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Limit theorems for

semi-Markov processes

K.B. Athreya and P.E. Ney

A new construction of regeneration times is exploited to prove

ergodic and renewal theorems for semi-Markov processes on general

state spaces. This work extends results of the authors in Ann.

Probability (6 (1978), 788-797).

1. Introduction

This note is a continuation of [2] and [3], where we introduced a

construction of regeneration times to show that recurrent Markov chains on

general state spaces act as if they had a single recurrence point which is

visited infinitely often. This device was used to give renewal theoretic

proofs of ergodic and renewal theorems for Markov and semi-Markov chains.

The semi-Markov results were proved under a strong aperiodicity condition

on the underlying Markov chain, and a further strong restriction on the

distributions of sojourn times in a state. Our objective here is to remove

some of these restrictions.

Consider a space £ with a a-algebra of subsets S . Let

{X ; n = 0, 1, ...} be a Markov chain on (S, S) with homogeneous

transition function P(s, E) , 8 € S , E € S , and let

{G (•); x, y € S) be a family of distribution functions on R = [0, °°) .
xy

Given a realization [X =x; n=0,l, ...} of the chain, generate

independent random variables {L ; n = 0, 1, } such that
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( 1 . 1 ) P { L i £ t | X n = x n , n = 0 , 1 , . . . } = G x ^ X i ( t ) , t > 0

Set

A { t ) ) = •

[XQ, t) when 0 £ t < LQ

Xv t-LQ) when i Q < t < LQ+L±

k-1
, * - Y LA

0

k - 1 k
£ £ < t < £L
0 l 0 ^

The p rocess {W(t); 0 £ £} i s a Markov p r o c e s s . ( Z ( t ) ; 0 £ t } i s c a l l e d

a semi-Markov process, and {A(t); 0 < t} is i ts associated age process.

Also {.£ } is referred to as the state process, {L } as i ts "sojourn"

times, and {X , L } as a semi-Markov chain. (Note that this pair chain

is actually a Markov chain; the joint distribution of \X , L J depends

only on X .) The objective is to determine the limiting behaviour of

W(t) ; more specifically of functions of the form Ef(W(t)) and

°° ( n

n=0 <• n i=0 v

, for reasonable classes of functions f and g .

The key hypothesis is designed to guarantee the required recurrence

structure.

HYPOTHESIS Hk . (i) There exists a set A Z S such that for some

integer k ,

(1.2) P {x . € A for some n > l } = l : > x € S .

(ii) There exists a probability measure (p on (S n A, S n A) 3 a

family of probability measures \i(x, •) on B(R ) for x € A , and a

number A € (0 , l ) s such that

(1.3)
r k-1 }

P \X. € E, J L. € D\ > \<f(E n A)V{x, D)
x(- K i=0 v

for all x 6 A , D € 6(i? ) .
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We then have the following

THEOREM. Assume H .̂. Then

(a) there exists a o-finite, invariant measure v for P

which is unique up to multiplicative constants;

(b) if furthermore

(i) m = m{x)v(dx) < °° , where m(x) = B L ,
J X u

rk-1 -I
(ii) P Y, L. - u\ = FAu) is non-lattice, and

<• 0 ^ > K

(Hi) f : S x R •*• R is bounded, measurable, and

v{x : f(x, t) is discontinuous for some t] = 0 ,

then

(l.U) lim Ef(w(t))

(a) if (b) (i) and (ii) hold, and g{x, t) : S x i?+ + i? is

bounded, measurable, continuous in t , and satisfies

(1-5) g ( x , t ) •+ 0 a l m o s t s u r e l y ( v ) a s £ - > • « > ,

f °°(1-6) £ sup
JS n=0 nh2t<(n+

£ p
n=0 nh2t<(n+l)h

and

(1.7) f {sup \g(x, t)\]v(dx) < - ,
J t

then as t

(1-8) ^ I
* n=0 <...-•?«<]-iff

REMARKS. I. The theorem extends results of [2] in two ways. First,

the distributions <'a3/(*) were allowed to depend only on x (not y ) in

the earlier work; that is, there the sojourn times depend only on the
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state the chain is "coming from". Secondly, only the case k = 1 is

admitted in C z ] .

2. The awkward conditions (l.5)-(l.7) are designed to assure the

direct Riemann integrability of certain functions related to g . These

conditions can toe eliminated at the expense of strengthening the smoothness

hypothesis on F-, in (b) (ii). (see the related discussion in Arjas,

Nummelin, and Tweedie [?], and Athreya and Ney 141.)

3. Nummelin [7], [S], has proved many results related to this

subject, including one like the above theorem under apparently slightly

stronger hypotheses. He also uses regeneration methods, but treats the

semi-Markov process as a Markov chain on the enlarged state space S x R ,

and applies discrete renewal theory to this chain. We work instead with

the continuous time process (z(t), A{t)) and use renewal theory on R to

draw our conclusions. This approach seems to us to yield somewhat more

transparent proofs.

4. Nummel in has also shown (see [7]) that a condition very close to

H is always satisfied (for some k ), provided the semi-Markov chain
it

satisfies a weak irreducibility condition.

5. That (1.8) is in fact a "renewal theorem", can be seen by taking

g(x, t) of the form XAx)Xj(t) for A € S , and IcR an interval.

As usual in such results, if -£V(*) is lattice, then there is a lattice

version of (1.8).

6. Similarly (l.U) can be seen to imply the convergence of

p{z(t) e E) , E C S .

1. Since (a) asserts the uniqueness of the invariant measure, one can

use any measure ff(*) that is invariant with respect to P in place of

V .

8. If k = 1 and G depends only on x , then H automatically

9. The result (o) of the theorem carries over without difficulty to

'two sided" case when the G (•)
xy

along the lines of Theorem i».l of [2].

the "two sided" case when the G (•) are distributions on (-», °°) ,
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10. Renewal theorems of the type in (c) of the theorem under

different hypotheses have been proved by Jacod [5] and Kesten [ 6 ] .

2. Proof of the theorem

Hypothesis H (ii) applied to D = R implies that the Markov chain

{x , ; n = 0, 1, ...} is (A, X, cp, l)-recurrent in the sense of Definition

(2.2) of [3]. Hence, by Theorem (6.1) of that paper, there exists a unique

(up to multiplicative constants) invariant measure, say v. , for P . It

is now easy to verify that

(2.1) V = vk + VfeP + ... + V ^ " 1

is a (necessarily unique) invariant measure for P .

As in the earlier work [2], [3], the basic idea behind the proof is an

appropriate

REGENERATION LEMMA. If H holds for some k > l , then there exists a
K.

random time N such that P (N < «>) = l for all x € 5 , and
cc

Nk-l

(N-l)k v
€ D | X y3'k' i=o

(2.2) :
^ "K (N-i)k v 3K' ;=o *"

= 9(B n A)U{x{N_l)k, D)

almost surely.

Proof. Let U. = L., + ... + L, >, , and consider the "skeleton"
0 JK

semi-Markov chain {(*.fe, U . _ x ) , j = 1, 2, ...} (fe is fixed throughout).

Whenever X~ € A for some j (say X .fc = x € 4 ) , randomize the next

transition of the chain as follows:

(i) with probability p (o < p < X = the constant in (1.3))

distribute [x,.+l^, U.) over A x i?+ independently with distributions

cp(*) and u(x, •) respectively;

(ii) with probability (l-p) distribute [x, .+1\fe, #.) over the

entire state space S x. R according to a transition function £(s:, •) ,

chosen so that the overall transition probabilitities of the chain
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{(.£., , U. )} remain unchanged. This is accomplished by defining Q so
JK. J-J-

that

&(x, ExD) = p$(E n B)]i(x, D) + (l-p)Q(x, ExD) .

That this is in fact possible, follows from (1.3). Now since A is

visited by {XyjJ infinitely often, and each time, with probability

p > 0 , the next transition is distributed independently according to

(cp, u) , this event will ultimately occur at some time N < °° almost

surely. This proves the lemma. (The reader wishing to see a more detailed

argument is referred to the proof of (3.1) in [3], which contains a careful

proof of a special case of the above lemma.)

COROLLARY 1. There exists a sequence of random times // . , #„, . . .

for which (2.1) holds.

Nk-1
COROLLARY 2. Let T = V L. and Z = X- . Then Z and T are

0 v K

independent random variables.

Proof. Let f and g be bounded, measurable functions on 5 and

R , respectively. Then

Ef(Z)g(T) = E{E[f(Z)g(T) | [x^, U ^ ) , 3 = 0 , ..., N-l}}

] | ( J,J = 0 tf-

f(y)^dy) \R g[Nl ^ J u f y ^ , du)} .

Taking the first integral outside the expectation, this equals

Ef{Z)Eg(T) , proving the corollary. Before turning to the main part of the

proof of the theorem, we prepare one more

PROPOSITION. Let h : S x S •+ R be bounded and measurable, and

Mx) = Eh[x y ) . Then
•C U X

Nk-l

(2.3) E9 J Q h(Xn,

where v(*) is the stationary measure whose existence was asserted in part
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(a) of the theorem.

Proof.

Sk-1 N- («7l)fel
E Y h{x , X ) = E T Y h[x , X A

Now extend the chain \X } to a chain \x , 6 } , n 2 0 , where

{<$ ; n 2 0/ is a sequence of independent "coin tossing" variables with

P(Head) = P[&n = l) = 1 - P[6Q = o) = p . The evolution of {x\, is

independent of {<5 } except when X.. € A , at which time the

randomization described in the proof of the regeneration lemma takes place.

Thus the random variable X/»r> -\ ^s completely determined by the history

{[X., 5.J, i = l, ..., jk] , and hence conditioned on this history (say

Fjfe ̂  ^jfe' " • ' X{j+l)k) ' a n d X(iV>j) a r e t r i v i a l l y independent. Thus

for any bounded, measurable ty : £> •*• R , we have

^ . •••,*u+1)k)

where we have let

*(*) = E{$[X0, ..., xA \ xQ = x} .

Also let

B n+1

Then
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Nk-l N-i {,i+l)k-l

By Theorem (6.1) of [3] we know that an invariant measure for c is given

N-l
by \(E) = Ey Z XE[X -k) , and hence (2.1t) equals

f H(x)vAdx) = f h(y) I f P"(x, dy)vAdy)
}S K >S n=0 >S K

h{y)v{dy) by (2.1).

This, with (2.U), is (2.3), proving the proposition.

We now turn to the main part of the proof of part (b) of the theorem.

Since P (T < °°) = 1 for all x € 5 , it is sufficient to prove this
X

result for the case when the initial state X- is distributed according to

tp . Let m(t) = Ef[w(t)) , and ait) = E{f[wit)); T > t} , where /

satisfies the conditions of part (b) of the theorem, and T is as in

Corollary 2. Due to the independence assertion of that corollary, 7 is a

"regeneration time", at which the chain {x } undergoes a transition and

is distributed over A according to cp , independent of the history of the

process up to that time. Hence mi•) satisfies the one-dimensional

renewal equation

ft
mit) = ait) + mit-u)dFiu) ,

J0

where

Fiu) = PpCTS u) .

The direct Riemann integrability of a(") under the hypotheses on /(•)

now follows exactly as in the proof of Theorem (3.1) of [2] . Hence, since

Fi') is non-lattice (note that this is a little weaker than the hypothesis

F, non-lattice) , we have by the renewal theorem that
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ZJ)'1 \ a{y)dy , as t(2.5) m(t)

It thus remains only to identify the limit. To this end we write

a(t)dt = E f[W(u))du

Nk-1 rLn

n=0 ^0

E
9 I J f{*n= E

p

fffe-1

n=0
n ' n-l-"

Uo,

where

= f/(x, «)[l-G

Applying (2.3) of the proposition, we see that

[ a{t)dt = f Mx)v(<ix)
•'o ' s

where

= f \ fix, u)[l-G {u)1duP{x, dy)

(x, U)PX{LQ > u)du .

Thus a(t)dt e q u a l s t h e n u m e r a t o r i n ( l . U ) . F o r t h e d e n o m i n a t o r , we

o b s e r v e from ( 2 . 6 ) t h a t E T = aAt)dt , w h e r e a ( • ) i s a ( « ) f o r t h e
<P J o J- 1
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special case when f(x, t) = 1 . This implies part (b) of the theorem.

Finally, turning to part (a), we again observe that we need only

consider the case when X has distribution cp . Let

Nk-1

M=0

n-1
X , t - Y L.

^=0
and T. = £ L • , where \N.; j';o)

are the successive regeneration times for {x ,} . Then {T.; j > 0} are

independent identically distributed as T in Corollary 2, and are

regeneration times, in the previously described sense, for the continuous

time process. Hence

n-1
t- L

n=N.k
0

i=0
E Y,cp ^

J-l n-1
X , t - Y. T. - Y L.
n i=0 % i=N.k t

= E K t- T
i=o

Thus

m)sE->k"\x"-t-tA- X , t - Y L.\
i=0

<p .

But now we are ready to apply the one dimensional renewal theorem (exactly

as in Section h of [2]), to conclude that if #(•) is direct Riemann

integrable, then

(2.7) M(t) {E T)-1 fK(u)du as

The hypotheses on g are exactly as those in [2], and are designed to

assure this direct Riemann integrability.

To identify the limit in (1.8) we write
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X v , t - I L \dt
v=0

Nk-i

K{t)dt =

= B I \ g{x t)db ,

(we may define g(x, t) = 0 for t < 0 )

= f f g(x, t)\)(dx)dt .

We have already seen that E (f) = m {(b) (i)). This completes the proof

of the theorem.

We again ask the reader to observe that the above proof of (a) in no

way depends on the non-negativity of the I.'s •
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