetic fi_ld, the conservation of this quantity has alsoto
be taken into consideration. Now in fields without singulaiities the conserva-
tion of energy and momentum at every point of the ficld necessarily leads to
the conservation of angular momentum, but this is no longer so when point
charges are present in the field, and equations of motion for the point charge
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can be found such that energy and momentum but not the angular momentum
are conserved for the whole system consisting of the point charge and the
field. When point charges are present, therefore, the conservation of angular
momentum has to be demanded explicitly.

Our method in this paper follows that of Dirac closely. We assume that
the Maxwell equations hold exactly everywhere in space. Corresponding
to the energy momentum density tensor of the field we now introduce a
tensor of the third rank to represent the angular momentum density of the
fleld. By means of this we calculate the flow of angular momentum out of
a tube surrounding the world-line of the point charge. The conservation of
angular momentum then demands that this flow shall only depend on condi-
tions at the two ends of the tube. This cannot of course lead to a new set
of equations for the motion of the point charge, since this is only described
by one set of co-ordinates whose change is determined by the equations
derived from the conservation of energy and momentum. But it will be
shown that only for some equations describing the motion of the point charge
does the conservation of energy and momentum automatically lead to the
conservation of angular momentum of the system as a whole.

In the case of a point charge with a spin attached to it, the conservation
of momentum and angular momentum lead to different sets of equations.
The conservation of energy and momentuin leads to equations for the motion
of the point charge as a whole, while the conservation of angular momentum
leads to equations for the rotation of the spin. This problem can be solved,
but is very much more complicated than that of a point charge, and will be
dealt with in a separate paper.

The Equations of Motion

The co-ordinates of a point will be denoted by %,,and the metric tensor
will be assumed to be given by goo =1, g11 =gs2 = g33 = — 1, the other
components vanishing. The electromagnetic field strength at any point
will be denoted by | which is an antesymmetrical tensor. The energy-
momientum density tensor is given as usual by

| dn Ty, =F, 5 F% + 1 8u, Fpor T'P7, (1)
which satisfies the equation of conservation in empty space

o,

55 Tpy = 0. (2)

We now introduce a tensor of the third rank My », antesymmetrical in
A and p, defined by
M)\p.v = X\ Tp.v - xp. T)\V' (3)
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It also satisfies the law of conservation, since
d %) d
'b;; I\I?\p-v ZTF')‘ —[—X)\ b—.’)‘C—v T/‘“’ —_ T)\P_ —_ xP 5‘5&; T)w = (4)

on account of (2) and the symmetry of Ty in g and A.  This tensor may
therefore be taken to describe the angular momentum density of the field,
for its space components My, correspond to the ordinary idea of angular
momentum.

We denote the co-ordinates of the point charge e by zp (7), which are
functions of the proper time r measured along the world line from some point
onit. A dot over a symbol will be used to denote differentiation with respect
to the proper time. The velocity zp of the point charge will be denoted by ..
The 4-velocity vp and its derivatives satisfy the relations

2 =1 |

(vv) =0 !
(05) +92 =0 | (5)
(v5) +3 (55) =0
For brevity (XVY) will be used to denote Xp V¥ and X? to denote X, X#,
where Xup and Yp are any two 4-vectors. The retarded field produced by
this point charge at any point is given by (see for example Dirac, 1938)

B = e (RSl ) g S s ] (6)

where  —s, v
and C Y
Spo=2xp — 2Zp (7o) (8)

is the distance from the point xp to the “‘retarded point” 2p (v,), 7.e., the
point on the world line such that

Sy SH o= 0, so > 0. (9)
The theory is quite symmetrical between retarded and advanced potentials
so that for brevity we will restrict ourselves to the retarded potentials. The

incoming field F}i‘v at a point may then be defined following Dirac as the

actual field F;‘:f, at the point minus the retarded field.
mn act ret
Ff"'u = *,u.v - Fp.u' (10)
We now assume the world line between the points r, and =, to be given
and surround it by a tube. For convenience we take the tube to be defined
by
K =Sp U =¢ (11)
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where e is a small constant which in the end will be made to tend to zero.
If dSy, denote an element of the three dimensional surface of this tube, then
the flow of energy and momentum out of the tube is given by

STy @S (12)
integrated over the surface of the tube, while the flow of angular momentum
out of the tube i1s given by

My, dS*. (13)
Using (1) and (6), (12) can be calculated at once, as has been done in a

previous paper (Bhabha, 1939). Omitting terms which vanish with € it is
equal to

T2 . .
2 . in
oy [ (3™ — v, ) +eF v -
T € po

For conservation this must only depend on conditions at the two ends of the
tube, so that the integrand must be a perfect differential. As before we may

put it equal to A, — 2 (3 %f + % 94) so that

€

2 R - in . 5 b o
— ¢ (} : — 3, v**) -eF/w 0 =A, —é (§ £ 43 vﬁ), (14)
that is

. in :
e E v, v* +§v,) —e F}m W =A,. (15}

4

We have to find A,. Contracting (15) withv, wescethat A# must satisfy the
condition
o Ap =0. (16)
Now consider (13). By (3) and (8) it is equal to

AN Ty — 2 Tyy) 457 = AT Ty —sp Toy) @57+ JAEN Ty =2 Ty,)as>. (17)
The first term on the right-hand side of (17) is evaluated in the appendix.
Omitting terms which vanish with e, it is equal to

Ta
— 3 e / dr (oy O, — ¥, U)). (18)
1

Consider the second term. An integral over the tube can always be split
into an integration over a two-dimensional section of the tube such that all
points on this section correspond to the same retarded point, and then an
integral along the world line with respect to the retarded points. In carrying
out the first integration over the two-dimensional section, z, () remains
constant, so that this integration is the same as in (12). The second term
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may therefore be written at once

/ d’rz}\(r)[—-—ez(lhﬁ—~gv v)~—eF v"]

T

T3 . .
2 U 2 )2 m
-,T/1 dT.ZP(7)[—~6<l ~;E-——3-v>\v)-—-e F., v |

which using (14) reduces at once to

/ dr [z:X {A, <§ Y )1 —z, {J\K — e (-}g ’i? 12 v,\)” (19)

The flow of angular momentum out of the world tube is equal to the sum of
(18) and (19). For conservation, this must only depend on conditions at the
two ends of the tube, so that the integrand must be a perfect differential
as before. This integrand is

e —e(3 raa)l o e (32 30

—3 e (o v — v, 0y

25_7:[2, (% + 29 >} ——zP{Ak—-ez (%?j—i-ﬁvx)}]

— (o A — v, Ay). (20)

The first term is a perfect differential, so that the second term
Uy Ap — vp A, (21)
has to be a perfect differemtial. This is a further restriction on the choice

of A,.*

It is clear that the demand for conmservation of . angular momentum
cannot lead to new equations of motion for a point charge, unlike the demand
for the conservation of momentum, since the incoming field does not appear
either in (18) or in (19). 7This is because the highest singularities in the
retarded field are only of order €2 For a point dipole, the highest singu-
larities in the retarded field are of order €3, so that the incoming field also
appears explicitly in the flow of angular momentum out of the tube and leads
to equations for the rotation of the dipole. In passing it should be noticed
that whereas the direct flow of angular momentum out of the tube given by

* One choice for A, given by Dirac is m {v, v+ 4 v (v v)}, which is a parti-
P p P

cular case of m [v, v4C + v {4 (v ) C+ 2 C}] with C an arbitrary scalar function fo
7. All these satisfy (16) but do not make (21) a perfect differential. They would
therefore lead to the conservation of momentum but not of angular momentum,
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(18) does not contain any singularities, the total flow of angular momentum
is nevertheless infinite due to the infinite flow of momentum out of the tube
as shown by (19).

We now come to the choice of an expression for A,. We notice at once
that A, cannot contain zp, for as shown by Pryce (1938), Ax can be inter-
preted as the “ mechanical energy-momentum ~’ of the point charge. This
cannot depend on the choice of the axis of co-ordinates and hence on zp.
If we therefore assume that Ap does not contain higher derivatives of v
than the second explicitly, the most general substitution is

A/J- =UF'B +'U},.C-]—l'/; D, (22)

where B, C and D are invariant functions of the wvelocity and its higher
derivatives. Using (5) the condition (16) then becomes

B—®C—9D —3@3)D =0. (23)
Substituting in (21) we get
('U)\ 'I.)p. — Up 'U)\) C -+ ('Ux i).p. — Up i’)\) D (24\

Now due to its antesymmetrical properties, (vy vp — vp vy ) cannot be the
derivative of a function of = not containing zp explicitly. Its derivative is
just the coefficient of D in (24). Thus, if (24) is to be a perfect differential,

C =D. (25)
With the help of this (23) becomes
B=20"D+3(@%D
0

=23 (t*D)— (¥ 3) D. (26)

(v v) D must therefore be a perfect differential, and since we are restricting
ourselves to derivatives of v not higher than the second, D must be a
power of o2

There are an infinite number of solutions which satisfy (25) and (26)
given by
B =(4n +3) (—v¥)**+*1m

C=4(n+Ln@v)(—2)*-1m
D=—2(m-+1)(—*"m (27)
with arbitrary #» and m. However, (27) is only of interest when » > %, for

otherwise C at least becomes infinite when vp = 0, and hence the equations
become very singular. They cannot be used for describing the behaviour of a

point charge. For n > %, Ay vanishes when 9u = 0, so that in the absence
of an external field Zp = 0 follows from this by (15). Hence, for all these cases
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if the initial acceleration is zero the charge will contintte in a state of uniform
motion, and all the higher derivatives of the velocity will also vanish. A
closer investigation shows that this is also true for # = §. Since however
the third derivative of the velocity also appears explicitly in the equations

(15) through Ay it is possible in general to find a solution which satisfies three
arbitrary conditions. Thus the trajectory is not completely dctermined by
the initial velocity and the stipulation that the final acceleration shall be
zero as in the case investigated by Dirac. Yet another datum is required to
determine the trajectoiy and this extra datum cannot be the condition that
the final derivative of the acceleration shall vanish since this automatically
follows if the final acceleration vanishes, as shown above. 7The finding of
another initial condition to determine the trajectory seems to be rather
artificial, and hence I believe that the set (27) in general cannot be used for
describing the motion of a point charge.

An exception to the above argument is the case # = 0. Then

B = — 3 2
C=0
D = — 92m.

In this case it no longer follows in the absence of an external field from
equation (15) that when vp =0, vu also vanishes. But if vp also vanishes,
then vp must vanish by (15), so that the particle will continue in a state of
uniform motion. Thus in this case the trajectory is completely determinced
- if.the initial velocity is given, and the conditions are imposed that the final
acceleration vp and its derivative vp should vanish. There does not seem to
be any reason for excluding (28) as a possible substitution for Ap in the
equations describing the motion of a point charge. It should be noticed that
the arbitrary constant m must now have the dimensions of a mass times a
length squared. The behaviour of the point charge would be quite unlike
the known behaviour of an electrou.

1f we demand that 9, should not appear explicitly in the equation (15),
then the possible choice for Ax is unique. For we must now put D = 0 in

(22). It then follows by (25) that C =0, and by (26) that B = 0. B can
therefore only be an arbitrary constant. In fact, in this case

Ap =m o, ' (29)
which is the substitution which leads to the equations of Iorentz. Thus
we have shown that if i ¢s demanded that the equalions of motion of a point
charge do mot contain higher. derivatives of the accelevation than the first, then
the set of equations possible, consistent with the conservation laws, is unigue.
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Appendix
We wish to calculate
S sy Tpy — 56 Tyy) dS” (30)
If we fix our attention on any point of the world line in the Lorentz frame in
which the electron is instantaneously at rest, then a sphere about this point
of radius e, taken at a time e later is a section of this tube. Denoting by dw
an element of solid angle of this sphere, then, as has been shown in a previous
paper (Bhabha, 1939) the surface element of the tube is given by
aS? ={s’* (1 — k') — v” €} edw drT, (31)
which is of order ¢*. The retarded field given by (6) is of order 2. Thus
no non-vanishing terms containing the ingoing field will occur in (30).

Using (1) and (6), the first term of (30) becomes

€ g ret

1 ret ret ret y
a;fsh{FPa'FV ’f‘;{'g’,,,,Fpo, FPo }(’ZS

e S, — €V S, — € v V)
_ & S T oSk T W Y Pl g
= S L K “L. K w T
4T '/ A { e €3 €2 cJ
AN , 1
- & f;§ {sP (1 —«') —v, e do dr.
The terms symmetrical in A and g vanish, and (30) reduces to
Sl e Sk g WU TS SO TS T
47 7 '

K
. 9>
€? €2 €

x} dw dr,

which may be evaluated as in the previous paper by using the relations*

1 S

Nt T —

477 € de Up

1 S

4 f g}z{ Sy Adw = —F Ay + 40,0, A,

which hold for any arbitrary vector Ap which is not a function of position on
the sphere. The result is given in the text by (18).

Summary

It is shown that when a point charge is present in an electromagnetic
field, the conservation of energy and momentum does not in general lead to
conservation of angular momentum for the system as a whole. 7The conser-
vation laws impose stringent restrictions on the possible equations which
may describe the motion of the point charge. If if 7s requived that higher
dertvatives of the velocity than the second should not appear explicitly in these

* In the second and third of equations (58) of the previous paper, factors e-!
and e-% respectively have been omitted on the vight-hand side by mistake.
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equations, then the choice 15 unique and the only possible equations are those
originally derived by Lorentz. If the third derivative is allowed to appear
explicitly in the equations, but mnot higher ones, then it is possible to
give one other system of equations for describing the behaviour of a point
singularity which can be used without entirely artificial initial and final

conditions.
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