
RANDOM SEQUENTIAL ADSORPTION ON A LINE:MEAN-FIELD THEORY OF DIFFUSIONAL RELAXATIONVladimir Privmana;b and Mustansir Barmaa;ca Department of Physics, Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP, UKb on leave of absence from Department of Physics, Clarkson University,Potsdam, New York 13699{5820, USAc on leave of absence from Tata Institute of Fundamental Research,Homi Bhabha Road, Bombay 400005, INDIAPACS 05.70.Ln, 68.10.Jy, 82.20.MjABSTRACTWe develop a new fast-di�usion approximation for the kinetics of deposition ofextended objects on a linear substrate, accompanied by di�usional relaxation. Thisnew approximation plays the role of the mean-�eld theory for such processes and isvalid over a signi�cantly larger range than an earlier variant, which was based on amapping to chemical reactions. In particular, continuum-limit o�-lattice deposition isdescribed naturally within our approximation. The criteria for the applicability of themean-�eld theory are derived. While deposition of dimers, and marginally, trimers, isa�ected by uctuations, we �nd that the k-mer deposition kinetics is asymptoticallymean-�eld like for all k = 4; 5; : : : ;1, where the limit k!1, when properly de�ned,describes deposition-di�usion kinetics in the continuum.{ 1 {
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1. INTRODUCTION AND DEFINITIONSRecent experimental advances [1,2] in the studies of kinetics of formation of amor-phous layers of monodispersed submicron colloid particles and proteins on at surfaceshave stimulated much theoretical interest in models of irreversible growth [2]. Mono-layer growth by random sequential adsorption was the earliest such system to beconsidered [2,3], and many theoretical results have been accumulated over the years.More recent e�orts have been focused on multilayer structures, on results which canbe obtained by modern computer simulations, and on allowing for relaxation in thedeposit [4,5]. The subject of this work is di�usional relaxation in monolayer deposition.In colloid deposition on surfaces, relaxation is typically slow. Di�usional relax-ation can, however, be observed experimentally in protein monolayers and multilayers[6]. Furthermore, multiunit-long, \sliding" molecules can be attached to DNA suggest-ing consideration of one-dimensional lattice and continuum models. Related models ofdeposition of the epitaxial type (i.e., crystalline-structure forming), accompanied bydi�usional and other relaxation processes, were considered in the literature [7].Theoretical study of the irreversible adsorption with di�usion encounters severaldi�culties. Firstly, numerical simulations have proved exceedingly resource-consumingalready even for one-dimensional models [4,5]. Secondly, even in the absence of de-position, systems of di�using hard-core extended objects are not fully understood indimensions higher than one, and are the subject of much current research and contro-versy [8]. Indeed, both the dynamics and equilibrium state of hard-core systems showcomplicated cooperative e�ects such as slow \glassy" relaxation, phase transitions andphase separation, etc.Results of numerical simulations of lattice models in 1d were interpreted [5] withina certain mean-�eld type framework which will be described shortly. First, we have{ 2 {



to introduce some notation. Consider deposition of extended objects of size ` on aline, with the attempt rate R (per unit length and time). The attempts are uniformlydistributed, but only those are successful which fall in the space free from objectsdeposited earlier. Initially, the substrate (1d line) is empty. The deposited objects hoprandomly, with the single-object (dilute-limit) di�usion constant D. Lattice models ofk-mer deposition are de�ned by further introducing the space mesh in steps ofb = `=k ; (1:1)and requiring that both the deposition events and the hopping keep the extendedobjects aligned and registered with the resulting 1d lattice. For instance, the depositionattempt rate is Rb per lattice site (per unit time).The limit D = 0 corresponds to deposition without di�usion, and provided k >1, the coverage (fraction of length covered), �(t), approaches a certain k-dependentjamming value �(1) < 1 for large times, t. This 1d deposition model is in fact exactlysolvable [3]. The jammed state is formed because there are gaps of lengths b, : : :,(k � 1)b, which cannot be �lled by deposition. There exists a well de�ned continuumlimit k!1, for all quantities of interest.However, for nonzero di�usion rate the coverage eventually reaches 100%, for largetimes, because di�usion allows the formation of large gaps within which a fraction ofdeposition attempts can succeed. Exact solution is no longer possible, even in 1d.Instead, the following line of argument has been advanced [4,5]. For large times, with� near 1, most of the free length will be in isolated single-site gaps of length b. Thesecan be brought together by di�usion to form large empty gaps, of at least k latticespacings, which can with some �nite probability be covered by a depositing object (orbe broken up again by di�usion). The asymptotics of the di�erence (1 � �) for large{ 3 {



times can then be related to the decrease in density of the di�usion-limited chemicalreaction kA! inert ; (1:2)where A are di�using reactants on a line, forming inert species, i.e., e�ectively annihi-lating, according to (1.2) with some �nite probability on each encounter of k reactants.Such reactions have been studied in the literature [9]. The appropriate resultswill be reviewed later. For now it su�ces to point out that for k = 4; 5; : : :, and withsome reservations (to be addressed later) for k = 3, one can use the mean-�eld rateequation which in terms of the coverage takes the formd�dt ' kR`(1 � �)k : (1:3)While this approximate power-law behavior was con�rmed by numerical simulations[5] for k = 3; 4; 5; 10, there is an important limitation to the rate equation (1.3): it hasno obvious continuum limit as k!1.Indeed, no matter what k-dependence one conjectures for the dimensionless e�ec-tive rate constant k, the right-hand side of (1.3) cannot approach a de�nite functionof � as k!1. This di�culty was also suggested by a preliminary observation basedon the data for k = 3; 4; 5; 10, that the times t from which (1.3) applies increase rapidlywith k.The main objective of the present work is to repair this de�ciency of the mean-�eld theory in 1d. Thus, in Section 2 we introduce a new approximation scheme, stillmean-�eld in nature, which allows the derivation of improved rate equations which arevalid in a signi�cantly larger regime and which apply in all the limiting cases. Various{ 4 {



implications of this new mean-�eld description will be detailed in Sections 3 and 4,with the latter devoted to the continuum limit. The original rate equation (1.3) turnsout to hold only for t� [(k � 1)R`]�1ek�1 ; (1:4)which explains its failure to describe the continuum limit k!1.As with any mean-�eld approximation, uctuations are expected to dominate thelarge-time behavior in some cases, such as for k = 2. The appropriate criteria arederived and discussed in Section 5. Finally, Section 6 is devoted to summary anddiscussion of those new aspects that must be considered in order to extend the theoryto d > 1, which, however, is not attempted here; see earlier remarks in this sectionand the discussion in Section 6.2. FAST DIFFUSION AND DIFFUSER SPACEIt is convenient to relate our system to a lattice model of hard-core particles(monomers) of length single lattice spacing b, each attempting to hop with rate H =4D=b2 per unit time to the left or right neighbor lattice site (rates H=2). We willuse the term \di�users" to refer to these particles. Hopping attempts succeed only ifthe hard-core constraint is not violated. The precise dynamics of di�users is in factnot of interest to us here. The only property we will use is that for large times thesystem of hard-core particles approaches a steady state in which they are distributedstatistically uniformly along the line [10].Consider now a large length L in our original deposition model. It is convenient totake L to be the system size, in this section. We disregard �nite-size e�ects by implyingthe thermodynamic limit �rst, in all the \intensive" expressions. The length L contains{ 5 {



�L=` extended objects, each k lattice spacings long. Disregarding deposition, di�usionin this system is the same as in a single-site-di�user system in which all the extendedobjects of length ` = kb are replaced by di�user particles of length b. The total lengthavailable to these di�users is� = (1 � �)L + �L=k = �1� � + 1k��L : (2:1)The density of di�users (per site of the di�user-space lattice) is thus� = �L=`�=b = 1k �1� � + 1k � : (2:2)The gap size between every pair of neighboring di�users can be mb, where m =0; 1; : : :. Note that m = 0 corresponds to contact, while the upper limit is takento be in�nity due to our disregard of �nite-L e�ects. Di�usion makes particle loca-tions uncorrelated. In terms of the gap sizes, the appropriate statement is that the(normalized) probability to �nd gap size m isProb (m) = �(1� �)m : (2:3)Of course, the result (2.3) applies only for large times. However, we are proposingto use (2.3) as the approximate, fast-di�usion, mean-�eld form of the gap size distribu-tion for the actual deposition model. The implications of this approximate assumptionwill be worked out in this and the next two sections. We will then proceed to derivethe conditions for its asymptotic validity, in Section 5. Let us point out, however, thatin the opposite extreme of no di�usion at all, exact results for the gap size distributioncan be derived [3] although they were analyzed in detail only in the continuum limitk!1. These results will be described in Section 4.{ 6 {



We now return to the original full-line problem, and assume that (approximately)the gap sizes are distributed according to (2.3), where the time-dependence enters viathe �-dependence implied by (2.2). The total number of gaps (including m = 0) isequal to the number of objects. However, only gaps of size m � k o�er (m � k + 1)distinct locations for deposition. Since the deposition attempt rate per lattice site isRb, the overall average rate of successful depositions in L, per unit time, is! = (Rb)(�L=`) 1Xm=k(m� k + 1)�(1� �)m = LR�(1 � �)kk� : (2:4)In each deposition, the coverage is incremented by `=L. Thus, we obtain the relationd�dt = `R�(1 � �)kk� : (2:5)Finally, we use (2.2) and introduce the dimensionless time variableT � R`t ; (2:6)to write the equation for the coverage in the fast-di�usion approximation,d�dT = (1 � �)k�1� � + 1k ��k�1 : (2:7)3. LATTICE DEPOSITION WITH FAST DIFFUSIONIn this section we consider implications of the relation (2.7) for �xed k, i.e., forlattice deposition. Some conclusions are valid also in the limit k !1 which, however,will be considered separately in the next section. We assume k = 2; 3; 4; : : : since thecase k = 1 is trivial. In fact, (2.7) is exact for k = 1.{ 7 {



The curve �(T ) obtained by integrating (2.7) with the initial condition �(0) = 0provides the upper bound (corresponding to D =1) for any deposition process with�xed di�usion rate (recall that the deposition rate was absorbed in the time scale);see (2.6). The exact solution for D = 0, available as quadrature [3], provides the lowerbound. The two curves are in fact quite close for small and intermediate times asillustrated in Figure 1 for k = 5.For large times, however, the behavior is quite di�erent. The D = 0 curve ap-proaches the jamming value < 1, at the exponential rate, k�1e�T=k, see [11]. However,the fast-di�usion result approaches the full 100% coverage, according to1� �(T ) ' k�1 [(k � 1)T ]�1=(k�1) : (3:1)Interestingly, this power-law behavior sets in, and (2.7) can be replaced by the \reac-tion" type rate equation (1.3) with k = kk�1, for timesT � (k � 1)�1ek�1 ; (3:2)which become quite large as k increases. This time scale is essentially determined bythe condition (1 � �) � k�1 imposed to have no variation due to the denominator in(2.7), for � near 1. However, from (2.2) one can easily check that the same condition isalso obtained from (1��)� 1, within the fast-di�usion formulation. The latter condi-tion ensures single-lattice-spacing gap dominance, as discussed in Section 1, providedthat the gap size distribution is approximated by (2.3).The full result (2.7) is, however, more general than the rate equation (1.3); itsprecise limits of applicability will be derived in Section 5. As found for chemicalreactions [9], and more generally for critical phenomena, the mean-�eld results can be{ 8 {



Fig. 1. The k = 5 curves �(T ) for D = 1 (upper) and D = 0 (lower). The brokenline marks the limiting, jamming value of the D = 0 coverage for large times. TheD =1 coverage curve approaches 1 as T !1; see Section 3.used in those cases when local uctuations do not dominate the dynamics.However, even for the description of dynamics dominated by the uniform uc-tuations describable asymptotically by e�ective-�eld type approaches some caution iscalled for. Indeed, one can claim that relation (2.7) provides the correct functional{ 9 {



form of the asymptotic large time behavior, with the \large times" de�ned much lessrestrictively than when using (1.3); see Section 5. However, for any �nite D (andk > 2) to actually �t the data to the mean-�eld form, we must use it with \e�ective,"renormalized rather than \bare" parameters. In (2.7) the only parameter was theoverall rate. Phenomenological �ts of data obtained for D <1, should be done withthe right-hand side multiplied by an additional adjustable rate parameter of order 1,before integrating (2.7). This parameter will approach 1, and the time range for which(2.7) applies will extend down to T = 0, only in the limit D!1.Due to the limited numerical data available in the literature on the depositionproblem [5] we have not attempted systematic tests of the above expectations. Somepreliminary checks were made for k = 10. However, in a forthcoming publication [12]we report a similar improvedmean-�eld approach formulated for the chemical reactions(1.2), as well as detailed numerical studies of the applicability of such \fast-di�usion"mean-�eld theories in 1d.4. CONTINUUM DEPOSITIONThe k!1 limit of (2.7) is easy to work out,d�dT = (1� �) exp�� �1� �� : (4:1)Thus the fast-di�usion approximation is well-de�ned. The approach to the limitingcoverage is quite slow: � ' 1� 1ln (T lnT ) ; (T � 1) : (4:2)This behavior is quite di�erent from the other extreme of no di�usion at all. The{ 10 {



coverage in the latter case reaches the jamming value (< 1) at the rate � T�1; see [11]for details.The di�user space concept was useful in our derivation, Section 2. However, itcannot be used directly in the continuum because the lattice spacing b vanishes. Itis useful to describe how the gap size probability in the fast di�usion approximationcan be analyzed directly in the original space. We will also compare the fast-di�usion(D =1) expression to the result in the D = 0 case. (The main conclusions also applyfor k < 1. As already mentioned, the discussion is presented in this section becausethe D = 0 gap size distribution has been studied in detail only in the continuum limit[3,13].) The di�user space is nevertheless an important tool in the derivation of thelimits of validity of the mean-�eld approximation; see Section 5.To analyze the gap sizes in continuum directly, in the fast-di�usion approxima-tion, we note that for uncorrelated object locations, the gaps must be exponentiallydistributed. (As we just pointed out a similar line of argument can be carried outin the discrete case.) Let g � 0 denote the gap size (formerly mb), and G(g) thedensity of gaps of size g to g + dg per unit length of the system, so that G has unitsof 1=(length)2. The decay width and the coe�cient of the exponential can be �xedfrom the condition that the total number of gaps be equal that of objects, which canbe reduced to Z 10 G(g)dg = �=` ; (4:3)and another condition: that the total length of all gaps be fraction (1��) of the systemlength, Z 10 gG(g)dg = 1� � : (4:4){ 11 {



The resulting exponential distribution function,G(g) = �2(1� �)`2 exp �� �g(1� �)`� ; (4:5)can be also shown to represent the correct k!1 limit of the gap probability derivedin Section 2 by \di�user" arguments.For T !1 the exponential (4.5) collapses to the point g = 0. This is in contrastto the D = 0 distribution which only develops [3,13] a weak (logarithmic) integrablesingularity at g = 0, and is �nite up to g = `. For g > ` it is zero, which is justthe manifestation of jamming: large gaps are �lled up but the small ones are leftover. For �nite times, the singularity at the origin is not sharp [3,13]. There is adiscontinuity in slope at g = `, and in fact for g > ` the functional form is exponentialin g. Speci�cally, for large times, on approach to jamming, the D = 0 distributionfollows � exp [�(T=`)g], whereas the fast-di�usion exponential (4.5) behaves for largetimes as � exp [�(ln T=`)g].The main e�ect of di�usion is therefore to increase the weight of large gaps atthe expense of small gaps, which is particularly e�ective in the late stages of thedeposition. These considerations actually suggest possible directions of improving thefast-di�usion approximation. A natural theoretical development, not attempted here,would be to write kinetic equations for the gap size distribution, incorporating thetime-variation due to both di�usion and deposition.5. CRITERIA FOR APPLICABILITY OF THE MEAN-FIELD THEORYIn order for the mean-�eld type approximations to hold, the system behaviormust be dominated by uctuations in various overall averaged quantities. If insteadlocal density uctuations dominate the deposition process, then mean-�eld theory will{ 12 {



not be applicable. Thus, for mean-�eld theory to apply, density uctuations due tosuccessful deposition attempts must be e�ectively smoothed out by di�usion, over acertain characteristic length scale L (which in this section no longer denotes the systemsize).For short times the substrate is nearly empty, the deposited objects are uncorre-lated and so L will be small. We expect L to become large for large times. In orderto estimate L, we make two observations. Firstly, the average distance between twoneighboring empty sites is �L = �`k(1� �) : (5:1)This distance becomes large for � near 1. Secondly, each successful deposition elim-inates k empty sites, which were at that instant part of a gap of m � k sites. Theoverall gap distribution will thus be appreciably \perturbed" over a lengthL = O(k)�L ; (5:2)which represents the average size of the region which would have been occupied byO(k) empty sites after di�usive spread, had there been no deposition event.In order to have a more de�nite expression, we note that for k = 1 there are nocorrelations at all, and formally, L = 0. Thus we replace the O(k) factor by (k � 1),L = (k � 1)�`k(1� �) : (5:3)This prefactor choice is, however, purely phenomenological.For any region of length L, the rate ! of successful deposition events in that{ 13 {



region is given by (2.4). The time scale it takes the di�usion to equilibrate densityperturbations in length L is � = �2=D ; (5:4)where � is the di�user-space equivalent of L, see (2.1).The condition to have e�ective di�usional equilibration is!� � 1 ; (5:5)which upon collecting all the relations and de�nitions introduced above reduces aftersome algebra to DR`3 � �k � 1k �3 �3� 1� �1� � + 1k ��k�3 : (5:6)Note that we used relation (2.2) to replace �-dependence by �-dependence.The right-hand side of (5.6) is shown in Figure 2 for k = 2; 3; 4; 6 and 1, wherein the limit k!1 we haveDR`3 � �3 exp�� �1� �� ; (k =1) : (5:7)The main conclusion is that for k = 4; 5; : : : ;1 the fast-di�usion mean-�eld theoryshould be asymptotically correct for large times. Successful depositions are so farand few between, that the system has enough time to equilibrate di�usively betweendepositions. The point brought up in Section 3, regarding the use of the e�ective\renormalized" rate to actually �t the data by the mean-�eld functional forms, mustbe kept in mind, however. The case k = 3 is borderline. Our estimates \from within{ 14 {



Fig. 2. The functions de�ned by the right-hand sides of (5.6), for k = 2; 3; 4; 6, and(5.7), for k =1.mean-�eld" cannot be used to decide if uctuations will be marginally relevant inthis case, i.e., if additional logarithmic factors will make the appropriately modi�edversion of (5.6) break down at large times. Phenomenologically, however, the mean-�eld expressions with \e�ective" rate constant may provide a good quantitative �t ofany data set taken over a large but �nite number of decades in T .{ 15 {



For k = 2 the mean-�eld theory breaks down similarly to chemical reactions [9].Other approaches which account for local uctuations must be adopted; see [4] forsuch developments and numerical tests.6. DISCUSSIONIn this last section we begin by addressing the issue of how various ingredients ofthe theory are modi�ed for d > 1. Firstly, uctuations are always smaller in higherdimensions and therefore mean-�eld theories would provide a useful tool. However,as mentioned in Section 1, there are several points of di�culty. Locally, in higherdimensions there can be immobile \gridlocked" gaps (for nonspherical object shapesor on lattices), and it is not even obvious if the large time coverage will always reachthe maximal, fully crystalline packing value. In fact, the �nal state may be amorphous,or polycrystalline with a network of defects.Indeed, polycrystalline and amorphous structures were found in numerical ex-periments on the formation of packed structures in two and three dimensions [14] bymethods other than random sequential �lling with di�usional relaxation. (We are notaware of any numerical investigations of the latter process in d > 1.) In fact, thetendency was [14] for polycrystallinity in 2d and amorphous structures in 3d.Globally, neither the dynamics of hard-core di�using extended objects nor thecollective aspects of the equilibrium state are well understood, even without addeddeposition [8]. Glassy slowing down and phase transitions are among the collectivee�ects possible. Thus, even within the fast di�usion approximation, the problem ismuch more complicated than in one dimension.Another aspect of the di�culty in extending the theory to d > 1 is that numericaldata are quite di�cult to collect, and the currently available experimental results [6]{ 16 {



are few and very recent. However, the complexity of the problem also suggests thatnew interesting e�ects may be discovered. As a �rst step, heavy numerical e�ort iscalled for.In the present work, we accomplished the formulation of the mean-�eld approachdirectly for the deposition problem, without having to map to the chemical reactions.The main improvement was the well de�ned large-k behavior of the new mean-�eldexpressions, and a larger regime of validity for each value of k > 3. The criteria ofapplicability of the mean-�eld theory were derived in the deposition-model context. Anew �nding was that mean-�eld theory provides the correct asymptotic description ofcontinuum deposition, with di�usional relaxation, on a line.This research was partially supported by the Science and Engineering ResearchCouncil (UK) under grant number GR/G02741. One of the authors (V.P.) also wishesto acknowledge the award of a Guest Research Fellowship at Oxford from the RoyalSociety. REFERENCES1. For recent results consult, e.g., N. Ryde, N. Kallay and E. Matijevi�c, J. Chem.Soc. Faraday Trans. 87, 1377 (1991); M. Elimelech and C.R. O'Melia, Environ.Sci. Technol. 24, 1528 (1990).2. For comprehensive review and literature list, consult M.C. Bartelt andV. Privman, Int. J. Modern Phys. B5, 2883 (1991).3. J.J. Gonzalez, P.C. Hemmer and J.S. H�ye, Chem. Phys. 3, 228 (1974).4. V. Privman and P. Nielaba, Europhys. Lett. 18, 673 (1992).5. P. Nielaba and V. Privman, Modern Phys. Lett. (1992), in print.{ 17 {
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