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Limit theorems for

semi-Markov processes

K.B. Athreya and PE. Ney

A new construction of regeneration times is exploited to prove
ergodic and renewal theorems for semi-Markov processes on general
state spaces. This work extends results of the authors in 4nn.
Probability (6 (1978), 788-T97).

1. Introduction

This note is a continuation of [2] and [3], where we introduced a
construction of regeneration times to show that recurrent Markov chains on
general state spaces act as if they had a single recurrence point which is
visited infinitely often. This device was used to give renewal theoretic
proofs of ergodic and renewal theorems for Markov and semi-Markov chains.
The semi-Markov results were proved under a strong aperiodicity condition
on the underlying Markov chain, and a further strong restriction on the
distributions of sojourn times in a state. Our objective here is to remove

some of these restrictions.

Consider a space S with a 0-algebra of subsets S . Let

{Xn; n=0,1, ...} be a Markov chain on (S, S) with homogeneous

transition function P(s, E) , 8 € S, E €S , and let
{ny(-); z, y € S} be a family of Qistribution functions on gt = [o, =)
Given a realization {Xn = xn; n=0,1, ...} of the chain, generate

independent random variables {Ln; n=0,1, ...} such that
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(1.1) PlL.=<t|x ==z ,n=0,1, ...} =6 (t) t=0
1 n n’ > To0%s g ?
Set

( (xo, t) when 0st<Ly

(x,, ¢-L,) when Ly =t < L+l

w(t) = (2(¢), A(¢)) = { :
k-1 k-1 k
X, t - g Li] when g L‘Lst<§L1,

The process {W(t); 0 = ¢t} is a Markov process. {Z(t); 0 < t} 1is called
a semi-Markov process, and {A(t); 0 <t} 1is its associated age process.

Also {Xn} is referred to as the state process, {Ln} as its "sojourn"

times, and {Xn, L as a semi-Markov chain. (Note that this pair chain

n-l}
is actually a Markov chain; the joint distribution of (Xn+l’ Ln) depends
only on Xn ) The objective is to determine the limiting behaviour of
W(t) ; more specifically of functions of the form E’f(W(t)) and

© n
E Z g[Xn, t - Z Li] , for reasonable classes of functions f and g .
n=0 =0

The key hypothesis is designed to guarantee the required recurrence

structure.

HYPOTHESIS Hk . (1) There exists a set A € S such that for some
integer k ,
(1.2) Px{XnkEA forsome n=z1l} =1, =z €S5.

(i) There exists a probability measure ¢ on (SnA, Snd), a

family of probability measures u(x, *) on B(R") for €A, and a
number X € (0, 1) , such that

k-1
(1.3) Px[Xk € E, igo L, € D] > x(E n A)u(x, D)

for all =z €4, D ¢B(R) .
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We then have the following
THEOREM. Assume H. Then

(a) there exists a O-finite, invariant measure v for P
which is unique up to multiplicative constants;

() if furthermore

(i) m= f m(x)v(dx) < = , where m(x) = ExLo R
k=1

(ii¢) P [z L, = u] = Fk(u) 18 non-lattice, and
o]

(ii1) f : 8 x RY +RY is bounded, measurable: and
We : flx, t) ie discontinuous for some t} =0,
then
(1.%) 1im £F(W(t))

100

i Us U‘; flas WP (2, > u)du]v(dm}/{fs U: P_(z, > u)du]v(dx)] ;

fe) if () (i) and (ii) hold, and g(z, t) : SxR +R is
bounded, measurable, continuous in t , and satisfies

(1.5) glx, t) + 0 almost surely (v) as t -+ o,
(1.6) J y sup gz, t)v(de) < =,
8 n=0 nh<t<(n+l)h
and
(1.7) f {sup |g(=z, ¢)|}v(dz) <= ,
t

thenag t » o ,

o n~-1
(1.8) E Y glx,t- Y 1|2 rf glz, t)v(dx)dt .
P w0 |7 iso t] MlgdsT
REMARKS. |. The theorem extends results of [2] in two ways. First,

the distributions ny(') were allowed to depend only on x (not y ) in

the earlier work; that is, there the sojourn times depend only on the
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state the chain is "coming from". Secondly, only the case k =1 is

admitted in [Z].

2, The awkward conditions (1.5)-(1.7) are designed to assure the
direct Riemann integrability of certain functions related to g . These
conditions can be eliminated at the expense of strengthening the smoothness

hypothesis on Fk in () (ii1). (see the related discussion in Arjas,
Nummel in, and Tweedie [1], and Athreya and Ney [4].)

3. Nummelin [7], [8], has proved many results related to this
subject, including one like the above theorem under apparently slightly
stronger hypotheses. He also uses regeneration methods, but treats the
semi-Markov process as a Markov chain on the enlarged state space S xR ,
and applies discrete renewal theory to this chain. We work instead with
the continuous time process @(t), A(t)) and use renewal theory on R to
draw our conclusions. This approach seems to us to yield somewhat more

transparent proofs.

4, Nummelin has also shown (see [7]) that a condition very close to

Hk is always satisfied (for some k ), provided the semi-Markov chain

satisfies a weak irreducibility condition.

5. That (1.8) is in fact a "renewal theorem", can be seen by taking
glx, t) of the form XA(x)XI(t) for A €S, and Ic R an interval.

As usual in such results, if F,(*) is lattice, then there is a lattice

k

version of (1.8).

6. Similarly (1.4) can be seen to imply the convergence of
plz(¢) €8}, E€S

7. Since (a) asserts the uniqueness of the invariant measure, one can
use any measure T(*) that is invariant with respect to P in place of
v

8. If k=1 and ny depends only on x , then H., automatically

1
holds.

9. The result (e) of the theorem carries over without difficulty to

the "two sided" case when the ny(') are distributions on (-, ®) |

along the lines of Theorem 4.1 of [Z].
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I0. Renewal theorems of the type in (¢) of the theorem under

different hypotheses have been proved by Jacod [5] and Kesten [6].

2. Proof of the theorem
Hypothesis Hk (4i) applied to D = R implies that the Markov chain
{Xnk; n=20,1, ...} is (4, A, ¢, l)-recurrent in the sense of Definition
(2.2) of [3]. Hence, by Theorem (6.1) of that paper, there exists a uniqﬁe

{up to multiplicative constants) invariant measure, say v, , for P . It

is now easy to verify that

- -1
(2.1) Vo= vt ka + ...+ \)kPk

is a (necessarily unique) invariant measure for P .

As in the earlier work [2], [3], the basic idea behind the proof is an
appropriate
REGENERATION LEMMA, If H holds for some k = 1 , then there exists a

random time N such that Px(N <w) =1 forall = €85, and

(2.2) Nkfl l Jzk
2.2 P{X €E, Y L.¢€D]|x, L, d=0,1, ... N—l}
x| "k (N-i)k  © Jk’ izo ° > ’
=‘P(E0A)U(X(N_l)k, D) 3
almost surely.
Proof. Let Uj = ij + ...+ L(j+1)k-l , and consider the "skeleton"

semi-Markov chain {(Xjk’ Uj—l)’ Jj=1,2, ...} (k is fixed throughout).
Whenever Xﬁk € A for some Jj [say Xjk =x €A ), randomize the next
transition of the chain as follows:

(1) with probability p (0 < p < XA = the constant in (1.3)]
. . + .
distribute (X(j+l)k’ Uj) over A X R independently with distributions

¢(*) and ulz, ) respectively;
(ii) with probability (1- distribute (X, .
P y p) ( (F+1)k’ Uj) over the

. + .
entire state space S X R according to a transition function Az, ),

chosen so that the overall transition probabilitities of the chain
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{[Xjk’ Uj l]} remain unchanged. This is accomplished by defining @ so

that

Pz, BD) = po(E n Bulz, D) + (1-p)@(z, BD) .

That this is in fact possible, follows from (1.3). Now since A4 is

visited by {th} infinitely often, and each time, with probability

p > 0 , the next transition is distributed independently according to
(¢, H) , this event will ultimately occur at some time N < o almost
surely. This proves the lemma. (The reader wishing to see a more detailed
argument is referred to the proof of (3.1) in [3], which contains a careful

proof of a special case of the above lemma.]

COROLLARY 1. There exists a sequence of random times His Ny oone

for which (2.1) holds.
Nk-1

COROLLARY 2. Let T = ) L. and Z =Xy, . Then Z and T are
0

independent random variables.

Proof. Let f and g be bounded, measurable functions on S and

+
R, respectively. Then

Ef(2)g(T) = E{E[f(2)g(T) | (Xjk’ UJ._l), i=0, ..., 8-1]}

E'{E'E“[Xﬂk]g[mg:z Ui+U1V-1] | (xjk, uj_l) s d =0, auuy 1v-1]}

It

5], s | g[N%Q 2 TN

Taking the first integral outside the expectation, this equals
Ef(Z)Eg(T) , proving the corollary. Before turning to the main part of the

proof of the theorem, we prepare one more

PROPOSITION. Let h : S x S+ R be bounded and measurable, and
A(z) = En(xy, X)) . Then

Nk-1 .
(2.3) By T hlt x,,) - js P(z)v(dz)

where v(+) is the stationary measure whose existence was asserted in part
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(a) of the theorem.

Proof.
Nk-1 A-1 (g+1)k-1
E(P ngo h(xn’ Xn+1) - Ecp JEO n=gk h(Xn’ Xn+1)
©  (F+1)k-1
ek o M FealX

Now extend the chain {Xn} to a chain {Xh, ) } , n 20, where

n

{5n; n = 0} is a sequence of independent "

P(read) = P(§, = 1) =1 - P(§ =0) =p . The evolution of {x} is

coin tossing" variables with

independent of {6n} except when Xnk €A , at which time the

randomization described in the proof of the regeneration lemma takes place.

Thus the random variable X(N>j) is completely determined by the history
{(X., 5.), 1 =1, ..., Jk} , and hence conditioned on this history (say
ij ) (Xﬁk’ cees X(j+l)k) , and X(N>j) are trivially independent. Thus
for any bounded, measurable ¢ : Sk + R , we have

B s woos XaanydX(wogy = EEWXIF 5]} = EelvIF T}
E{)(N>J.E'Eb()(jk, X(J.H_)k) | xjk]}

where we have let
V(z) = B (xys ---s xk) | x, = =} .

Also let
k-1 k-1
) = B, 5 hle, ) = L E(x)
n=0 n=0

(Enlx , x,)) = EE hix,, X, =E(A(x))).

n

Then
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Nk-1 N-1 (j+1)k-1
E X X =k
(2.4) ° n:L‘o B n’ n+1) » jgo n=3k h(Xn’ Xn+1)
N-1

i

[« ]
E H(X. =F HiXx. ..
® § (Jk) ® g [Jk)XIV>J
J Jg=0
By Theorem (6.1) of [3] we know that an invariant measure for s given

N-1
(E) =
by Vv, ) E& jzg XE(Xﬁk) , and hence (2.4) equals

. k-1
J ARE) j P, dy)v, (dy)
S S

I H(x)vk(dx)
S n=0

j Wyvidy) vy (2.1).
S

This, with (2.4), is (2.3), proving the proposition.

We now turn to the main part of the proof of part (b) of the theorem.

Since Px(T <®) =1 for all x € S , it is sufficient to prove this
result for the case when the initial state XO is distributed according to

o . Let m(t) = Ef(w(¢)) , and a(t) = E{f(M¢)); T > ¢t} , vhere f
satisfies the conditions of part (b) of the theorem, and T 1is as in
Corollary 2. Due to the independence assertion of that corollary, I is a
"regeneration time", at which the chain {Xn} undergoes a transition and
is distributed over A according to ¢ , independent of the history of the
process up to that time. Hence m(+) satisfies the one-dimensional

renewal eguation

t

m(t) = a(t) + J m(t-u)dF(u) ,

0

where
Plu) =P (T= w)
P

The direct Riemann integrability of a(-) under the hypotheses on f(-)
now follows exactly as in the proof of Theorem (3.1) of [2]. Hence, since

F(*) is non-lattice (note that this is a little weaker than the hypothesis

Fk non—lattice], we have by the renewal theorem that
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(2.5) m(t) + (E(DT)-l ra(y)dy , a5 t >,
0

It thus remains only to identify the limit. To this end we write

Uy
(2.6) ra(t)dt E¢J F(W(u))du
0

0
Nk-1 Ln
= E, n§0 fo flx, w)du
Nk-1 Ln
= E(p E’(pl;go fo f(Xn’ wdu | X, ..., Xy 1 Iﬂ
Nk-1
- E, ’EO mx, x, 1) .

where

h(z, y)

]

0

L
0
EU f(xo, wydu | Xy =, X =y:|

E Fflx, u) [l-ny(u)]du .
Applying (2.3) of the proposition, we see that
ra(t)dt = [ Ao
0 S

where

n(z) = E_En(x,, X,)

J rf(z, w) -6 (w)]duP(z, dy)
so =
= J‘; flz, u)Pa:(LO > u)du .

Thus J a(t)dt equals the numerator in (1.4). For the denominator, we

observe from (2.6) that E¢T = ral(t)dt , where al(-) is a(+) for the
0
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special case when f(x, ) =1 . This implies part (b) of the theorem.

Finally, turning to part (¢), we again observe that we need only

consider the case when XO has distribution ¢ . Let

Nk n-1 Nj+lk-l
K(t) = Ew HZ; g\x,» t - izg L, and Tj = N%% Li , where {Nj; J = o}
are the successive regeneration times for {Xnk} . Then {13; Jz 0} are

independent identically distributed as T in Corollary 2, and are
regeneration times, in the previously described sense, for the continuous

time process. Hence

Nipk1 n-1 §-1 n-1

K n=IzV:.k 9\ * - i§0 B = Ep Lo b g{) fi «;=fvv'.k g
J J
Y
1=0
Thus

. - o Wkl .

ey =5 n§0 N * - i'go b1 =R J’§0 n=§":jk 9\t © - 1=0 b
e J-1
= E, JEO glx,, ¢ - igo T,

But now we are ready to apply the one dimensional renewal theorem (exactly
as in Section 4 of [2]), to conclude that if X(*) is direct Riemann

integrable, then
(2.7 M(t) » (Eq)T)'l r Ku)du as t+= .
0

The hypotheses on g are exactly as those in [?], and are designed to

assure this direct Riemann integrability.

To identify the limit in (1.8) we write
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K(t)dt = E rg X, t - L.\dt
0 ® ne0 Jo ¥ i=0 *

Nk-1
E Y gl(x,, t)dt ,
? n=0 ‘o

(ve may define g(x, t) =0 for ¢t <0 )

J rg(x, £)v(de)dt .
S0

We have already seen that Eﬁ(T) =m ((b) (i}). This completes the proof

of the theorem.

We again ask the reader to observe that the above proof of (¢) in no

way depends on the non-negativity of the Li's .
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