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The purpose of this paper is to give the complete.classical theory of a
spinning particle moving in a Maxwell field. The particle is assumed to be a
point, and its interaction with the field is described by a point charge g, and
a point dipole g,. The Maxwell equations are assumed to hold right up to the
point representing the particle. Exact equations are then derived for the
motion of the particle in a given external field which are strictly consistent
with the conservation of energy, momentum and angular momentum, and
hence contain the effects of radiation reaction on the motion of the particle.
Tt is shown that in the presence of a point dipole the energy tensor of the field
canand must be redefined so as to make the total energy finite. The mass, the
angular momentum of the spin, and the moment of inertia perpendicular
to the spin axis appear in the equations as arbitrary mechanical constants.
Reasons are given for believing that for an elementary particle the last
constant is zero, in agreement with relativistic quantum theory.

In the general theory there is no relation between the electric and magnetic
dipole moments of the particle and the state of its translational motion.
A procedure is given for deriving from the general equations specialized
equations consistent with the condition that the dipole is always a purely
magnetic or electric one in the system in which the particle is instantaneously
at rest. The radiation reaction terms are very much simpler in the former
of these specialized cases than in the general case. The effect of radiation
reaction is to make the scattering of light by a rotating dipole decrease
inversely as the square of the frequency for high frequencies, just as for
scattering by a point charge.

The quantum treatment of a point charge and its interaction with quan-
tized fields gives rise to a number of difficulties, for example, those con-
nected with self-energies, which become very much greater when the particle
has an explicit spin interaction with the field, as in the case of protons or
neutrons and their interaction with the meson field. These difficulties are
due at least in part to a neglect of the effects of radiation reaction. For a
point charge the effects of the radiation reaction can be estimated by a
comparison with the classical theory of Lorentz, and it is generally assumed
that the quantum theory will give correct results in those energy regions and
for those processes where the effects of this radiation reaction are negligible.
For a point dipole the position is less satisfactory; for in the absence of a
classical theory giving the effects of radiation reaction on the motion of the
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dipole, it has not been possible to delimit the region in which the quantum
theory might be expected to give correct results. In particular, it has been
impossible to decide whether the multiple processes and Heisenberg ex-
plosions predicted by the quantum theory fall, at least partly, in a region
where the theory should be valid and are therefore to be regarded as
deserving of credence, or whether they take place entirely in energy regions
where the theory loses all claim to validity by its vital neglect of radiation
reaction, and are hence to be regarded as entirely spurious. An exact
classical theory of spinning particles taking into account the effects of
radiation reaction is therefore of considerable physical interest. The purpose
of this paper is to supply a complete classical theory of spinning particles
moving in a Maxwell field. The extension of this theory to a meson field is
carried out in the paper which immediately follows this.

It will be shown in this paper that our classical theory is the parallel of a
quantum theory in which the particle has an explicit spin interaction with
the Maxwell field. It is not the classical equivalent of a theory in which the
interaction of the particle with the field is expressed only through the
potentials, as in Dirac’s theory of the electron. All comparisons must there-
fore be between this theory and a quantum theory in which the particle has
an explicit spin interaction with the field, such as could always be introduced
mathematically.t It appears, however, that the electron as it occurs in
nature does not have such an explicit interaction with the Maxwell field, so
that the theory of this paper is not applicable, even in the classical limit, to
an electron. On the other hand, protons and neutrons have an explicit spin
interaction with the meson field. Our classical theory, or rather the exten-
sion of it to a meson field carried out in the following paper, is then applicable
to this problem. All the remarks we make below will then only refer to a
quantum theory containing an added spin interaction with the Maxwell
field of the type mentioned.

It must be demanded of any complete classical theory that it shall be
consistent with the principle of relativity, and this almost inevitably requires
that the dipole be considered as a point with no extension. For if a particle
of finite extension be considered, then it is not possible to specify the
distribution of charge and dipole moment over the finite volume occupied
by the particle in a relativistically consistent way without introducing a
field (other than the Maxwell field) which shall be responsible for preserving
the shape of the particle. The introduction of another field for this purpose

T A further interaction term of the type g. F, yhy»ifr could be added to the Dirac
equation, where I, are the field strengths, and y, the Dirac matrices as defined by
Pauli (1933, p. 220).
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would be artificial and in any case much more complicated than treating the
dipole as a point. We now meet the difficulty that the field energy as usually
defined becomes infinite in the immediate neighbourhood of the dipole. This
difficulty may be avoided either by modifying Maxwell’s equations so that
the field remains finite in the immediate neighbourhood of the dipole, or by
assuming that the Maxwell equations hold exactly right up to the point
singularity representing the dipole, and modifying the definition of field
energy when singularities are present in the field. The latter method has
been applied successfully by Dirac (1938) and Pryce (1938) to a point
electron, and it is the method we shall follow in this paper.

The procedures of Dirac and Pryce are different, but lead to the same
result, and both amount in essence to adding terms to the usual Maxwellian
expression for the field energy which just cancel some of the singular terms
and make the total field energy of a point charge finite. We believe that this
procedure is not a mere mathematical device but is physically sensible.
One can see this at once by going back to the origin of the idea of field energy.
Consider the static case. The potential energy of any non-singular distribu-
tion of charge or dipole moment, that is, the work done in bringing this
distribution of charge and dipole moment from infinity into the actual
configuration, can be transformed by using Maxwell’s equations into an
integral over the whole of space occupied by the field, and hence may be
regarded as energy stored in the field. But this transformation is no longer
possible if singularities, for example point charges or point dipoles, are
present in the field. The self-energy difficulties in the classical theory there-
fore arise by using a definition of field energy which is no longer valid in the
presence of singularities. '

It is of course possible to look upon a point electron as the limiting case of
a distribution in which the same charge is initially spread over a finite
volume. The Maxwellian definition of field energy can be used now, and in
the limit when the charge becomes concentrated in a point the total field
energy becomes infinite. This infinite field energy has a physical meaning,
for it corresponds to the evident fact that the work done against electrostatic
force in compressing a charge originally spread over a finite volume into a
point is infinite. There are, however, no purely logical or mathematical
reasons why a point charge or point dipole should be regarded as limiting
cases in this manner. Moreover, it would be contrary to our present views
about elementary particles to look upon them as made up in this way. It
therefore seems to us logical and physically reasonable to look upon the
elementary particles in nature as point charges or point dipoles, and to
reformulate the definition of field energy when singularities are present in
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the field. It will be shown in this paper that this can be done for a point
dipole in a way consistent with the principle of relativity.

We treat a particle as a point having an interaction with the field charac-
terized by a charge g, and a dipole moment g¢,, and we assume that the
Maxwell equations are valid right up to the point. We then derive equations
for the motion of the particle which are consistent with the conservation of
energy, momentum and angular momentum for the system as a whole
consisting of the particle and the field. These equations will automatically
include the effects of radiation reaction. The conservation of angular
momentum has to be demanded explicitly, for it gives the equation for the
rotation of the dipole. The mass of the particle, the angular momentum of
the spin and the moment of inertia perpendicular to the axis of the spin
appear in the equations as arbitrary and independent constants.

In the general classical theory there is no connexion between the trans-
lational motion of the dipole and its rotational motion (by rotation is here
understood a rotation in the direction of the time axis as well as a space
rotation). It would be quite possible theoretically, for example, for an
initially pure magnetic dipole with no translational motion to develop in a
suitable external field an electric dipole moment at right angles to its
magnetic moment while still continuing to be at rest. Dipoles of this sort
do not seem to occur in nature. It is possible, however, to impose the
condition that a dipole shall always remain a pure electric or magnetic
dipole in the rest system, and a procedure is given for deriving from our
general equations specialized equations consistent with either of these con-
ditions. The special equations for a dipole which remains a pure magnetic
dipole in the rest system have already been derived by a direct method
(Bhabha 19404, referred to in this paper as B) and are the same as those
which are derived as a particular case of the present general theory. As has
been mentioned before (Bhabha 1940b), the effect of radiation reaction is
very much more complicated in the general than in either of the two special
cases mentioned above, but there seems to be no reason within the limits of
the classical theory for excluding the general case. It is therefore to be re-
garded as an achievement of relativistic quantum theory that it auto-
matically demands that an elementary particle shall have only a pure
magnetic moment in the system in which it is at rest.

As has been mentioned earlier, the dipole may also have a moment of
inertia perpendicular to the axis of the spin, and this enters in the theory as
an entirely independent constant. The equations, however, take their
simplest form if the moment of inertia perpendicular to the axis of the spin
is put equal to zero, that is, when the mechanical properties of the particle
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are those of a pure gyroscope. A comparison of the classical equations with
those of the quantum theory, as well as a comparison of the respective cross-
sections for the scattering of light, clearly shows that in the quantum theory
the particle automatically has the mechanical properties of a pure gyroscope.
The quantum theory therefore again appears to be an advance on classical
theory in that it allows only the classically simplest case, in conformity with
what is found in nature.

Where the present classical theory goes beyond the quantum theory is in
being able to treat the effects of radiation reaction exactly, whereas the
quantum theory neglects these completely. Our theory shows quite clearly
the frequency in the neighbourhood of which radiation reaction first begins
to dominate the scattering of light, and hence allows us to fix the region
of validity of the quantum theory. It appears that within this region the
classical and quantum theories give the same scattering, showing that
quantum effects have not yet come in, as is to be expected also from quite
general arguments. The present classical theory, therefore, apart from
being of general theoretical interest, actually allows us to give a scattering
formula which should be valid for frequencies far beyond the region of
validity of the quantum formula under certain circumstances.

An important point may be noticed. The classical theory shows that for
very high frequencies the scattering of light does not depend either on the charge
or on the dipole moment or onthe mechanical constants of the particle, but isa pure
Sfunction of the frequency, decreasing as the inverse square of the frequency. This
is true for both scattering by a pure charge as calculated by Dirac and for
scattering by a dipole as calculated below, and appears to be a fundamental
property of radiation. It is shown in the following paper that it is also true
of a meson field. It is clear that a series in ascending powers of the charge
or dipole moment cannot approximate to a behaviour of this sort. The
proper treatment of radiation reaction, therefore, will probably require a
far-reaching extension of quantum theory. The classical theory developed
in this paper gives an exact treatment of radiation reaction, but its quantiza-
tion appears to present very great difficulties.

GENERAL THEORY

We use tensor notation throughout, and for convenience put the velocity
of light equal to unity. The metric tensor 9,» is assumed to have the form
900 = 1, 911 = 925 = 933 = — 1, with all the other components vanishing.

As stated in the introduction, we treat the particle as a point. Its co-
ordinates are denoted by z,, which may be considered as functions of the

19-2



278 H. J. Bhabha and H. C. Corben

proper time 7 measured from an arbitrary point on the world line of the
particle. A dot over a letter is used to denote differentiation with respect to
the proper time 7. The velocity 2, of the particle is denoted by v,. The spin
of the particle is described by an antisymmetric tensor S, which may also
be considered as a function of 7. The particle is assumed to have a charge g;.
The charge and current density P, at any point of space », may then be
written with the help of -functions in the form

«©

P/t =0 _wdT?}ﬂa(xO—zO) 02y —2) 02y — 25) (23— 23). (1)

The dipole moment of the particle is denoted by g,. It gives rise to a dipole
density £, at a point ¥, which may be written in the form

@

2, =9 B oodT 8,,(T) (g — 29) Oy — 21) 0(%y — 25) O(5 —23). (2)

It is found convenient to adopt the following. notation. The invariant
formed from any two tensors X ,, and Y, is written in the scalar product

notation:
(XY)EX”,,Y/W, X2=(XX) = X/wX/W.

The invariant formed by any combination of tensors and two vectors is
written in the usual matrix notation; thus
(688v)=v+8,, 8w, =0, 0",
The antisymmetric tensor formed from two other antisymmetric tensors X ,,
and Y, is sometimes written in the vector product notation
[.X. Y]/\,u = X/\O’YU-/J,_X/LO'Y”)"

Then if X, Y, and Z, are three antisymmetric tensors, the following

identity holds:

(X[Y.Z]) = (Y[Z.X]). (3)
The vector v, by definition satisfies the equation

v? =1, (4)

The equations derived from this by successive differentiation aref
(v5) = 0, (5a)
(vi) + 92 = 0, (5b)
(volll) + 3(9%) = 0, (5¢)
(volV) + 4(volil) + 352 = 0. (6d)

+ We write v1!! and o'V for the third and fourth derivatives with respect to 7.



Classical theory of spinning particles in a Maxwell field 279

Now in order that the constant g, should have a meaning, the absolute
magnitude of the tensor S, must remain constant. Thus we must demand
that

82=8,,8# = constant. (6)
The equations derived from this by successive differentiation are
(88) = o, (Ta)
(88)+82 = 0, (7b)
(88111) +3(88) = 0. (7¢)

The equations of motion of the dipole must be such as to be consistent with
the equations (4), (5), (6) and (7).

If we denote the Maxwell potentials by ¢, and the field strengths by F,,,
the Maxwell equations may be written in the form

W¢v"—w¢ﬂ=ﬁ'ﬂw (Sa)
—a—F =47 P +471—a—2 (8b)
ox, " N Y ox, "
From (8a) it follows at once that
0 0 0
ox )(F/w"l'axﬂ w1+a ,,Fll,u 0. (9)
The potentials may be taken to satisfy the equation
0
P = (10)
and hence it follows from (8) that
0 0 0
ax aqui,,:é]ﬂrP +47r—a——2 . (11)

The usual energy-momentum density tensor of the field 7}, is given by the

expression
47TT/W = F/Aprv’i'%gﬂvaa'FpU' (12)

It satisfies the equation of conservation

d
5 Tw =10 (13)

in free space.
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As in a previous paper (Bhabha 1939b) we introduce a tensor M,
antisymmetric in A and u, to represent the angular momentum density of

the field:
MAWEQ')A Tﬂv—xﬂTM. (14:)

It likewise satisfies the equation of conservation in free space

2
3. Y = 0. (15)

The solutions of (11) giving the retarded and advanced potentials are well
known. Our theoryis quite symmetrical in retarded and advanced potentials,
and we therefore only deal with retarded potentials for simplicity. Due
to the two terms on the right-hand side of (11), the retarded potential ¢ret-

is a sum of two parts:
Pret = i 4 (2, (16)

the first being proportional to g,, the second to g¢,.
We introduce the vector s, to represent the distance from the actual point
to the retarded point z,(,):
8, =, —2,(Ty)- (17)

The retarded time 7, is defined by the equation
8,84 = {o,—2,(To)Hak = 24(7y)} = 0. (18)
We introduce the following symbols:
k=8, (To) 0H(Ty), K =8,(To) H(Ty), K" =s8,(T0) BH(ry), (19)

and
_ r & oy o Qiii, m __ Qiv.
Sﬂ = 8,7, S, = Sﬂ,,v", S, = S/wv”, Sy = Sov, 8 =80 (20)

The retarded potentials may then be written in the well-known forms

vl’
#D =12, (21)
. 5 18 .
(2) — g [Py
¢v _gZExP( K). (22)

All the quantities on the right-hand side are understood to be taken at
the retarded time 7,. In carrying out the differentiation in (22) we must
remember that a change in the point z, not only changes the distance s,
but also changes the retarded time 7,. The general method of carrying out



Classical theory of spinning particles in a Maxwell field 281

the differentiation has been given in an earlier paper (Bhabha 1939a referred
to here as A). We thus findt

8, s°S s*S, , 8PS
N ! (23)

Now s w K and «’ are of the same order, so that the first two terms are of
order x—2 and the next two of order k1.

The retarded field strengths can be calculated at once by using (8a).
Corresponding to (16) we write

Fret- = FO+ F2. (24)

FY and FQ) are given in the appendix. The first is the field of a pure point
charge and is proportional to g,. It has terms of order k—2and x—. The second
is the field of a pure point dipole and is proportional to g,. It has terms of
order =3, k2 and k1. Following Dirac we write the actual field ¥, at any
point as the sum of the retarded field Fi** at that point plus an ingoing
field Fi-: ‘

F,, = Fist+ Fi2- (25)

The ingoing field F- satisfies the Maxwell equations for empty space, i.e.
(8) and (9), with the right-hand side of (8b6) put equal to zero.

We now proceed to find the exact equations of motion for the particle.
It is necessary at this stage to introduce the idea of an antisymmetric tensor
X%, adjunct (dual) to a given antisymmetric tensor X ,,. Its components
are connected with those of X, by the equations

X*0l = X0 X*02 = X, X*03 = le

(260a)
X*23 — Xol’ X#31 — Xoos X*12 — X03.J

Any of the relations (26@) can be deduced from any other by successively
changing any three suffices in rotation. Using the tensor g,, we can
deduce from (26a) that

Xf=—X®, X=—X", Xg=-X2,
X =—-Xn Xj=-X2 X§= —X°3.} (260)
It follows at once from (26) that
(X*)* = - X. (27)

t Following Dirac, we separate terms which correspond (as k->0) to singularities
of different orders by a comma.
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If X, Y, are two antisymmetric tensors, then it can be proved easily that

e
(XY*) = (X*T), (284)

[X.Y*] = [X*. Y], (28b)

and [X.V]* = [X.¥*] = [X*. Y]. (29)

It will appear presently that the six-vector S, adjunct to S, plays an
important part in the equations and is on the same footing as §,,. Using (26)

we have
(88*)=8,, 8*m = 4(8Sp; Sa3 + Sp2:S31 + So3S12)s (30)

and, by (29), [8.8*%] =[8.8]* = 0. (31)

Now the change 88, ,in the components of the spin due to the most general
type of rotation possible (by a.rotation we always mean a spatial rotation
as well as a rotation involving the time component) can always be written

in the form
38/\//, = S/\p¢p//,_ /4p¢p]\=

where ¢, is an infinitesimal antisymmetric tensor. Thus the most general
form for the equation giving the rotation of the spin is

SA/‘ = S/\pG)p,u—S/tp®p/\’ (320;)

©,, being some six-vector. © may itself involve derivatives of S. In our
abbreviated notation this equation reads

S =1[8.0]. (32b)
This expression for & automatically satisfies (7a), for, by (3),
(88) = (S[8.0]) = (O[S.8]) = 0; (33)
Similarly it follows from (32) and (31) that
(8%8) = (S*8.0]) = (B[8*.8]) = 0; (34)
whence (8*8) = constant. (34a)

The equation adjunct to (32) is

S* = [S.0]* = [S.0%] = [S*.0]. (35)
Multiplying (32) and (35) by arbitrary constants / and I’ and adding, we find
IS+ I'S* =[8.0]. (36)

We have written O’ in place of 10+ I'®*. This is the most general form
that can be taken by the equations of motion for the rotation of the dipole.
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It will be seen below that the condition that the rotational equations must
have the form (36) takes us a long way towards determining the radiation
reaction terms.

Conversely, we can go back from equation (36) to the equations (32) and
(35). For the equation adjunct to (36) is

I8*—I'S = [8.0'%]; (37)
whence, by (36), we deduce
(I24+1'%)8 = [S.(I0/ = I'0'*)] = (124 I'?)[5.6],

which is just equation (32). It follows from this, as can also be proved
directly, that it is a necessary consequence of an equation of the type (36)
that
(88) =0, (33)
(8*8) = 0. (34)

It further follows from the symmetry of the right-hand side of (36) in S and
@', as also from (32) and (35), that

(86) = o, (38)
(8*0) = 0. (39)

Thus two invariant equations are a consequence of the rotational equation
(36). As will be seen below, another invariant equation can be deduced from
the equations of motion giving the translation of the particle, and the
requirement that this equation shall be consistent with (38) gives us further
conditions determining the equations of motion. i

To proceed further we follow a method first used by Dirac (1938). Consider
the world line of the particle to be given, and also the direction of the spin at
every point. Now surround this world line by a thin world tube, the radius
of which will ultimately be made to tend to zero, and calculate by using
the tensors 7}, and M, the flow of field energy, momentum and angular
momentum through the three-dimensional surface of a finite length of this
tube bounded by the proper times 7, and 1,. For conservation, the flow of
energy, momentum and angular momentum through the surface of this
length of tube must equal the difference in these quantities at the two ends
of the tube. The rate of flow of these quantities must therefore be a perfect
differential. This will only be the case if, depending on the ingoing field,
the world line has a certain shape and the dipole a certain orientation at
each point. In other words, this condition will give the equations of motion
of the particle in the given ingoing field. ‘
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It is easy to show that our results do not depend on the shape of the tube.
For convenience we take the tube defined by

k=8,(Ty) (7o) = €, (40)

where e will be treated as a small quantity which will ultimately be made
to tend to zero. We fix our attention on some point 7, of the world line and
consider it in the particular Lorentz system in which the velocity at that
point has the special form v, = 1, v, = v, = v; = 0. This will be called the
rest system of the point. Then from (40) it follows that in this system
8o =€, and since s,s* = 0, a two-dimensional sphere of radius ¢ with the
point 7, as centre taken at a time ¢ later forms a section of the tube. All
points on the surface of this sphere correspond to the same retarded point
7,. Thus any integral over the surface of the tube can always be regarded as
a two-dimensional integral over the surface of a sphere centred round a
point with the proper time 7, and then an integral along the world line with
respect to the proper time 7.

If we denote by d.S” an element of the surface of the tube taken as positive
when the normal is directed outwards, then the flow of energy and
momentum into a length of the tube whose ends correspond to the proper
times 7, and 7, is

f T, ds, (41)

which, in view of what has been said above about integration over the
surface of the tube, can always be written in the form

f . T,dr. (42)

For conservation of energy and momentum this must only depend on the
conditions at the two ends of the tube, so that the integral must be a perfect
differential. Therefore we must have

T,=4, (43)

where 4, is some tensor which has to be found. Equation (43) determines the
translational motion of the particle.
The flow of angular momentum into the tube is given by

fM/\/wdSV‘ (44)
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By (14) and the definition (17) of s,,, (44) can be written
f(sATﬂv —-s,Ty,) A8 +f(z,\Tﬂ,, —-2,1),)dS". (44a)

The first integral can again be written in the form

J\T’ M)L,ud7-7 (44b)
while the second becomes 1
f T, 2, Ty) dr.

T

Thus, by (43),
J‘M,\ﬂydsv = jﬁd'r{MM+ (z,\A,t+z/‘A'A)}
T2 d
- f dT{MM—('v/\Aﬂ—vﬂA,\)+E(zAAﬂ—z”AA)}.

For conservation of angular momentum, the integrand of this must be a

perfect differential. Put it equal to B, st d% (:24,—2,4,). This leads to

My, — (v 4,—v,4,) =By, (45)

where B,, has to be found. Equation (45) then determines the rotational
motion of the dipole.

We now return to 7,. Owing to the quadratic form (12) of 7, in the field
strengths and the splitting of ¥, into two parts by (25), T, can be written
as the sum of three parts:

le — T;"?,t + T/u“l)ix. + T}E'

The first contains the retarded field only, the second the product of the
retarded and ingoing fields, and the last only the ingoing field. Since Fiz.
is not singular on the world line, 72- is also not singular, and hence in the
limit >0 will make no contribution to (41). Thus we may write

T, = Tt + Tmix., (46)

Since, according to (24), Fet consists of two parts, T2t will contain terms
proportional to g}, g, ¢, and g3, while 7'0ix- will contain the ingoing field and
terms proportional to g; and g,. Corresponding to this we write 4 » as the

sum of three parts:
A,u — Al/;et._*_Alt}lix._*_Aﬁnech._ (47)
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The first only contains terms proportional to ¢3, g,9, and g2, the second
contains the ingoing field and terms proportional to g, or ¢,, while the third
does not contain g, or g,. We call A¢h- the mechanical part of the energy.

If we write Trigact. = ['ret- — Aret-, (48)
the translational equation (43) becomes
T;ea.ct. + T/Eﬁx' _ A/’?ix' — Alr;nech.. (49)

For the same reasons as lead to (46), M, , can also be written as the sum
of two parts:
My, = Mgt + Mg, ' (50)

the first of which contains terms proportional to g3, g, 9, and g¢3, while the

second has terms proportional to g; and g, containing the ingoing field.
Corresponding to (50) we write B,, as the sum of two parts:

B,, = Bigt + Bpeeh-, (51)

Here Bicf contains all the terms proportional to g3, g, g, and g3, while Bpech:
only contains terms independent of g; and g,, and represents the mechanical
properties of the spin, as will be seen below. BPIx- cannot exist for dimen-
sional reasons. It would have to be a product of g, times the ingoing field
times a quantity of the dimensions of a length, and no such quantity can
be made up of S, or v, and their derivatives (provided, naturally, that
the reciprocals of these quantities are excluded). If we write

Mﬁzact. = Mﬁ% . (,U)LA;et. -, Aﬁet.) - BR(;}:.’ (52)
the rotational equation (45) can be written
Mi%acb. + {M}\nﬂix. — ('l)/\ A/r‘nix. __,Uﬂ A}\nix.)} e Bir;fch. + ('l),\ A/glech. — ,vﬂ Agmech.)(.53)

The terms 7" in (49) and Miea<t- in (53), being quadratic in g, and g,,
represent the effects of radiation reaction.

The derivation of (563) shows that as far as the conservation laws are
concerned Bech- is arbitrary. The general arguments given at the beginning
show that the rotational equation must be of the form (36). We may there-
fore put

Bpeer = I8,,+ I'S¥,+ Bypeer, (54)
where I and I’ are arbitrary constants. (53) then becomes
IS/\,u +I'S ;t“ +{v, A/I‘nech. -, Aech. 4 B;\/Ilr,lech.}

— {Mﬁn/,tix. — ('U)t A;nix. _ vﬂ A inix. )} + Mﬁ"f(’t'. ( 5 5)
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Now the reaction and the mixed terms in (55) contain different powers of
the fundamental constants g; and g,, while the mechanical terms are inde-
pendent of them. Each group by itself must therefore have the form of the
right-hand side of (36). Hence we must have

Mﬁﬁf‘ct‘ = S,lp Ozeﬂact. — Sﬂp-Oﬁ“t'. ( 56 )

In other words, A%t and Bt must be so chosen that the left-hand side
of (56) has the form of the right-hand side of this equation. (It is an
antisymmetric tensor which is not yet known. Similarly, Axech- and Bjmech-
must be so chosen that

N A;nech. —v, Ainech. + B;\ /rfech. = S/\polr)n/fch' — SﬂPOﬁech‘. ( 57 )
Consider now the mixed terms. It is shown in the appendix that

mix. _ in.
T e = g. & i

2 dine oo
4 [ ey A L L Y e SP”F‘,,I};}:I , (59)

Mpix = go[S,oF't; — 8,7 F'% 4 30,8, 7 Fi5: v

— 30, SN v — 30, P 87+ Ju, Fin- 801, (59)
Put ADix = g {38, 7 Fin o’ — 3 Fi 87 — Jov, SPoFR}. (60)
This at once gives

e — (0, A% — 0, A%) = oS Pl —SF), (6]

which is just of the required form. In fact, the condition that the mixed
terms in (55) must have the form of the right-hand side of (36) uniquely
determines the first two terms of A¥*. A term consisting of v, multiplied
by an invariant could always be added to A%¥x without altering the left-
hand side of (61). But this term would alter the mixed terms in the transla-
tional equation (49). It will appear almost immediately that even a term
of this type is uniquely determined, and has to be taken to be the third term
of (60). By (58) and (60), the mixed terms in (49) then reduce to

. G d .
Tmix. — Amix = g, Finr — &g, 800 i by + 392 7 (0, 8P F5). (62)

By (62), the translational equation (49) becomes

oo = gy Pl o7 — gy 97 L P+ 4, L 0, o) 4 Tyt (63)
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By substituting (56), (57) and (61) in (55), the rotational equation may be
written

.ISM‘_'_ I :x{ﬂ_'_ [S Omeeh.]/w — 92[8. Fin.]/\'u_'_ [S Oreact.])w' (64)
The simplest invariant equation which can be deduced from (63) is

obtained by contracting it with v#. Remembering (4) and (5a), and using
the obvious relation

0 d .
U'LLSPU@F;%: = Spo-a;Fg;_',
we find vrfmeeh: — 1g, (SFin-) = pu]react, (65)

By the reasoning which leads from (36) to (38) and (39), we see that the
rotational equation (64) leads to two invariant equations

(SOmech.) — 92(S Fin) = (SOrea.ct.) (66)
and (§* Omech.) — gy (S Fin) = (§*Creact.), (67)

The expressions containing the ingoing fields in (65) and (66) are identical,
so that consistency requires that

(Somech.) — 2U”Aﬁnech‘ (68)
and (SCreact-) = gyureact., (69)

We now see that the last term of AMix- in (60) was uniquely determined.
For the addition to Aix- of a term consisting of v, multiplied by an invariant
containing the ingoing field would have left (61) and hence (66) unchanged,
while changing (62) and hence the terms in (65) containing the ingoing field.
This would have made (65) and (66) inconsistent.

THE MECHANICAL CONSTANTS

We now come to Ameet and Byieeh-. These may be any expressions which
satisfy the condition that the left-hand side of (57) shall be identically of the
form of the right-hand side of that equation: '

h. sch. | P’ mech. — mech. _ mech.
vy ABpec ——vﬂAf{“’c + Byee =SAPCM SﬂPC’p,\c . (57)

They must further satisfy (68).
Expressions which satisfy these conditions are

Ameehe =y (M + FKS2+ LK’ (SS*)} (70)
and Bjmeeh. — K[S.87,,+ K'[S.8%],, (71)
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where M, K and K’ are arbitrary constants. M has the dimensions of a
mass, and K and K’ those of a moment of inertia.
If we introduce (70) into (63),the translational equation can be written in
its final form
d

M’l}ﬂ+a;’vﬂ{i‘KS2 — 1K' (88%) — 1g,(SFin-y}

= glF/itg‘vq-%gg Spaé%‘Fgg'-*-T;eact'. (72)

By substituting (71) into (64), the rotational equation becomes
I8,,+ I'S},+ K[8.8],,+ K'[8.8*],, = g,[S. Fi], ,+ [S. Creact], . (73)
and the invariant equation (66) becomes
K(88)+ K'(88%) — go(SFin) = (S Creact), (74)

The substitutions (70) and (71) are not the most general which are possible
and they have been chosen for their simplicity. Moreover, the five constants
M, I, I, K and K’ are capable of simple physical interpretations, and
represent the mechanical properties of a spinning particle which are well
known from ordinary mechanics. Reasons will be given in the last section
for believing that even (70) and (71) lead to equations which are too general,
and that for the elementary particles which occur in nature, I’, K and K’
are zero. '

I and I’ represent the gyroscopic properties of the particle, and their
physical meaning becomes particularly clear in certain special cases which
will be investigated in a later section. It will be shown there that when the
equations are such that the dipole is always a pure magnetic dipole in
the rest system, I is the angular momentum of the spin about the axis of
the dipole and K is the moment of inertia about an axis perpendicular to the
direction of the dipole. In this case I’ is zero. When the equations are such
that the dipole is always a pure electric dipole in the rest system, I’ represents
the angular momentum of the spin about the axis of the electric dipole, and
K'is the moment of inertia about a perpendicular axis, while I must now be
Zero. '

It should be emphasized that all the five constants M, I, I’, K and K’ are
completely independent and arbitrary, and may be given any positive or
negative values. This may seem to be in contradiction with the properties
of bodies in ordinary mechanics, where, for example, a hon-vanishing value
of I, the angular momentum about one axis, necessarily requires that
the moment of inertia about a perpendicular axis shall be positive. This
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contradiction is only apparent, and results from the fact that in ordinary
mechanics the mass density is always assumed to be positive at all points of
the particle. In general theory, however, the mass density need not be
positive at every point any more than the total mass of the particle need be
positive, and once the mass density is allowed to take on both positive and
negative values, it can easily be seen that a mass distribution can be given
in a body of finite size for which the mechanical constants have arbitrarily
assigned values, positive or negative. It is therefore not surprising that in
our theory, where the particle is treated as a point, the five constants are
entirely independent and arbitrary.

It is now easy to see the physical meaning of all the terms on the left-hand
side of the translational equation (72). The first term just expresses the
ordinary mechanical properties of a particle whose rest mass is M. Next,
[S.8] represents the rate of rotation of the direction of the spin, and the
kinetic energy associated with this motion is 1KS2. In conformity with
relativistic ideas this appears as an addition to the mass in (70) and (72).
The meaning of the next term is similar. Lastly, — 1g,(SF™)is the potential
energy of the dipole in the given ingoing field, and this also appears as an
addition to the mass of the particle in (72).

The meaning of equation (74) is also clear. It states that }g,(S Fin-), the
rate of decrease of the potential energy of the dipole in the ingoing field due
to a rotation of the dipole, is equal to the rate of increase of the rotational
kinetic energy plus the rate at which energy is radiated away, — 4(SCreact.),

To find other possible additions to (70) and (71), we have to find further
solutions of (57) and (68). The easiest way to do thisis to proceed methodically
by taking terms which can combine with each other in groups. We illustrate
the method of finding solutions by two examples which will be of use later
when we come to discuss the radiation reaction terms. Possible additions
to A,I?e‘-’h- which do not contain the spin S, at all have already been in-
vestigated in detail in a previous paper (Bhabha 19390). It is shown there
that besides the first term of (70) there is only one other solution possible
which is reasonably simple, and this would lead to a motion of the particle
quite unlike anything that is known in nature.

Now consider all possible additions to A%¢*- which are quadratic in S,,
and do not contain any differentiations with respect to 7. The most general
combination of this type is

A;mech. — 61?)/‘82+627)ﬂ$2+638pp$p‘ (75)

The ¢’s are arbitrary constants having the dimensions of a mass. By (57),
terms of this sort must combine with a certain Bjwech  so that Bjmech- must
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contain one differentiation less than A4)™ect:, This is not possible with the
substitution (75), so that in this case BjRech- is zero. We find

v, AZmech. —_ vﬂA’/{mech. — es(v/\Spp Sp — v,uS/lp ﬂp)
= 63{SAU($mv,u - vﬂgp) - S/Lq(Sav/\ - vo'ﬂ/\)}, (76)

which satisfies the condition (57). By (4), (5a) and (6), the equation (68)
then requires that

—eg(88) = 2¢,(88") + 2¢,(8S0) — 2¢,(8S") — e5(859).
This gives €3 = 2e,.

Writing M for e; and M’ for e,, we see that possible additions to (70) are

given by :
Almech. — My, 82+ M'(v, 8%+ 28,,87), (77)

where M and M’ are independent and arbitrary constants. Since S2 is a
constant, the first term has in fact already been included in (70). The second
term gives a possible addition to the translational equation. We should
expect the elementary particles in nature to obey the simplest possible
equation, and therefore we should expect M’ to be zero.

Next consider additions to A%ech- which are quadratic in §), or its deriva-
tives and contain one differentiation with respect to 7. It can easily be shown
by an analysis similar to that given above that there is only one possible
solution of (57) and (68) of this type, namely,

Ajmeeh: = I"{20,(88) +SM‘S'¢+SIWS/U}’] (78)
Bypech. — _ (0,8, 8 —v,8,8). |

I" is an arbitrary constant having the dimensions of mass times length,
i.e. of an angular momentum (since the velocity of light is put equal to unity).
The addition (78) is obviously far more complicated than anything in (70)
and (71), and we should expect I' to be zero for an elementary particle.

There appears to be no limit to the number of solutions which can be found
satisfying (57) and (68), but they are all very much more complicated than
(70) and (71), and we should be justified in believing that they do not occur
in the description of an elementary particle.

THE REACTION OF RADIATION

The radiation reaction terms still remain to be determined. Tret- and MEeE
are given in the appendix. We have to fix AI** and Bj3-. As mentioned

Vol. 178. A, 20
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before, they have to be so chosen that M2t is identically of the form given
by (56), that is, by (52), v

{Mﬁt’;‘tf; — (’U N A;et. — 'U,u, Aiet‘) — B}{%}} = S/\p 0;3‘&0{:. _ Sﬂp Ofs\act., (79)

with Cteact- and T'eact- satisfying (69), which, by the definition (48) of T'act:,
may be written )
(§ Oreact.) — Qun(Tet — Arets). (69a)

We separate the terms in (79) and (69a) which are proportional respectively
to g3, 9,9, and g2 into three groups. It is obvious that the terms proportional
to g3 will not contain 8, or its derivatives, each term proportional to g, ¢,
will contain S, , or one of its derivatives once, while ,, and its derivatives
will appear twice in each term proportional to g. Each group of terms by
itself has to satisfy the equations (79) and (69a). It is convenient at this
stage to introduce a notation which will be of use later. We distinguish
the symbols containing only terms of the first group by writing a (0) after
the symbol, those of the second by a (1), and those of the third by a (2),
thus expressing the fact that the groups are respectively independent of,
linear and quadratic in S, , and its derivatives. Thus, for example,

Myt =g Mot (0) + g, MR () + S MEEH(2).  (80)

The general method has already been given in B. Since the retarded field
of a point charge or dipole tends to infinity as we approach the dipole, both
Tret- and M3et- will contain terms which tend to infinity as e—0. We therefore
write

Tt = T+ TY, (81)
where T contains all the terms which are singular. Similarly, we write
Mt = MG, + M. (82)

T is given in the appendix by (123), (125) and (127). It appears that it is
a perfect differential. It is therefore possible to split A% into two parts:

Arete = 49+ 49, (83)
of which 4% alone contains the singular terms and is so chosen that
T — 49 = 0. (84)
Thus, remembering (48), we find that
T/x;eact. = T(/i))___ Afli))’ (85)

and is now entirely free from singularities. It remains finite as ¢—0.
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M), is also given in the appendix by (130) and (132) and is not a perfect
differential. However, it only appears in the rotational equation (55) in the
combination (52): ,

Miet — (v Aret- — v, Aletr) — Bﬁ‘j}".

(83) shows that AIet-also contains singular terms. It now appears that, with
A® determined by (84),
MG, — (0,49 —v,49)

is a perfect differential. It is therefore poss1ble to split B} into two parts:

B,‘{;f (e) + BY), (86)
where B), alone contains the singular terms and is so chosen that
MG, — 0,49 —v,49)— B, = 0. (87)
Hence, by (52),
Myeact = MO, — (0,40 —v,AD) - BY. (88)

This is now entirely free from singularities and remains finite as 0. Thus
the rotational equation (55) also has no singular terms.

The above analysis shows that it is possible to eliminate the singularities
which result from taking the energy tensor of the field to have the form (12).
The question now arises as to how far this elimination is mathematically
necessary in order that the conservation laws should hold. Consider the
terms of order =2 in T'®. These are quadratic.in S,, and contain one dif-
ferentiation with respect to 7. The terms of order ¢2 in A% must therefore
be quadratic in §,, and contain no differentiation with respect to 7. The
equations (79) and (69a) therefore cannot determine such terms uniquely,
because we could always add an expression like (77) with arbitrary M and
M’, since this satisfies (57) and (68). The same applies to terms of order ¢—2
in A%, since these must be quadratic in S, » and contain one differentiation
with respect to 7. These and the corresponding terms in B must therefore
be arbitrary to the extent of a possible addition of the expressions (78) with
arbitrary I”. Since there are seven terms of order ¢~2in 7' and only three
in A/, mech- of (78), it is clear that the elimination of four of the singular terms
of this order is necessary, while the elimination of the other three is a matter
of choice. We may then sum up the position as follows. While the elimination
of some of the singular terms is necessary and is achieved automatically by
our method, the elimination of others is at our choice. But the non-elimina-
tion of such singular terms is merely equivalent to putting one of the
arbitrary mechanical constants in our equations, for example, M, I or I”,

20-2
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equal to infinity. To put one of these constants, say M, equal to infinity is
equivalent to making a physical assumption as definite as giving it some
particular finite value, and this can only be decided by comparison with
experiment. Reasons will be given in the last section for the belief that in
order to describe the elementary particles as they appear in nature within
the limits of classical theory, all the mechanical constants except M and I
have to be put equal to zero. In this sense the conservation laws demand
that all the singular terms must be eliminated. ' '

It should be noticed that the elimination of the singularities is not trivial.
It is easy to see that the coefficients of some of the terms in 7% and M),
might have had such values as to make the simultaneous elimination of all
the singular terms impossible. The singularities would then have been in-
herent in the problem. That this is not the case shows that the singularities
introduced by taking the energy tensor to have the form (12) even in the
presence of point charges or point dipoles are entirely spurious, for they do
not enter into the equations of motion. It would therefore be logical to seek
to alter the expression for the energy tensor (12) when point charges and
point dipoles are present so as to make the total energy of the field finite.
This has already been done by Pryce for a point charge, and the results of
this paper show that it must be possible for a point dipole also.

It only remains to determine 4¥ and BY). This is done in the appendix.
The method is similar to the one we have used in deducing expressions (77)
and (78), but is very much more complicated. 79(2) is given in the appendix
and has four differentiations with respect to 7. A9(2) must therefore have
three differentiations with respect to 7. The number of possible independent
terms in Agf)( 2) is therefore very large, and in fact there are fifty-seven terms
in A9(2), and twenty-nine terms in BY),(2). It is remarkable, however, that
the conditions (79) and (69a) are so stringent as to determine the coefficients
of all these terms either uniquely or in terms of six arbitrary constants. Thus
Teact-(2) and Meret(2) are determined in terms of six arbitrary constants.
A considerable simplification can be introduced by giving some of these
constants particular numerical values, but we do not need to go deeper into
this point. 7¢a¢t (2) contains all derivatives of v, and S, up to the fourth,
and M52ot(2) contains all derivatives of these quantities up to the third.
Similarly, it is shown in the appendix that 7%eact-(1) and M%ect(1) can
be determined entirely in terms of one arbitrary constant. 7';2%-(1) and
Meact-(1) respectively contain all derivatives of v, and S, up to the third
and second. 7eact(0) is just the usual radiation reaction term for a point
charge, while M%e2<t(0) is zero. The complete expression for Mieact- is given
in the appendix.
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This completely determines the translational equation (72) and the
rotational equation (73). Since, however, all derivatives of v, and 8, up to
the fourth appear in 7% and all derivatives up to the third in M%eaet,
the conditions under which the solutions of these equations are definite have
to be investigated. If v,, 7,, o'l Sx ,and S, , vanish, then in the absence of
an ingoing field all the terms in equatlon (73) vanish except Mgact- and from

the expression for this given in the appendix we see that (73) reduces to

[8r {887, +5(v,8, —v,87)}] = 0. (89)

Moreover, the second term of (7 ¢) now also vanishes, and hence this equation

demands that
(881) = 0. (90)

From equations (89) and (90) it can be deduced that S must vanish. (The
easiest way to do this is to introduce two space vectors‘{‘ for Soses S,,,, Som and
Shes St Sia> and to consider equation (89) in the rest system.) Thus, as a
consequence of the rotational equation (73), 8, ,and S, , Will continue to be
zero, and hence all higher derivatives will also vanish, in particular Ve
Now consider the translational equation (72). When By By Vit N » and S
vanish, all the terms in (72) vanish in the absence of an 1ng0mg ﬁeld except
Treact- and hence this equation demands that 7%act- shall vanish. As shown
above, it follows from the rotational equation that S and SY, must also
vanish, and in these circumstances it follows from (138) i 1n the appendlx that
Tieact- = 0 reduces to

’U}:’(%S 82) +-1-g'vﬂ($8'viv) +—S S"/"vi = 0. (91)

Further, (5d) now becomes (v'V) = 0, so that in the rest system vy = 0.
Thus in the rest system (91) just reduces to the three equations

VY (282 — 8%) + 28, SPi¥ = 0,

from which it can be deduced that ¢}y = 0. Hence the particle will continue
in a state of uniform motion with its spin pointing in a fixed direction. Thus
the solutions of the equations of motion (72) and (73) will be perfectly definite
if the initial velocity and direction of the spin are given, and only those
solutions are allowed for which % > s vi,}i, S, ,and K . @ll vanish after the in-
going field has died down. We may take (72) and (73) to be the exact equa-
tions of motion taking radiation reaction into account for a spinning particle
moving in a Maxwell field.

t We make the convention that Latin suffices only take on the values 1, 2 and 3.
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SPECIALIZED EQUATIONS

Although the equations (72) and (73) give a consistent mathematical
scheme for the motion of a spinning particle they are in some ways too
general to be used for a description of the elementary particles which occur
in nature. There is no connexion between the velocity of the particle and
the state of its dipole moment. If we introduce a space vector M to denote
the magnetic dipole moment S;,,, Sz, Si; and a space vector D to denote the
electric dipole moment Sy, Sy, Sy, the equations are such that, according to
(6), (30) and (34a), ‘

M2—-D?2 = constant, (92a)
(MD) = constant. (92b)

Except for these two constants of the motion, the magnitudes of M and D
may change without any relation to the velocity. For example, if we had a
dipole of the special type which initially had only a magnetic moment but
no electric moment in its rest system, an ingoing field could easily be found
which after a time brought the dipole to rest again, but this time, without
violating (92a) and (92b), with an electric moment perpendicular to the
magnetic moment and a larger value of the magnetic moment. (This is
particularly evident when g, = 0, for then a constant electric field would do
this.) The elementary particles in nature do not behave in this way, and the
question now arises as to whether it is possible to give a procedure for de-
riving specialized equations from (72) and (73) which leave a pure magnetic
dipole always a pure magnetic dipole in the rest system and a pure electric
dipole always a pure electric dipole.

Consider first the case where the dipole is a pure magnetic dipole in the rest
system. This is expressed in mathematical form by the equation

8,7 = 0. (93)
The equations obtained by differentiating this are
S, +8,% =0, (94a)
87, +28,+ 8, = 0, (94b)
Sy + 38,57 + 38, + 8,0 = 0, (94¢)
S+ 48y + 68,17 + 48,0117 + 8,07 = 0. (94d)

Suppose the equations of motion as derived previously without the con-
dition (93) are (43) and (64), which we write in the more general form (36):

A,=T, ‘ (43)
I8),+1I'8%, = [8.0], (36)
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We.have to find whether, when the constraint (93) is imposed, a procedure
can be found within the method used for deducing (43) and (36) which allows
(43) and (36) to be so altered as to make them consistent with the equations
(93) and (94). The only condition that 4, has to satisfy is that the two in-
variant equations (65) and (66) shall be consistent. In our present notation
this requires that

v'u(T,u—'A",u) = %(SA/I'@ML). (95)
Contract (36) with v# and replace 4, by 4,+ A4, where
A ={I8,,+ I'S§,—[8.0], v (96)

An addition to 4, of 4}, adds according to (45) a term v, 4, —v,4} to the
left-hand side of (36). Thus (36) is changed tot

I{S/\/L + ’U,\S;‘ - v/l,SSL} + I,{S:'\e,u + UAS/’L‘V”V - vﬂ‘gjlkvvv}
=[Sy +{0,,—(0,,vv,—0,,vv,)}]_. (97)
In general (97) would not be permissible as the rotational equation because

it has not the form (36). But in the special case when (93) and (94) are valid
it can be written in the form

I8, + I8, (670, —v5,)]_+ I'{8%, + v, 850" —v, S50}
= [8#{0,,—(0,,vv,— 0 ,vv,)}]_. (98)
This is of the required form (36) provided I' = 0. Thus (43) and (36) must be
replaced by
4 o
A, +-{18,-8,,0m,} =T, (99)

and I8y, + 038, —v,8:} = [8)%{0,,— 0 v }]_. (100)
(98) with I’ = 0 leads to the invariant equation
— 21528, 0¢ +(80) - 2870 17 = 0,
while (99) leads to
oM(T,—A,)— 870 v — Ivr8, 0 = 0.
Since, by (94a), veS 0" = — 0P8, # = 0,

it follows in view of (95) that these two equations are consistent. Contracting
(100) with v¥, we see that it vanishes identically, so that in the rest system
this equation determines the rotational motion only for A, £+ 0. In other

+ The minus sign behind a bracket indicates that the same terms with v and u
interchanged are to be subtracted.
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words, it only determines S;;. In this system S, are then determined ex-
plicitly by (94a). We have thus given a procedure for deriving from equations
(43) and (36) others of the correct form which are consistent with the
constraint (93) and satisfy the conservation laws.

Let us apply this method to the equations (72) and (73), with K’ = 0
for simplicity. According to (99) the translational equation (72) is to be
replaced by

. d ’ " i i
Mv#+%{ISﬂ+ }KvﬂS2+KSﬂpS p— %gzvﬂ(SFln') — g, Sk, Finv}

. I
= gu Il 07 — §g, Se0 o it Tt (101)

where we have written

Tielf = T;eacb. + % ( Sﬂp 01;)‘“;,3‘“' v") . (102)

According to (100) the rotational equation (73) must be replaced by
I{SM + 0,8, 0,83} + K[SAP{SW — S
= gl S\ F ;- Fiyvv ] +[8.Dly,,  (103)

pit
= act. eact. — act.
where D, = C%gact- — (C3et-viy, — Ot vPy,). (104)

(101) and (103) are just the equations for this case derived in a previous
paper (B, equations (30) and (31)) by a direct method.T The constants g,
and K were there put equal to zero. It can easily be seen from the expression
for C5eact-(1) given by (137b) of the appendix that the g, g, terms vanish in the
expression on the right-hand side of (104), so that D, , contains only the pure
spin reaction terms proportional to g3. In other words, for a dipole which is
a pure magnetic one in the rest system, the equations for the rotation of the
dipole are the same whether the particle has a charge g, or not. Now, as
mentioned before, C%:*(2) given by (140) has six arbitrary constants.
When we build the expression on the right-hand side of (104) and use the
equations (93) and (94), three of the arbitrary constants drop out, while the
remaining three always appear together in a certain combination, so that
the resulting expression for D,, has in effect but one arbitrary constant.
D,, is given in the appendix by (142) and is exactly the radiation reaction
term given in the previous paper (B, (46)).

+ Owing to a slip the g, terms in B appear with the same sign as here, whereas they
should appear with the opposite sign since the field strengths as defined by (8a) are
equal to minus the field strengths in B. This is of no physical consequence, for it is
merely equivalent to reversing the sign of g,, which is always possible.
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The radiation reaction terms in the translational equation (101) are given
in the appendix. 7¢(0) is the same as 7"%¢t(0) by (102), since C552et(0)
is zero. It is the well-known expression for a point charge. 7%(1) has no
arbitrary constant in it and is given by (143) in the appendix, while 7%(2)
can be expressed in terms of one arbitrary constant and is exactly the radia-
tion reaction term given in the previous paper (B, appendix).

We thus see that, if the radiation reaction terms are neglected, the
equations (101) and (103) are formally more complicated than (72) and (73)
(with I’ and K’ equal to zero), but with the radiation reaction terms the
equations (72) and (73) are vastly more complicated than (101) and (103).
Moreover, whereas the damping terms in (101) and (103) have but one
arbitrary dimensionless constant, those in (72) and (73) have no less than
seven arbitrary constants. Thus, although the classical theory cannot
exclude the general case treated in the previous section, it at least gives us
areason why the elementary particles in nature might be expected to belong
to the specialized case treated in this section. Relativistic quantum theory
is an advance on classical theory in that in it the elementary particles
automatically and necessarily have only a magnetic moment in their rest
system, as is found in nature. '

Lastly, we consider the case where the dipole is a pure electric dipole in the
rest system. This is expressed mathematically by the equation

Sk = 0. (105)

To alter (43) and (36) so as to be compatible with (105) we proceed exactly
as before and add (96) to 4. The rotational equation then becomes (97), and
in order that this should be of the form (36)  must now be put equal to zero,
while I’ remains arbitrary. By using the identities (27) and (285) and the
equation (105) it can easily be shown that the right-hand side of (97) can be
brought into the form of the right-hand side of (36), if desired. It is, however,
convenient to keep it in the form which it has in (97), with I = 0.

THE SCATTERING OF LIGHT BY A DIPOLE

To get an insight into the rotation of the dipole alone we may simplify the
problem by putting M equal to infinity. In this case it follows from the
translational equation (101) that all the derivatives of the velocity vanish,
and we may conveniently consider the particle in the rest system. If we use
the space vector M introduced at the beginning of the previous section to
denote the spin, the rotational equation (103) then takes the particularly

simple form . .
IM + K[M.M] = g,[M.H] - 2¢3[M . M!1i], (106)
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where the square brackets now denote the usual vector product, and H is
the magnetic force of the ingoing field. If we put the constant K equal to
zero we get just the equation given in the previous paper (B, (51)). Asshown
there, the last term in (106), which embodies the effects of radiation reaction
can be derived quite simply from dimensional arguments and the condition
that the work done by an external periodic force on the dipole shall be equal
to the energy radiated by the dipole. The general reaction terms in (72) and
(73) or (101) and (103) naturally cannot be derived so easily.

We now consider the scattering of light by this dipole. The calculation is
but a generalization of the calculation given in the previous paper and is a
particular case of the problem of the scattering of meson waves by a dipole
dealt with in detail in the paper which immediately follows this. We
therefore only give the result. We henceforth write «, y, z for the space
coordinates and ¢ for z,. Let the ingoing light wave of frequency w be
described by

H = H,cosw(z—1), (107)

where H,, lies along the z-axis. We consider the scattering for weak fields,
so that the oscillation of the dipole is small and we may write

M(t) = M, + M, sin ot + M, sin (0t + ),

M, being the initial value of M, the length of which may be taken to be
unity. Denote by 6 the angle between M, and H. The vectors M,, M, and
M, are mutually perpendicular and such that [M,.M,] is in the direction
M,. Let 7 denote the angle between the vectors [M,. H] and M;, M, lying
in such a direction that the anglet between the planes [M,.M,]and [M,.H]
is m—7y. If we write for brevity

31 3K

it can be shown that 5
3 H,osin
| My | = 2 Bo{(a® — fPw? — w¥)? + daPw?}t (109a)
l%ll_z = (f?+ wh)ial, (1090)
1
200w?
tan’l; = m‘a&, (1090)
tand = —g. (109d)

+ A slight slip has occurred in B. With the angle ¢ as defined there, the sign of the
right-hand side of (55b) should be reversed.
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Thus, as we should expect, the dipole does not carry out a pure oscillation
as in the case investigated in B, but, owing to the presence of the inertial
term K, it executes a small elliptic gyration about its original direction.

The scattering cross-section, i.e. the energy scattered divided by the
energy carried by the incident light wave per unit area, is

(o + fPw? + w?)
(az __132(02 - w4)2 + 4020t

67 sin? ¢ (110)
For # = 0 this just goes over into the cross-section given in B, namely,
2

. w
67 sin2 0 ——
s+

— (111)

while for & = 0 it reduces to

67 sin%6 (112)

1
Pt
The effect of radiation reaction is contained in the explicit w* terms in (110).
Their effect is twofold. For very high frequencies they cause the scattering
to diminish as w=% quite irrespective of the values of « or #. Moreover, if we
.neglect these reaction terms, the denominator of (110) becomes zero for a

frequency
I

wo?_ 1
-2-1.

which gives an infinite scattering for this frequency. As is well known, I/K
is the natural precession frequency of the spin for small oscillations, so that
we have to do here with a resonance phenomenon. The effect of radiation
reaction is to make the scattering finite even for this resonance frequency,
as we should expect. It is interesting to note that while the scattering due
to a pure gyroscopic spin (K = 0) tends to infinity like w? with increasing
frequency, the addition of a finite moment of inertia perpendicular to the spin
axis (K # 0) makes the scattering cross-section tend to a finite value for high
frequencies, even in the absence of radiation reaction. That the effect of radia-
tion reaction on the rotation of the dipole is to make the scattering diminish
for very high frequenciesas w=2, bears astriking resemblance to thescattering
by a point charge calculated by Dirac (1938), the cross-section for which
has exactly the dependence on frequency given by (112), where the
effect of radiation reaction on the translation of the point charge is also
to make the scattering decrease as w2 for high frequencies. Since a point
charge and a point dipole are entirely different things and the mechanism
of scattering is also different, this leads us to suspect that it may be a
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fundamental property of radiation that for high frequencies the scattering
should decrease as w=2.

It is of interest to compare our classical theory with the quantum theory
for a particle of spin 37 as described by the Dirac equation. In this quantum
theory it is possible to add in addition to the usual interaction which is
described by means of the potentials, an explicit spin interaction of the
particle with the Maxwell field equivalent to the ¢, term. The calculation of
the scattering of light by a particle with this explicit spin interaction, leads,
if the mass of the particle is ultimately allowed to tend to infinity, to a
scattering cross-section of the form (111) with the absence of the w* term
in the denominator. The absence of the w* term is understandable, for it is
the result of radiation reaction, and as is well known, this is neglected in the
quantum theory. However, the fact that the quantum theory then leads to
a cross-section agreeing in form with (111) and not (110), with the explicit
* terms omitted in each case, shows clearly that the Dirac equation auto-
matically describes a particle for which f#is zero, that is, forwhich K vanishes.
Thus the Dirac equation automatically describes a spinning particle which
has the simplest possible mechanical properties, namely those of a pure gyro-
scope, characterized by I = 3, K = 0. Moreover, the cross-section (111),
which correctly contains the effect of radiation reaction, shows that the
validity of the quantum theory of an explicit spin interaction would be
restricted to frequencies for which the w* term is unimportant, i.e., for

frequencies
N 2%

If the g, term in the quantum theory is put equal to zero, the scattering
reduces to just that given by the Klein-Nishina formula and vanishes as the
mass of the particle tends to infinity.

The question now arises as to whether the above theory can be applied in
the classical limit to an electron or not, for as is well known, the magnetic
moment of the electron is a pure quantum effect. The argument of the
previous paragraph shows that the magnetic moment of the electron is not
to be described in this way for that would be equivalent to describing the
magnetic moment in the quantum theory by an explicit spin interaction term
with g, = efi/2m. This would not give agreement with nature, as can be seen
by comparing the theoretical scattering for an explicit g, term with that
found experimentally for free electrons. It is justifiable to calculate the
theoretical scattering by using (111), for, as has been mentioned before, this
completely agrees for frequencies w < ot with the quantum formula derived
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with a g, term.} The fact that the electron was considered as fixed at a point
in calculating (111) is of no account since the scattering due to the rotation
of the spin with an explicit g, term is far greater than that due to the transla-
tion of the dipole. Putting I = }f, K =0, g, = efi/2m, thus making
a = 3(fije?) (m[#)2, we find that the scattering given by (111) for w = 5m/#
is already about twenty times larger than the scattering given by the Klein-
Nishina formula for the same frequency. Since the Klein-Nishina formula
has been checked experimentally up to these frequencies (see for example,
Heitler 1936), we must conclude that the above scattering cross-section is
not applicable to an electron. This is entirely to be attributed to the fact
that to describe the electron and its interaction with the Maxwell field as it occurs
©n nature we must put g, = 0 both in the classical and quantum theories. The
equations of the preceding section are naturally applicable to an electron if
we specialize them by putting g, = 0, K = 0, I = }#, in which case (103)
shows that the spin continues to point in the same direction in the rest
system, while in the limit i—>0 (101) just becomes the well-known Lorentz-
Dirac equation. The quantum theory of the electron might therefore be
expected to be valid up to energies of 137mc? as hitherto supposed, and con-
trary to a tentative suggestion recently made by one of us (Bhabha 19405).

For the meson it is not yet known from experiment whether an explicit
spin interaction term is necessary to describe its interaction with the
Maxwell field or not. If it is found that such a term is required in the
quantum description of the meson’s interaction with the Maxwell field, then
the above theory would certainly be applicable to this case in the classical
limit, and (111) shows that the neglect of the effect of radiation reaction on
the rotation of the spin would restrict the validity of quantum theory to

frequencies such that]
295 N 268

It is known that the heavy particles have an explicit spin interaction with
the meson field, so that the theory of this paper would certainly describe

T Detailed calculations by Bhabha and Madhava Rao (1941, Proc. Indian Acad.
Sci. A, 13, 9-24) have shown that the quantum and classical cross-sections have the
same dependence on energy, scattering angle and polarization of the incident and
scattered light, but that the former is larger than the latter by a constant factor 3.
This factor results from physically understandable differences in the quantum and
classical averaging over the initial orientations of the spin of the scattering particle
(see footnote on p. 341 of the subsequent paper).

1 Here g* denotes the strength of a possible explicit interaction of the meson
with the Maxwell field, and not as usual the strength of the spin interaction of the
heavy particles with the meson field. '
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their behaviour in the classical limit, but we shall not consider this problem
here as it is treated in detail in the paper which immediately follows this,
where the present theory is extended to cover meson fields.

APPENDIX

The field strengths can be derived according to (8a) by differentiating the
potentials (21) and (23). The method of differentiation has been given in a
previous paper (A). We give only the result:{

8,0, 8,0, , 8,0,
FQ = 91[ e +—L:| . (113)

K3’ K3 K2

This is the usual field of a point charge. Further

S 3% 48' 48’ 8PS,
P = g =2 3T o, k),

8w S,w p 3sﬂ$y s ﬂ,g/ 8,5,5 58,
k2 K3 LB

" 38/tsp;ng_ 21)%3:,‘5'” _ 6Sﬂ8pSpv < + 3"’#825'/» K,

K K

5,808, 55 S 8,8°S 8,88

+-£ = 2 K 3 "Ks £ g2 — ””K":l . (114)

We proceed to calculate 7}, and M, ,. For the world tube defined by (40)
it was shown in A (formula (54)) that the directed surface element d.S” of the

tube is given by
s’ = {s(1 — k') —ev’} edQdr. (115)

Here dQ represents an element of solid angle subtended at the point 7 of the
world line in the rest system of this point by a portion of the sphere of radius
¢ with this point as centre. As mentioned in the text, this sphere taken at a
time € later than 7 is a section of the world tube. For all points on this sphere,

3
8, = €, while 383 = ¢2. Hence, if 4, is any vector which is not a function of
position on the surface of the sphere,

Z}Fe PA,d0Q = A, = v\, (116a)

+ The minus sign behind a bracket indicates that the same terms with v and u
interchanged are to be subtracted.
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since in the rest system v, = 1, v; = v, = vy = 0. Similarly, if B, is another
vector which is also not a function of position on the surface of the sphere,

1 3

Ine s"AAs/‘BﬂdQ = AyB,+1 21] Ay B,.

We can at once write this in tensor form by combining the terms with v a3
thus

l}%f(SA) (SB) aQ = — %(AAB’\) + %(’U’\A,\) (fvl‘Bﬂ)_ (1‘16 b)

Proceeding in this way we can easily show that

1
— J (s4) (sB) (sC)dQ = — }P(AB) (Cv)+$(Av) (Bv) (Cv). (116¢)
The symbol P denotes that we have to sum over all possible combinations
of the vectors occurring in the product, each combination being taken only
once; thus

P(AB)(Cv) = (AB) (Cv)+ (BC) (Av) + (CA) (Bv).

The generalization of the formulae (116) is easily found. In these calculations
only integrals involving products of not more than elght vectors A, B, C, D,
E, F, G and H appear. We have

f (54) (sB) (5C) (sD)d2 = == P(AB) (CD) ~ 55 P(4 B) (Cv) (D)
6.8
+ 3% (Av) (Bv) (Cv) (Dv). (116d)
P f (s4) .. 6B)dQ = 5 P(4B)(CD) () — 5= P(AB) (Cv) (Dv) (Bv)
+ 220 (40) .. (o), (116¢)
Z%,f(sA) ..(sF)dQ = — = P(4B) (OD) (EF)
+ 55 P(AB) (OD) (Ev) (Fv)
38 5107P(AB)(00) (Fv )+8312 ;2( v)...(Fv), (116f)
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1 f (54) .. (5642 = — 52— P(AB) (OD) (BF) (6v)

47re?

+-20_ P(4B)(CD)(Ev)... (Gv)

3.5.7
;051,2719(443)(0@) (G + %:%%*(Av)...(av), (1169)
L f (s)... sH)dQ@ = — 2 P(AB)(CD)(EF)(GH)
47re8 T 3.5.7.9
10
10.12 '10.12.14
+ 5ot P(AB) (OD) (By)... (Hv)— 5 = P(4B)(C)... (Ho)
+%—1—§( v) ... (Hv). (116h)

Introducing (12) and (115) into (41) and remembering that this is equal to
(42), we find

1 7
T, = Ef{F”pF””+ 19w Fpe Froy{e(1— k') — v} ed . (117)
Consider first 7'01x:, Remembering (25), we have

Tl/?ix. — fﬁf{p%pre& P+ F;(;};.Fin. h,+ %g/w Fipl#Fin. p(r} {81)( 1— K') _ 627”} ed®.
(118)

Now the ingoing field has no singularity on the world line. Hence its value
at any point x, on the surface of the sphere can be expressed by the help of
Taylor’s theorem in terms of its value at the retarded point z,(7,); thus

(B, = )00+ 5 P8
2p (7o)
Now d8 is at least of order €2, while the highest singularity in F} given by
(113) is of order ¢-2. Hence the g, terms in 7"7=- will contain the ingoing field
strengths but not their derivatives. The highest singularity in F'® is of order
€3, and hence the g, terms in 7"P!*- will contain both the ingoing field
strengths and their derivatives on the world line. At first sight it would seem
possible for singular terms of order ¢~ to appear in 7"Pi*., but calculation
shows that these vanish, as we should expect. Introducmg (114) for Fret-
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in (118) and using some of the relations (116), we find after some calculation
that the g, terms in 7= reduce to

o 3 38,7 Pl — 480 + o, S0°F )

0 . 2
___Fill-—*-{%slw'*'%’Uﬂlgo,—%—’vo_ﬂﬂ}wlﬁn.vo’]. (119)

— 1LQpo
L

Use has been made of the fact that the ingoing field satisfies (9). The last -
term vanishes since the ingoing field satisfies (80) with the right-hand side
equal to zero. We thus get the result quoted in (58) in the text. The g, term
there is the usual one which was also calculated in 4.

Inserting (12) and (115) into the first integral of (44a) and remembering
that this is equal to (445), we find

1 '
M, = rﬂf[sA{FﬂpFP,,+}gﬂ,,Fp,,FP"}{s’(l —k')—ev}]_edR. (120)

Mpix- therefore differs from (119) in containing an extra s, in the integrand,
the same terms with A and g interchanged being then subtracted. The result
of this extra s, is that there will be no g, terms in M =, while the g, terms will
contain the ingoing field but not its derivatives. After some easy calculation
we get the result given in the text by (59).

We now come to the radiation reaction terms. In the notation of (80),

TQ = GAT9(0)+ 910 T9(1) + g3 TH(2) (121)
and T = g3TP(0) +9,9.T(1) +g3T9(2). (122)

The terms in g2 are the well-known reaction terms for a pure point charge
and have been calculated in A. It was shown there that

19
() = ___#
Tﬂ (0) 3%’ (123)
Tf,?)(O) = %vpe}z. (124)

The terms in g, g, can be calculated in a similar manner. Introducing (113)
and (114) into (117) and using the relations (116), we find after some calcula-
tion that

1d . , .
TO(1) = cdr [$0,(89) + 38, + 8,971, (125)
d ) , . L
and TO(1) = o 158,02 — 30,(8'0) — 59 ,(89)]
+3(8, = 8,,07) 02— 28,57 + 30 ,(85)
+0,{3(8'0) + 3(58v) — $(8"9) — 2(8v) v%}. (126)

21
Vol. 178. A.
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We finally come to the g3 terms. The calculation of 7%¢t(2) is carried out
in exactly the same way. (114)isintroduced into (117) and then the relations
(116) are used to calculate each integral. Since FSf,Z given by (114) contains

no less than 18 terms, 7}, which is quadratic in F,, contains some 324 terms.

Some of these, of course, vanish at once from symmetry, or due to (18), but
nevertheless the calculation is very lengthy and tedious. We have not found
a way of shortening it. It is interesting to notice that with the expression

(114) for F®, there are no terms of order ¢-3 and ¢2 in F'® F®#7, 50 that the

contribution to 7%(2) comes only from the first product in (117). Moreover,
F® F®ro contributes nothing to M{)(2) since the only other terms which
could do this are those of order ¢4, and (120) shows that these are multiplied
by the factor (s,s,—s,s,) k" which vanishes. We find
‘ a1
77(,;)(2) = lj’l" I:g;{— %Q)ILSZ + %vﬂ$2_ %Spaﬂg}
1 ) . . 1 o
+ 6;{—?,;vﬂ(AS'S )+20,(880) + 59,8230, 82— 185,,8
1
- T%S/w' Sm’/‘}v - %S/wglf} + E {v,u[ — 9282+ %’&282
— 182 4+ £8"2 4 £(8'85) — L (99:90) + 14(88v)]
+ v,u[i_%(ﬂsl) + T‘%(SS'U)] + T%S/wal}v - T%S/wﬂvl}g
—%S‘M_S‘"’Q}"-F%Sﬂ(s’ﬁ)—%s;(gq})}], (127)
d & L s ad
TO@) = - [0,(3(5'85) — 33(8:85) 92— §(5880)}
+9,{ — §§820° + §(8190) + 5872 — 5 (98.99) + £58*
+£(88")+2(8'80)} + 28,875, — #38,,, 876, 0%]
+v,{— 182+ 2872+ £(8" 8) — 2(5.585) + £(85%)
+18(88") 02+ S22 — 12(8'S%) + 8(6889) — 248262 — Z(68 5%)
S HBS) (69) + AP 1Y(80) 90— § 5200 —
—£(6.986) 52+ 128204} + 9 ,{ — 3(S8) + £(8"8") - 2(8"8)
—3(890) — $(8'80) + 2(6.889) + §(8.50) 5 — $(85")}
8, = S0P 4 (BIS5) + 19820 + 8, 87, + 28, 8
—28,, 87 (09) — &8, 892 + %8, 876,97 + 38,879t — (N wS0?

— 28,8 (w5)— 28,875, + 38,87 +&8,, 876, + 18, 875
. (128)
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The calculation of M3 can be carried out in exactly the same way by
introducing (113) and (114) into (120). We give only the result. As before
(Bhabha 19390), M$),(0) = 0, while

MS{)/)J(O) = _%(v.li},u‘"v,ub)(): (129)
MO = a3, +38,05) + 3,1, (10]
d J Y . . . «
M(,{’/)‘(l) = d-—‘l' [%S,\ﬂ‘l‘ %vagp - ‘%?)AS”G.UU]__ -+ [vA{’ilgAg'ﬂ?Jz - Ts—gvﬂ(ﬂv)}]_

+[02{28,,, 07 + 48, + 38,07+ 38,02+ 40,(80)}]_.  (181)
Finally,

: 1 , 1 . .
Mﬁ@(2) = [E‘; (- %v,\SMSv) + 5 {T‘%vavﬂ,g'z -1v, v, Sz
. , d
- %’U/\S/wS m"T%v/\S,uo' S‘""U,, - %’UAS/WSG) - %E,;. (U/\ SWSU)}
1 . , . . oot .
b2 {988 + 455, (950) +-858, 871, — £58,, 8732
. v 7 . 73 . d .

— 38,5870, + $8,(8'0) = §8,(89)] + - [~ {5020, 8%

+ %v/\'}ﬂ‘gz "'%SAS;L - %Sz\a Sv,u —%—?),\S”D.S"’

——E—Q)AS/‘O.S”‘”I)V—- %UASWSG]}] ’ (132)

o d . , . . "
MS{);)L(2) = a;. [’U,\{%’Uﬂ(SS ) - %’Uﬂ(SS?)) - %S,uo' N
+ 'TZKS/WSVPQ}/) - TSI’;S'/W Squ}p + %Smrﬂmbz + % M(S’Q}) = %S;(bg’v)}
- DA{T2'5'SW N + TSES/WS(T} - %S/la'g”/t + TZFSA/L(S,?})
- iggs/\ﬂ(‘!%) + 58,8, 07 — %54 8,597 — 58,81
+[02{0,[ — 588262 + §(8.80) + F5.8%° — 5(9880) + 59°
+$(8S") +3(8"80)] + 38, 8770, — 58, 875, 5%)]
+[0{48,, 8" +188,, 8775 ,+ 28,8700, — 35,82 — 120 (8.8")

— 88,875, +%,8%-8 , 8 +8,,87%+18,, 875,
+16, 822 + 45 ,(896) — 85, 8252 — 25 ,(58,95)}
+ @A{%Sﬂv S”v+ %S’/MS”’— %Sﬂ,, S+ T‘%S’W S”Pﬁp — %SWSVP'IBP
+ %Sﬂyﬂ"éz - Tlgiiﬂ S24 %5”45’2} - %ﬁ,\SIw Srop,,
+ %SAS:I/: + %S/\V Sﬁivﬂ - %SXSM?}” + %‘gz\ gﬂv o
— 28,978 ,9° + 38,87, 52 + 28,8, 92] _. (133)

21-2
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The singular terms in all the above expressions have already been dealt
with in the text. We now have to determine A and BY),. We can see from
(126) and (128) that certain terms of 7'7(1) and T'¥(2) are perfect differentials.
It simplifies the calculation to add these terms straight away to 49(1) and
A©(2), for these terms then fall out of the translational equation. They
cancel one another on the right-hand side of (69a). Their inclusion in 49,
however, alters the left-hand side of (79) and is equivalent to subtracting
certain terms from MY). It appears that this actually effects a simplification
in MY). The terms that are so cancelled in M{),(1) and M{),(2) have been
written separately in the second square brackets in (131) and (133) re-
spectively. Further we see that the terms in the first square brackets in (131)
and (133) are perfect differentials. These can therefore be eliminated at
once by including them in BY). These terms then also drop out of the
rotational equations. We may therefore work as if the terms in the first
square brackets in 7'9(1) and 7'9(2), and the terms in the first and second
square brackets in MY)(1) and M)(2), were absent. This effects some
simplification in the subsequent calculation, and we henceforth assume
that these terms have been eliminated. :

Consider first Aﬁf)(O). This must not contain S, ,and must have one differ-
entiation with respect to 7. It can easily be seen that it must be —$v,. With
this substitution the right-hand side of (69a) vanishes at once, and the left-
hand side of (79) also vanishes by (129), provided that BY),(0) = 0. This is in

‘any case inevitable since no term in BY)(0) is possible which only contains
v, but none of its derivatives. We thus find that

Teact:(0) = %(vﬂ’t)2+iiﬂ), (134)
while M3eaet- (0) = 0. These are the well-known radiation reaction terms for
a point charge.

Now consider 4¥(1) and BY)(1). Expressions (126) and (131) show that
the terms of these must be linear in S, , and contain respectively two and one

differentiations with respect to 7. The most general expressions for these
quantities are then of the following form:

AD() = J10,(89) +f50,(8'0) +£39,(89)
+ o8, 02+ f5 8 4+ f6 8 e 07+ [118,557, (135)
and B‘)?,)‘(l) = [hlg,\ﬂfhszS;+h30ASWv}"+h41)A$”]_. (136)
The f’s and &’s are arbitrary constants which have to be determined. Using

(181) (without the terms in the first two brackets), (135) and (136), we build
the expression on the left-hand side of (79). The coefficients of those terms in
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this which are not of the form of the right of (79) must be put equal to zero.
Thus, the coefficient of v,9,(89) is — (f;—%), and this must be zero; whence
fs = %. Similarly, the coefficient v,8,9* is —(f,—%); whence f, = }. The
coefficient of v, S,, 9" is — (f;+ k3 — §). This need not be zero, but it must be
equal to minus the coefficient of 4, 8, which is — h,. Hencehy = — (f7+h;—3).
These two terms then combine to give

P8, (570 — v78)],

which is of the form of the right-hand side of (79) and is permissible.
Proceeding in this way we can show that the left-hand side of (79), which
is equal to M Jeaet-(1) by (88), must be reduced to

Mgt (1) = hy[ Sy (670, — 078 ,)] .. (137a)

Finally, using (126) and (135), we form the right-hand side of (69a) and
equate it to the left-hand side, which in this case becomes just £,(S'%). The
coefficients of each term on the two sides of (69a) must be equal, and this
gives us another set of equations determining the coefficients. It is found
that all the coefficients can be determined in terms of one of them, namely
hy. We call this & below. The result is given in the table:

fi=% f2=—3h+% f3=§ fa=1%
f5="h+% fo=—2h+2 fi=%
hy=0 hy=h hy=h  hy=—h

If we use (126) and (135) with these values of the coefficients, T"act-(1)
given by (85) can easily be worked out. Similarly, by (56) and with A for A,,
the equation (137a) leads to

Opeet(1) = k(ﬁpvﬂ_ﬁllvl’)' ’ (1376)

Tieact-(2) and M3eaet-(2) can be found in the same way, but due to the fact
that they are quadratic in S,, and contain respectively four and three
derivatives with respect to 7, they are very much more complicated. 49(2)
contains 56 terms which may be grouped in the following way. One group
has terms of the type v(S8)v? with three derivatives (dots) distributed
over the different symbols. By (4), (5) and (7), there are five independent
terms in this group, namely v:82, v MS’z, v, %02, 'vﬂ(SS’ ), and v,(¢%). Another
group has terms of the type v,(vSSv)v? and contains 23 terms. The other
groups are characterized by terms of the type v,(vSv) (v8v), (S, 87v,) v* and
(8,,v7) (v8v) v%, and contain 3, 13 and 12 terms respectively. There are thus
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inall 56 ir  pendent terms with arbitrary coefficients in A9 (2). Similarly,
the terms 0 3Y)(2) can be classified in the following groups:

[t 870,102 [938,,07]_(v80), (vyv,]_(vSSv),
[835078,,0°]-, and 8, (vSv),

with two dots distributed over the symbols in each term, plus two other
terms, [v,3,8%]_ and [S) pSP ] which do not belong to these groups. There
are 11, 5, 3, 4 and 3 terms respectively in each group, making 28 terms in
all. It is remarkable that the conditions (79) and (69a) are so stringent that
the coefficients of all these terms can be determined in terms of six arbitrary
constants which we denote by %, to k4. We give only the result here. 7¢3%(2)
is an extremely cumbersome expression. However, when ¢,, ¥,, viil, and
Sy 8y, and S, vanish, it reduces to

— 15017 82+ 20V 82 4 Ev (8801Y) + (kg + Ky + §) v,(88™)
+ (ky+ 3) S5 8 + k38,87, (138)
Finally, M%eact(2) can be written
Myzen(2) = [Sy O], (139)
with — COeact:(2) = 28 4+ 28 92+ [40,8), + 20,8, 52

—klv%iﬁ’ﬂ—~(k1+k2+%)ﬁp5’w7}”——(kl——ks—k4+%)iip;8’;

+ (ky— kg + kg + 3) 0,81 9 — (kg + by — 55) 0,8,

— (k3= 3) 0,800 + (ks +3) {0,897+, 8}

+(2ky— 29,8 ,, 07 — 25,8 ,(05) — (ks —2) {v,8,, 070

+9,8 0% + ke{v,6,(89) +v,9,(86)}]_. (140)

We see from (138) that SY, appears in the translational equation, but the
arguments given in the text show that this does not prevent the equations
from being used to determine the motion of the particle. The only terms
which contain S, are in fact just the last three terms in (138). (No term
containing SY, vanishes by putting any of the lower derivatives of v, or S,
equal to zero since the terms in 7"fa<t:(2) have in all four derivatives, and in
those terms where four derivatives appear in S,, no dots can appear over
any other symbol.) (138) shows that by putting k; + % = 0, k; = 0, we could
eliminate S, from the equations of motion altogether. This specialization
simplifies the coefficients in (140). Out of the remaining four coefficients,
kg = 0 effects an obvious simplification.
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To obtain the specialized equation when either S, v = 0 or S} 07 = 0, we
have to replace (%22t by

D,, = ('east. _ ((react.yry . (freact.yry ), (141)

as shown in the text. This expression is in general no simpler than (140).
However, in the particular case 8, = 0 we can use the relations (94). The
expression for D, then reduces to

D,,=38W 128, ?—[—3%0,8) +(d—3)v,S,0?
+(d—3)9,8,+d5,8,+2d+1%)9,8,,571_, (142)

where we have written d in place of — (ky+ ks + ks —&). It is interesting to
note that in this case three of the six arbitrary constants automatically fall
out, while the other three only appear in the above combination, so that in
effect there is only one arbitrary constant in this case. (142) is exactly the
radiation reaction term found for this case in a previous paper (B, (46)) by
a direct method. 7%¢"-(2) is given explicitly in that paper (B, appendix).

Forming the expression on the right-hand side of (141) from (1370), we see
that it vanishes, which shows that there areno g, g, termsin D, . We thus get
the result quoted in the text that even in the case g, +0 the charge ¢, adds
nothing to the radiation reaction terms in the rotational equation.

In the case & 2 =0, the radiation reaction terms in the translational
equation (101) are then

T5et = gT5e™(0) + g, 92 T3 (1) + g3 T51(2).
T5eM(0) is just given in (134), while
T (1) = 40,(86) + 38,92 — 38), — 28,57 — 38,7, (143)

and thus contains no arbitrary constant. T!:(2) contains the one arbitrary
constant d which occurs in (142) and is given explicitly in B (appendix). We
see clearly that, whereas the reaction terms in the general equations (72) and
(73) contain no less than seven arbitrary constants, in the special case
B, = 0 (but not in the case Sy, v = 0) there is only one arbitrary constant,
and the radiation reaction terms both in the translational and rotational
equations are vastly simpler.
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General classical theory of spinning particles in
a meson field

By H. J. Buasua, Pu.D.
Department of Physics, Indian Institute of Science, Bangalore

(Communicated by P. A. M. Dirac, F.R.S.— Received 18 December 1940)

An exact classical theory of the motion of a point dipole in a meson field
is given which takes into account the effects of the reaction of the emitted
meson field. The meson field is characterized by a constant x = u/A of the
dimensions of a reciprocal length, x being the meson mass, and as xy—0 the
theory of this paper goes over continuously into the theory of the preceding
paper for the motion of a spinning particle in a Maxwell field. The mass of
the particle and the spin angular momentum are arbitrary mechanical
constants. The field contributes a small finite addition to the mass, and a
negative moment of inertia about an axis perpendicular to the spin axis.

A cross-section (formula (88a)) is given for the scattering of transversely
polarized neutral mesons by the rotation of the spin of the neutron or proton
which should be valid up to energies of 10° eV. For low energies E it
agrees completely with the old quantum cross-section, having a dependence
on energy proportional to p*/E? (p being the meson momentum). At higher
energies it deviates completely from the quantum cross-section, which it
supersedes by taking into account the effects of radiation reaction on the
rotation of the spin. The cross-section is & maximum at E ~ 3-5u, its value
at this point being 3 x 10-2¢ cm.2, after which it decreases rapidly, becoming
propartional to E-2 at high energies. Thus the quantum theory of the
interaction of neutrons with mesons goes wrong for K> 3u. The scattering
of longitudinally polarized mesons is due to the translational but not the
rotational motion of the dipole and is at least twenty thousand times
smaller.

With the assumption previously made by the present author that the
heavy partilesc may exist in states of any integral charge, and in particular
that protons of charge 2e and —e may occur in nature, the above results





