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The Vacillating Mathematician

2. A Stochastic Version

K B Athreya

In the first part of this article, the author described
the deterministic version of the Vacillating Math-
ematician. Stochastic generalizations of this idea
lead to interesting Markov chain problems.

Recall the first stochastic generalization of the Vacillating

K B Athreyais Professor Mathematician given at the end of the first part of this ar-
at both the Department of ticle.

Mathematics and the
Department of Statistics, Model I

lowa State University,

Ames, lowa, USA. His Our mathematician starts at 0, goes half way through and

researchinterestsare
probability theory and
stochastic processes. The

then flips a fair coin. If the coin comes out heads she con-
tinues towards one and if the coin comes out tails she turns
back towards 0. Again half way through whatever direc-

present article was written . . . R R . K
tion she is headed she flips a fair coin and either continues

when he was on sabbatical

leave at JNCASR. Indian in that direction or goes in the opposite direction.
Institute of Science and th
Indian Statistical We let X, denote the position at the n"" change point.
Institute, Bangalore. Then, given X,,

The previous article of this

(1)

{ Xn+ 3= X0 Gith probability 1/2
Xnt1 = X

series was: ot with probability 1/2
1. Where does she end up? .
January 1997. independent of Xo, X;1... Xp_1.

Thus the distribution of X, ;1 given X, depends only on X,
and does not depend on Xy, X;...X,_1 or n. Therefore,
the sequence {X,}§° is a Markov Chain with stationary
transition probabilities.

We may rewrite (1) as

X 1
Xn+1 = Tn + §6n+1 (2)

where {6,}1° is a sequence of independent and identically
distributed random variables (i.i.d.r.v.) (see Karandikar in
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Suggested Reading) such that The sequence of
P(6p=1) = P(6, = 0) = 1/2. positions of the
Vacillating

Mathematician is
an autoregressive
X, sequence of order
- o one.

0 Xn/2 Xn/2+1/2 1

Figure 1

This is a random difference equation of the type known as
autoregressive sequence of order one. The general form is
given by

Xn+1=an+€n+1; n:0a1a2,'~- (3)
where p is a constant and {e,}$° is a sequence of i.i.d. r.v.

Iterating (3) yields

Xny1 = p(an—l + En) + €nt1
= pQX'n—l + p €n + €nta
ie.,
Xnp1 = p"MXo+per+p" o+ ..+ pent et (4)

Since the {e,}{° are i.i.d.r.v. the random variable

n+1 .
has the same distribution as X, ;1 —p"' X = 21: p e
(see Karandikar in Suggested Reading). Now if |p| < 1
(which is true in our case: p = 1/2) p"*1Xy — 0 and so
the random sequence {X,} has the same limit behaviour
as {Y,}. Suppose |¢j] < K < oo for all j (in our case

(S
€;| < 1/2) then since |p| < 1, the infinite series e,
J a J
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How often does
the vacillating
mathematician visit
any
nondegenerate
interval in [0,1]?

converges absolutely to a random variable Y. Thus going
back to (4) we can conclude that X,, converges in distribu-
tion to Y. That is, lim, P(a < X, <b) = P(a <Y <)
for all a, b such that P(Y =a) =0 = P(Y =b). Butin
our case, ie., for equation (2),

o] 5]'
7j=1

Since {6;}{° are 0 or 1 valued random variables, ¥ repre-
sents a number in [0, 1] whose expansion to the base 2 is the
sequence {§;}5°. In general, given an integer £k > 1 and z
in [0,1] define a;(z) = [kz] where for any y > 0, [y] is that
integer n such that n < y < n+ 1. Define z; = =z — %ﬂ
Then 0 < z; < 1/k and let az(z) = [k?z;]. Recursively,

r—1
let 2, =z — 3 %% for r > 2 and a,(¢) = [k"z]. Then it
j=1
can be shown that 0 < z, < 7 and a;(z) assumes values
in {0,1,2,....,k — 1}. Thus as r — oo we get z = io:ﬁ-"é?—x)
1

This expansion of z is known as expansion to the base k
and a;(x) is called the jth digit. This expansion is called
binary for k = 2, ternary for k = 3 and decimal for k = 10.
To get familiar with this try to expand the numbers 1/2,
2/3, 5/8 etc given in decimal system with respect to other
bases such as 2, 3 etc. The additional fact that {4,}5° are
iid.r.v. with P(6; = 1) =1/2 = P(§; = 0) implies that Y’
has uniform distribution on [0,1] (see Billingsley or Feller
in Suggested Reading). That is, P(a <Y <b) = (b—a)
forall0 < a <b<1. Thus P(a < X, <b) — (b—a) for
all0 < a < b < 1. Since {X,}§° is a Markov Chain on [0,1]
and has the uniform distribution as its limit distribution
it can be shown (see part d of Theorem 1 in the Markov
Chains section, part I of this article) that the empirical
frequency of visits to [a, b] by the sequence {X,}§°, ie.

> T (X5)
1

S|

where I4(z) = 1if z € A and 0 if z ¢ A converges to
(b—a) for almost all trajectories { X, }§°. Thus the sequence
{X,}§° visits every nondegenerate interval [a, b] in [0,1] in-
finitely many times. This entails that the sequence X, will
have the entire interval [0,1] as its set of limit points. This
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is in sharp contrast to the deterministic case where there
were only two limit points, namely, 1/3 and 2/3.1

Model - II

Suppose we change Model - I as follows. Each time the
mathematician has to decide on the direction she uses a
biased coin with probability p(# 1/2) for heads and then
goes a fraction « of the distance in that direction. Thus
given X,, Xp—1...Xo,

X = Xn+ a(l —X,) with probability D
1T Xa.(1-a)

This is equivalent to writing

Xny1 = l—a)Xp+aé,
where 6, = 1 with probability p

= 0 with probability (1 — p)
and {6,}9° are i.i.d.r.v. |

This is again a special case of (3) and so from the discussion
following (3) we see that X, will converge in distribution
to

Y = Z(l —a) tas;.
1

If « = 1/2 then Y belongs to the set A of numbers in
[0,1] whose binary expansion has digits 0 and 1 in such a

n
way that the proportion %;63- converges to p. There is a

theorem due to E Borel (see Billingsley in Suggested Read-
ing) which says that the set B of numbers in [0,1] whose
binary expansion has digits 0 and 1 such that the propor-

n
tion %21:6]- converges to 1/2 has length (ie. measure) one.

In fact, Borel’s theorem says something stronger. For any

given k and any pattern aj as...ar of 0’s and 1’s and real
o0 .

number z in [0, 1] with base 2 expansion z = } %} let
1

n; = 11if (6;418;42...8;4k) = (a1az...ax) and 0 otherwise.

Then % '21 n; converges to 51; as n — oo for almost all z in

j=
[0,1]. That is, the set of z’s for which this does not hold
has length or measure zero. Now this has an amusing

with probability (1 —p). (5)

" The destination of a stochastic
vacillating mathematician can
be very strange, indeed!

2 Suppose that there is some
catastrophe and all the books
in the world were destroyed.
Then allis notlost. Say we want
torecover the Bhagavad Gita.
Have a monkey type away ata
Devanagiri typewriter. The
entire Bhagavad Gita text will
show up at some finite time
(almost surely). So if we have
atleast one person left who can
recognize this great work the
monkey will recreate it for us.

interpretation.?
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If S is the smallest closed set with P(Ye S) = 1 we say
that the support of the random wvariable Y is S. Thus if
p # 1/2 then our set A has length or measure zero and
since S C A, the length of S is zero as well.

If « = 2/3 then Y belongs to the Cantorset ie. all those
numbers in [0,1] whose expansions to base 3 omits digit

o0 .
one altogether. That is, all z = 3° %} where a; is either 0
1

or 2. The Cantor set C was introduced by the nineteenth
century mathematician Greger Cantor (see Rudin in Sug-
gested Reading). It is constructed as follows. Start with
the unit interval [0,1]. Delete the middle third, i.e. the
open interval (1/3, 2/3). What is left is the union of the
closed intervals [0,1/3] and [2/3,1]. Next delete the middle
thirds of [0,1/3] and [2/3,1] and so on indefinitely. What is
left of [0,1] after this process of deletion is the Cantor set.

Since at the nth stage we delete 2"~! intervals of length
(1/3)™ each, the total length of all the deleted intervals is
R on—1 1 no_ 1/3 — ¢ ’

nz=:12 (3) =1-3/3~ 1. Thus the ‘length’ of what
is left over of [0,1],i.e., of the Cantor set, has to be zero.

However, in another sense the Cantor set is as big as the
interval [0,1]. Namely, it can be put into one to one corre-

spondence with [0,1]. For a = % and p = %—, S is all of the

Cantor set. For a = % and p # %, S is a proper subset of
the Cantor set C.

It can be shown that the set of limit points of {X,} coincide
with the support of Y. Thus we have examples in the
stochastic case where the limit point set of {X,} can be
the whole interval [0,1] or a subset of ‘length’ zero like the
Cantor set etc. The Cantor set C is an example of a fractal
set (see Barnsley in Suggested Reading of Part 1).

Note also that if Xy < 1 then in none of the above models,
deterministic or stochastic, does the mathematician reach
her office, ie., the point 1. But in the stochastic case she
gets arbitrarily close to it.

Model - III

Let us change the source of randomness. Suppose the
mathematician, instead of going half way through to her
destination, goes a random fraction of the distance and
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then changes her mind, turns around and goes in the op- The positions of
posite direction and goes a random fraction. Let us assume
that each time this random fraction is chosen from [0,1] in-
dependently of the history so far, and that the random
fraction while going towards one has distribution function

the vacillating
mathematican
have now changed

F and the one while going towards zero has distribution to form a random
G. To formalise this we introduce two sequences of random autoregressive
variables, ie., {Y,}$° that are i.i.d.r.v. with distribution F series.

and {Z,}$° that are i.i.d.r.v. with distribution G.

Let Xo be the initial position of our mathematician (it
could be zero). Then she proceeds towards one going a
random fraction Y; of the distance from Xy to 1. That is,

X1 =Xo+ (1 - Xo)Y7-

Now she changes her mind and goes towards zero a random
fraction Z; of the distance from X; to zero. That is,

Xo=X1(1 - Z1)
More generally,

Xont1 = Xon+ (1 - in)yn forn >0
Xon = Xon1(1—2,)forn > 1- (6)

Letting U,, = Xo,—1 and V,, = X, then

Un+1 = XQn(]- - Yn) + Yn (7)
= Un(1—2Z,)1=Y,)+Y,=UpRy,+ Y, ,say.

This is a random difference equation known as random au-
toregressive series of order one. The random autoregres-
sion parameter R, and the error Y, are not independent
but the pair sequence (R,, Y,), n = 1, 2... are ii.d.
random vectors. Now iterating (6)

Un+1 = Rn(Un—-an—l +Y, —1) +Y,
Ran-—l(Un—2Rn—2 + Yn—2) + RnYn—l + Yn'
Thus
Upy1 = RpRp—1...RiU1+Ry,Rp—1 ... RoY3
+RpRp—1...R3Yo+ ...+ RoRp—1Yn—2
+RnYn_1+ Yn. 8)
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Since both Y,, and Z,, are random variables with values in
[0,1], R, = (1 = Yy,)(1 — Z,) satisfies

PO<R,<1)=1

and P(R, = 1) < 1 unless P(Y, = 1) =1= P(Z, =

1) (a case we exclude). Since {R,}{° is an iid.r.v. se-

quence with values in [0,1], by the law of large numbers,

% Y. log R; — Elog R; < 0 with probability one and hence
i=1

RiRs...R, — 0. Also since {(Rp,Y;)}{ is an iid. se-
quence

Z Y}—leRj+1 ...R,+Y, 9)
j=2

has the same probability distribution as

Y+ Z RiR,. .. Rj—le‘ (10)
j=2

Let 77]' = R1R2 e RjY}.H R j Z 1. Then Enj = (ERl)](Eyl)

o0

and so E (Enj> = iE(nj) < oo since ER; < 1. So io‘,nj
2 2 1

converges (with probability one) and hence

n
Yi+) 0 (11)
=2

converges (with probability one) to, say, Y. This implies
by (9) and (10) that

Yn+ZYj_1Rj...Rn (12)
j=2

converges in distribution to Y. Since UiR;...R, — 0 it
follows that U, converges in distribution to ¥ as in (11).
Again as before the support set S of the random variable
Y will be the set of limit points of the sequence {X,}. An
interesting open question is to determine all possible sets
S that can arise this way.

allils
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