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Universal Families on Moduli Spaces of

Principal Bundles on Curves

V. Balaji, I. Biswas, D. S. Nagaraj, and P. E. Newstead

1 Introduction

Let X be a compact connected Riemann surface of genus at least three. Let MX(n, d) de-

note the moduli space of all stable vector bundles over X of rank n and degree d, which

is a smooth irreducible quasiprojective variety defined over C. A vector bundle E over

X × MX(n, d) is called universal if for every point m ∈ MX(n, d), the restriction of E to

X× {m} is in the isomorphism class of holomorphic vector bundles over X defined bym. A

well-known theorem says that there is a universal vector bundle over X×MX(n, d) if and

only if d is coprime to n (see [13] for existence in the coprime case, [8] for nonexistence in

the noncoprime case, and [7] for a topological version of nonexistence in the case d = 0).

Let H be a connected semisimple linear algebraic group defined over the field of

complex numbers. Ramanathan extended the notion of (semi-)stability to principal H-

bundles and constructed moduli spaces for stable principalH-bundles over X [9–11]. The

construction works for any given topological type, yielding a moduli space which is an

irreducible quasiprojective variety defined over C. We are concerned here with the case

of topologically trivial stable principal H-bundles. Let MX(H) denote the moduli space

of topologically trivial stable principalH-bundles over X.

Let Z(H) ⊂ H be the centre. For any H-bundle EH, the group Z(H) is contained in

the automorphism group Aut(EH). Let

M ′
X(H) ⊂ MX(H) (1.1)
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be the subvariety consisting of all H-bundles EH over X with the property Aut(EH) ∼=

Z(H). It is known that M ′
X(H) is a dense Zariski open subset contained in the smooth

locus of MX(H).

A principal H-bundle E over X × M ′
X(H) will be called a universal bundle if for

every point m ∈ MX(n, d), the restriction of E to X × {m} is in the isomorphism class of

stableH-bundles over X defined by the pointm of the moduli space.

The following theorem is the main result proved here.

Theorem 1.1. There is a universalH-bundle over X× M ′
X(H) if and only if Z(H) = e. �

Remark 1.2. Nonexistence for H = SL(n,C) was previously known [8, 7], as also was ex-

istence forH = PGL(n,C).

2 Existence of universal bundle

We begin this section by recalling very briefly certain facts from [2]. Unless otherwise

specified, all bundles and sections considered will be algebraic.

Remark 2.1. Let E be a principalG-bundle over X, whereG is a reductive linear algebraic

group defined over C andH ⊂ G is a Zariski closed semisimple subgroup. For any variety

Y equipped with an action of G, the fibre bundle (E × Y)/G over X associated to E will be

denoted by E(Y).

(1) There is a natural action of the group AutG E, defined by all automorphisms

of E over the identity map of X that commute with the action of G, on Γ(X, E(G/H)) (the

space of all holomorphic sections of the fibre bundle E(G/H) = E/H over X) and the orbits

correspond to the equivalence classes of H-reductions of E with two reductions being

equivalent if the corresponding principalH-bundles are isomorphic.

(2) Let G = GL(n,C) and let φ : H ↪→ G be a faithful representation of the

semisimple group H. Let Q denote the open subset of semistable principal G-bundles

(or equivalently of topologically trivial semistable vector bundles of rank n) of the usual

“Quot scheme,” and let Q(φ) be the “Quot scheme” which parametrises pairs of the form

(E ′, s), where E ′ is a principalG-bundle and s is a reduction of structure group of E ′ toH.

Then Q(φ) is in a sense a “relative Quot scheme.” As is clear from the definition and the

notation, this scheme is dependent on the choice of the inclusion φ : H ↪→ G (for details,

see [2, 10, 11]).

One also has a tautological sheaf on X × Q which in fact is a vector bundle. We

denote by E the associated tautological principal G-bundle on X×Q.
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Recall that the moduli space of principal G-bundles (G = GL(n,C)) is realised as

a good quotient of Q by the action of a reductive group G. We may also assume that the

group G is with trivial centre (see, e.g., [4]).

Remark 2.2. It is immediate that the action of G onQ lifts to an action onQ(φ), where G,

Q, andQ(φ) are defined in Remark 2.1.

We have a morphism

ψ : Q(φ) −→ Q, (2.1)

which sends anyH-bundle E ′ to the GL(n,C)-bundle obtained by extending the structure

group of E ′ using the homomorphism φ. In fact, ψ is a G-equivariant affine morphism

(see [2]).

Continuing with the notation in the above two remarks, consider the G-action on

Q(φ) (defined in Remark 2.1(2)) with the linearisation induced by the affine G-morphism

ψ in (2.1). Since a good quotient of Q by G exists and since ψ is an affine G-equivariant

map, a good quotientQ(φ)//G exists (see [11, Lemma 5.1]).

Moreover by the universal property of categorical quotients, the canonical mor-

phism

ψ : Q(φ)//G −→ Q//G (2.2)

given by ψ is also affine.

Theorem 2.3. Let MX(H) denote the schemeQ(φ)//G (see (2.2)). Then this scheme is the

coarse moduli scheme of semistableH-bundles. Further, the scheme MX(H) is projective,

and ifH ↪→ GL(V) is a faithful representation, then the canonical morphism

ψ : MX(H) −→ MX

(
GL(V)

)
= Q//G (2.3)

is finite. �

LetQ(φ)s be the open subscheme ofQ(φ) consisting of stableH-bundles.

Lemma 2.4. Let Q ′
H ⊂ Q(φ)s be the subset parametrising all stable H-bundles whose

automorphism group is Z(H). Then the action of G on the subset Q ′
H is free, and further-

more, the quotient morphism Q ′
H → Q ′

H/G is a principal G-bundle. In fact, Q ′
H/G is pre-

cisely the Zariski open subset M ′
X(H) (the variety M ′

X(H) is defined in the introduction).

�
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Proof. For any point EH ∈ Q(φ), the isotropy subgroup of EH for the action of G coin-

cides with Aut(EH)/Z(H). This can be seen as follows: firstly, the point EH is a pair (E, s),

where E ∈ Q and s is a reduction of structure group to H of the G-bundle E. It is well

known for the action of G on Q that the isotropy at E is precisely the group Aut(E)/Z(G).

From this, it is easy to see that the isotropy of EH for the action of G onQ(φ) is the group

Aut(E, s)/Z(H) = Aut(EH)/Z(H).

Hence it follows that the action of G on the open subsetQ ′
H is free, and the proof

of the lemma is complete. �

We remark that, at least when H is of adjoint type, Q ′
H is a nonempty open sub-

set of Q(φ)s. Openness is easy and can be seen, for example, from [5, Theorem II.6(ii)].

Nonemptiness follows from Proposition 2.6 below.

We prove a proposition on semisimple groups, possibly known to experts but

which we could not locate in any standard text.

Proposition 2.5. LetH be a semisimple algebraic group. ThenH has a faithful irreducible

representation φ : H → GL(V) if and only if the centre ofH is cyclic. �

Proof. One way the implication is easy, namely, suppose that a faithful irreducible rep-

resentation exists, then the centre Z(H) ofH is cyclic. To see this, first note that under the

representationφ, the centre Z(H) maps to a subgroup which commutes with all elements

of φ(H). Since φ is irreducible, this implies by Schur’s lemma that φ(Z(H)) ⊂ Z(GL(V)),

where Z(GL(V)) is the centre of GL(V). Observe further that since H is semisimple, we

have φ(H) ⊂ SL(V). Hence, Z(H) ⊂ Z(SL(V)) and is therefore cyclic.

The contrapositive statement is harder to prove. We proceed as follows. Let H ′

be the simply connected cover of H and let H be the associated adjoint group, namely,

H/Z(H). LetΛ (resp., ΛR) be the weight lattice (resp., root lattice). In other words, by the

Borel-Weil theorem Λ = X(B) and ΛR = X(B), where B, B are fixed Borel subgroups of H,

H. Then, from the exact sequence

e −→ Z(H) −→ H −→ H −→ e (2.4)

we see that Λ/ΛR � X(Z(H)). In other words, the quotient group Λ/ΛR is cyclic of or-

derm.

Let λ be a generator of the cyclic groupΛ/ΛR. Then, by an action of the Weyl group

we may assume that the coset representative λ ∈ Λ is actually a dominant weight.

Suppose that the root lattice has the following decomposition (corresponding to

the simple components ofH):

ΛR =

�⊕

i=1

Λi. (2.5)
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Then, by possibly adding dominant weights from theΛi, we may assume that (m ·λ) ∈ ΛR

has all its direct sum components λi �= 0, i ∈ [1, �], where λ is as above.

For this choice of λ ∈ Λ let Vλ be the corresponding H-module given by

φλ : H −→ GL
(
Vλ

)
. (2.6)

Then one knows that φλ is an irreducible representation ofH.

We claim that the representation φλ is even faithful. Suppose that this is not the

case. Let Kλ := kernel(φλ) �= e.
Firstly, Kλ ⊂ Z(H). To see this, let K ′ be the inverse image of Kλ in the simply

connected cover H ′ of H. Then the choice of λ so made that its simple components are

nonzero in fact forces the following. Suppose that H ′ = H1 × · · · × H� is the decomposi-

tion of H ′ into its almost simple factors. (We recall that a semisimple algebraic group is

called almost simple if the quotient of it by its centre is simple.) Then the normal sub-

group K ′ in its decomposition in H ′ is such that Ki := K ′ ⋂Hi are proper normal sub-

groups of Hi. In particular, Ki ⊂ Z(Hi) for all i ∈ [1, �]. This implies that K ′ ⊂ Z(H ′) and

hence Kλ ⊂ Z(H).

Note that the dominant character λ is nontrivial on the generator of the centre

Z(H) because X(Z(H)) = Λ/ΛR. Now Kλ ⊂ Z(H) and Z(H) cyclic implies that λ is nontriv-

ial on the generator of Kλ as well. This contradicts the fact that Kλ = kernel(φλ). This

proves the claim. Therefore, the proof of the proposition is complete. �

If H is of adjoint type, then by Proposition 2.5 we can choose the inclusion φ :

H ↪→ G in Remark 2.1(2) to be an irreducible representation. Henceforth, φ will be as-

sumed to be irreducible.

Let E be a stableH-bundle of trivial topological type. Recall that one can realise E

from a unique, up to an inner conjugation, irreducible representation of π1(X) in a max-

imal compact subgroup of H (see [9]). For notational convenience, we will always sup-

press the base point in the notation of fundamental group. Denote by M(E) the Zariski

closure of the image of π1(X) inH.

Proposition 2.6. Let H be of adjoint type and let φ be a faithful irreducible representa-

tion ofH in V (see Proposition 2.5). Let U ⊂ Q(φ)s be the subset defined as follows:

U =
{

E ∈ Q(φ)s | M(E) = H
}

. (2.7)

Then U is nonempty and is contained in the subset Q ′
H of stable H-bundles which have

trivial automorphism group. (SinceH is of adjoint type, Z(H) = e.) �
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Proof. Since φ is irreducible, using [12, Lemma 2.1] we conclude that there is an irre-

ducible representation

ρ : π1(X) −→ H (2.8)

which has the property that the composition φ ◦ ρ : π1(X) → G := GL(V) continues to

remain irreducible. This implies that M(Eρ) = H by the construction in [12, Lemma 2.1]

and hence Eρ ∈ U, that is, U is nonempty.

Let E ∈ U. Then by the definition of U, there exists a representation ρ of π1(X) in

H such that E � Eρ, where Eρ is the flat principal H-bundle given by ρ. Observe that Eρ

is a stable H-bundle and the associated G-bundle is also stable. Hence all the automor-

phisms of this associated G-bundle lie in Z(G). Since H is of adjoint type, it follows that

theH-bundle Eρ has no nontrivial automorphisms. Hence it follows that U ⊂ Q ′
H. �

We have the following theorem on existence of universal families.

Theorem 2.7. Let H be a group of adjoint type and M ′
X(H) the Zariski open subset of

MX(H) defined in the introduction. Then there exists a universal family of principal H-

bundles on X× M ′
X(H). �

Proof. We first observe that the variety M ′
X(H) is precisely the image of Q ′

H under the

quotient map for the action of G. We recall thatQ ′
H is nonempty by Proposition 2.6.

Since Z(H) = e, it follows that H ⊂ G := G/Z(G), where G = GL(V) is as in

Remark 2.1(2).

Consider the tautological principal G-bundle E on X × Qs, and let E be the cor-

responding G-bundle obtained by extending the structure group. Then it is well known

that the adjoint universal bundle E descends to the quotient MX(G)s (see [4]).

We follow the same strategy for M ′
X(H) as well. Consider the pulled-back G-

bundle (IdX × ψ)∗E on X × Q ′
H, where ψ is the map in (2.1) and G := G/Z(G). The action

of G on Q ′
H is free by Lemma 2.4. Therefore, the quotient Q ′

H → M ′
X(H) is a principal G-

bundle. Further, the action of G lifts to the tautological bundle (IdX ×ψ)∗E. In particular,

the principal G-bundle (IdX ×ψ)∗E descends to a principal G-bundle over X× M ′
X(H).

Let us denote this descended G-bundle over X× M ′
X(H) by E0.

Let π : (IdX ×ψ)∗E(G/H) → (IdX ×ψ)∗E(G/H) be the natural map induced by the

projection G/H → G/H, where ψ is the map in (2.1). We note that the universal H-bundle

over X×U, whereU is defined in Proposition 2.6, is a reduction of structure group of the

pulled-back G-bundle (IdX ×ψ)∗E. Let

σ : X×U −→

(
IdX ×ψ)∗

E(G/H) (2.9)
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be the section giving this reduction of structure group. Then the composition π ◦ σ is a

section of (IdX ×ψ)∗E(G/H) over X×U.

SinceH is semisimple, a lemma of Chevalley says that there is aG-moduleW and

an element w ∈ W such that H is precisely the isotropy subgroup for w (see [3, page 89,

Theorem 5.1]). Therefore, G/H is identified with the closed G-orbit in W defined by w.

Then we see that E(G/H) ↪→ E(W). We may therefore view the section

π ◦ σ : X×U −→

(
IdX ×ψ)∗

E
(
G/H

)
(2.10)

as a section of the vector bundle (IdX ×ψ)∗E(W) over X×U.

Since (IdX ×ψ)∗E descends to theG-bundle E0 over X×M ′
X(H), it follows that the

associated vector bundle (IdX ×ψ)∗E(W) also descends to X× M ′
X(H). Clearly this vector

bundle is nothing but the associated vector bundle E0(W), associated to theG-bundle E0

on X× M ′
X(H) for the G-moduleW.

Since each point of M ′
X(H) represents an isomorphism class of stableH-bundles,

it follows that, set theoretically, the reduction section π◦σ ∈ Γ((IdX ×ψ)∗E(W)) descends

to a section on X× M ′
X(H) of the descended vector bundle E0(W).

We now appeal to [6, Proposition 4.1], which implies that the section π ◦ σ in fact

descends to give a holomorphic section of E0(W) over X× M ′
X(H).

Again set theoretically, the image of this section of E0(W) lies in E0(G/H) ⊂
E0(W). As before, from [6, Proposition 4.1] it follows that π ◦ σ in (2.10) gives a reduc-

tion of structure group toH of the descendedG-bundle E0. TheH-bundle over X×M ′
X(H)

obtained this way is the required universal H-bundle. This completes the proof of the

theorem. �

3 Nonexistence of universal bundle

Let H be a complex semisimple linear algebraic group and let K ⊂ H be a maximal com-

pact subgroup. The Lie algebra of Kwill be denoted by k. A homomorphism

ρ : π1(X) −→ K (3.1)

is called irreducible if no nonzero vector in k is fixed by the adjoint action of the sub-

group ρ(π1(X)) ⊂ K on k. Let Homirr(π1(X), K) denote the space of all irreducible homo-

morphisms such that the corresponding K-bundle is topologically trivial. So any homo-

morphism in Homirr(π1(X), K) is induced by a homomorphism from π1(X) to the universal

cover of K.
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Let g denote the genus of X. Assume that g ≥ 3. If we choose a basis

{

a1, . . . , ag, b1, . . . , bg

} ⊂ π1(X) (3.2)

such that

π1(X) =

〈
a1, . . . , ag, b1, . . . , bg :

n
∏

i=1

aibia
−1
i b−1

i

〉
, (3.3)

then Homirr(π1(X), K) gets identified with a real analytic subspace of K2g.

For any ρ ∈ Homirr(π1(X), K), the principal H-bundle obtained by extending the

structure group of the principal K-bundle given by ρ is stable. A theorem of Ramanathan

says that all topologically trivial stable principal H-bundles arise in this way, that is,

the space of all equivalence classes of irreducible homomorphisms of π1(X) to K is in

bijective correspondence with the space of all stable H-bundles over X [9, Theorem 7.1].

More precisely (see the proof of [9, Theorem 7.1]), the real analytic space underlying the

moduli space MX(H) parametrising topologically trivial stableH-bundles is analytically

isomorphic to the quotient space

R
(
π1(X), H

)
:= Homirr

(
π1(X), K

)
/K, (3.4)

for the action constructed using the conjugation action of K on itself. Let

q : Homirr
(
π1(X), K

) −→ R
(
π1(X), H

)
∼= MX(H) (3.5)

be the quotient map. The open subset M ′
X(H) ⊂ MX(H) is a smooth submanifold and the

restriction of the map in (3.5),

q |q−1(M ′
X(H)) : q−1

(
M ′

X(H)
) −→ M ′

X(H), (3.6)

is a smooth principal K/Z-bundle, where Z is the centre of K. Note that Z coincides with

the centre ofH (asH is semisimple, its centre is a finite group).

If UH is a universal H-bundle over X× M ′
X(H), then we have a reduction of struc-

ture group of UH to K which is constructed using the correspondence established in [9]

between stableH-bundles and irreducible flat K-bundles. Let

UK −→ X× M ′
X(H) (3.7)



Universal Families on Moduli Spaces 9

be the smooth principal K-bundle obtained from UH this way. Consider the principal

K/Z-bundle over X× M ′
X(H), where Z ⊂ K is the centre, obtained by extending the struc-

ture group of UK using the natural projection of K to K/Z. The restriction of this K/Z-

bundle to p × M ′
X(H), where p is the base point in X used for defining π1(X), is identi-

fied with the K/Z-bundle in (3.6). To see this first note that the universal K-bundle over

X×Hom(π1(X), K) is obtained as a quotient by the action of π1(X) on X̃×Hom(π1(X), K)×K,
where X̃ is the pointed universal cover of X for the base point p; the action of z ∈ π1(X)

sends any (α,β, γ) to (α, z, β, β(z)−1γ). From this it follows that the restriction of this

universal bundle to p × Hom(π1(X), K) is canonically trivialized. The above-mentioned

identification is constructed using this trivialization.

Our aim is to show that no K-bundle over M ′
X(H) exists that produces the K/Z-

bundle in (3.6) by extension of structure group, provided the centre Z is nontrivial.

Let F3 denote the free group on three generators. Fix a surjective homomorphism

f : π1(X) −→ F3 (3.8)

that sends ai, 1 ≤ i ≤ 3, to the ith generator of F3 and sends ai, 4 ≤ i ≤ g, and bi, 1 ≤ i ≤ g,
to the identity element, where aj, bj are as in (3.3) (recall that g ≥ 3).

Set

R
(
F3, H

)
:= Homirr

(
F3, K

)
/K (3.9)

to be the equivalence classes of irreducible representations. Note that Hom(F3, K) � K3,

and under this identification the action

μ : Hom
(
F3, K

) × K −→ Hom
(
F3, K

)
(3.10)

given by μ(ρ,A) = A−1ρA corresponds to the simultaneous diagonal conjugation action

of K on the three factors.

Since F3 is a free group and K is connected, any homomorphism ρ from F3 to K

can be deformed to the trivial homomorphism. This implies that the principal H-bundle

corresponding to the homomorphism

ρ ◦ f : π1(X) −→ K (3.11)

is topologically trivial, where f is defined in (3.8). Therefore, we have an embedding

R
(
F3, H

) −→ R
(
π1(X), H

)
∼= MX(H) (3.12)
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that sends any ρ to ρ ◦ f. Let R ′(F3, H) ⊂ R(F3, H) be the inverse image of the open subset

M ′
X(H) under the above map. By Proposition 2.6 it follows that R ′(F3, H) is a nonempty

open subset of R(F3, H).

Fix a point p ∈ X, which will also be the base point for the fundamental group.

Consider the restriction of the principal K-bundle UK in (3.7) to p×M ′
X(H) ↪→ X×M ′

X(H)

and denote it by UK,p.

Let

γ : p× R ′(F3, H
) −→ p× M ′

X(H) (3.13)

be the map given by the embedding R ′(F3, H) → M ′
X(H) constructed in (3.12). Taking the

pullback of the above-defined principal K-bundle UK,p over p × M ′
X(H) under the mor-

phism γ in (3.13)

M̃ UK,p

p× R ′(F3, H
) γ

p× M ′
X(H)

(3.14)

we obtain a principal K-bundle M̃ := γ∗UK,p on R ′(F3, H) whose associated K/Z-bundle

(as before, Z is the centre of K) is precisely the K/Z-bundle q−1(R ′(F3, H)) → R ′(F3, H)

constructed in (3.6). In particular, q−1(R ′(F3, H)) � M̃/Z.

Let Homirr(F3, K) ′ ⊂ Homirr(F3, K) be the inverse image of R ′(F3, H) under the quo-

tient map in (3.9). Let

q0 : Homirr
(
F3, K

) ′ −→ R ′(F3, H
)

(3.15)

be the restriction of the quotient map in (3.9). So q0 is the quotient for the conjugation

action of K. This map q0 defines a principal K/Z-bundle over R ′(F3, H) which is evidently

identified with the K/Z-bundle M̃/Z → R ′(F3, H) obtained from (3.14).

We will prove (by contradiction) that such a K-bundle M̃ does not exist. In other

words, we will show that there is no principal K-bundle over R ′(F3, H) whose extension

of structure group is the K/Z-bundle in (3.15).
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Assume the contrary, then we get the following diagram of topological spaces

and morphisms:

Z K K/Z

Z M̃ q−1
0

(
R ′(F3, H

))

R ′(F3, H
)

R ′(F3, H
)

(3.16)

We will need a couple of results. The proof of the nonexistence of the bundle M̃

will be completed after establishing Proposition 3.2.

Lemma 3.1. There exist finitely many compact differentiable manifoldsNi and differen-

tiable maps

fi : Ni −→ K3, (3.17)

1 ≤ i ≤ d, such that ifN :=
⋃d

i=1 fi(Ni), then

(1) the complement K3 \N is contained in q−1
0 (R ′(F3, H)), where q0 is the projec-

tion in (3.15),

(2) dimK3 − dimNi ≥ 4 for all i ∈ [1, d]. �

Proof. Take any homomorphism ρ : π1(X) → K. Let Eρ denote the corresponding

polystable principal H-bundle over X [9]. The automorphism group of the polystable H-

bundle Eρ coincides with the centraliser of ρ(π1(X)) in H. Hence if ρ(π1(X)) is dense in K,

then the automorphism group of Eρ is the centre Z(H) ⊂ H. Therefore, if the topological

closure ρ(π1(X)) of ρ(π1(X)) is K and Eρ is topologically trivial, then Eρ ∈ M ′
X(H).

Now assume that the centraliser C(ρ) ⊂ H of ρ(π1(X)) in H properly contains

Z(H). Since the complexification of ρ(π1(X)) is reductive and the centraliser of a reductive

group is reductive, we conclude that C(ρ) is reductive. Take a semisimple element z ∈
(H \ Z(H))

⋂
C(ρ) (since C(ρ) is reductive and larger than Z(H), such an element exists).

LetCz ⊂ K be the centraliser of z in K. We have ρ(π1(X)) ⊂ Cz andCz is a proper subgroup

of K as z /∈ Z(H). Also, Cz contains a maximal torus of K.

Fix a maximal torus T ⊂ K. (Since any two maximal tori are conjugate, any sub-

group Cz of the above type would contain T after an inner conjugation.) Consider all

proper Lie subgroupsM of K satisfying the following two conditions:

(i) T ⊆M,
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(ii) there exists a semisimple element z ∈ H\Z(H) such thatM is the centraliser

of z in K.

Let S denote this collection of Lie subgroups of K.

The connected ones among S are precisely the maximal compact subgroups of

Levi subgroups of proper parabolic subgroups ofH containing T . Note that if P is a proper

parabolic subgroup of H, then P
⋂
K is a maximal compact subgroup of a Levi subgroup

of P. All the connected ones among S arise as P
⋂
K for some proper parabolic subgroup

P ⊂ H containing T .

This collection S is a finite set. To see this, we first note that there are only finitely

many parabolic subgroups of H that contain T . For a proper parabolic subgroup P ⊂
H containing T , there are only finitely many Lie subgroups of K that have P

⋂
K as the

connected component containing the identity element. Thus S is a finite set.

LetM1, . . . ,Md be the subgroups of K that occur in S.

We will show that the codimension of each Mi in K is at least two. It suffices to

show that for a maximal proper parabolic subgroup P ofG containing T , the codimension

ofM := P
⋂
K in K is at least two.

To prove that the codimension of M = P
⋂
K in K is at least two, let k be the Lie

algebra of K and let h be the Lie algebra of T (the Cartan subalgebra). Let

k = h +
∑

α a root

kα (3.18)

be the root space decomposition of k. Let m be a Lie algebra ofMwhich is a Lie subalgebra

of k containing h. Then we have the decomposition

m = h +
∑

α a root

mα (3.19)

for m where each mα is irreducible for h, and hence has to coincide with one of the kα.

Then codimk(m) ≥ 2 since if α is a root for the subalgebra m, then so is −α (see [1, page

83, Corollary 4.15]).

Consequently, the codimension ofM in K is at least two. Thus the codimension of

eachMi, i ∈ [1, d], in K is at least two.

For each i ∈ [1, d], let

fi : K×M3
i −→ K3 (3.20)
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be the map defined by (x, (y1, y2, y3)) 
→ (xy1x
−1, xywx

−1, xy3x
−1). Consider the free ac-

tion ofMi on K×M3
i defined by

z · (x, (y1, y2, y3

))
=

(
xz−1,

(
zy1z

−1, zy2z
−1, zy3z

−1
))
, (3.21)

where x ∈ K and z, y1, y2, y3 ∈ Mi. The map fi in (3.20) clearly factors through the

quotient

K×Mi
t

Mi
(3.22)

for the above action. Therefore, we have

fi : Ni :=
K×Mi

t

Mi
−→ Kt (3.23)

induced by fi.

To prove part (1) of the lemma, we recall the earlier remark that for any homo-

morphism ρ ′ ∈ q−1
0 (R ′(F3, H)) (the map q0 is defined in (3.15)), the automorphism group

of the principalH-bundle corresponding to ρ ′◦f (the homomorphism f is defined in (3.8))

coincides with Z(H) if the image of ρ ′ is dense in K. From the properties of the collection

{M1, . . . ,Md} we conclude that

N :=

d⋃

i=1

fi
(
Ni

) ⊇ q−1
0

(
R ′(F3, H

))c
, (3.24)

where fi are defined in (3.23) and

q−1
0

(
R ′(F3, H

))c ⊂ K3 (3.25)

is the complement of q−1
0 (R ′(F3, H)) in K3.

Therefore, proof of part (1) is complete. To prove part (2), we note that

dimNi = dimK + 2 · dimMi (3.26)

for all i ∈ [1, d]. It was shown earlier that dimMi ≤ dimK − 2. Therefore,

dimK3 − dimNi = 3 · dimK − dimNi ≥ 3 · dimK − 3 · dimK + 4 = 4. (3.27)

This completes the proof of the lemma. �
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Proposition 3.2. Consider theK/Z-principal bundle q−1
0 (R ′(F3, H)) → R ′(F3, H), where q0

is the projection in (3.15). The induced homomorphism on fundamental groups

π1(K/Z) −→ π1

(
q−1

(
R ′(F3, H

)))
(3.28)

obtained from the homotopy exact sequence is trivial. �

Proof. Let x1, x2, x3 ∈ K be regular elements; we recall that x ∈ K is called regular if the

centralizer C(x) = {y ∈ K | yx = xy} is a maximal torus in K. Since the set of regular

elements is dense in K, and q−1
0 (R ′(F3, H)) ⊂ K3 is a nonempty open dense subset (this

follows from Lemma 3.1), we may choose these xi, i = 1, 2, 3, to lie in q−1
0 (R ′(F3, H)).

Consider the orbit Orb
K3

(x1, x2, x3) of (x1, x2, x3) ∈ K3 for the adjoint action of the

group K3 on itself. Clearly we have the following identification of this orbit:

Orb
K3

(
x1, x2, x3

)
=

K

C
(
x1

) × K

C
(
x2

) × K

C
(
x3

) (3.29)

with C(xi) ⊂ K being the centralizer of xi. The conjugation action of K on Hom(F3, K)

coincides with the restriction of the above action of K3 to the image of the diagonal map

K ↪→ K3. Therefore, the fibre K/Z through the point (x1, x2, x3) ∈ q−1
0 (R ′(F3, H)) of the

K/Z-bundle

q−1
0

(
R ′(F3, H

)) −→ R ′(F3, H
)

(3.30)

is contained in the orbit

K

C
(
x1

) × K

C
(
x2

) × K

C
(
x3

) . (3.31)

Now if we choose a point (x1, x2, x3) ∈ K3 which is general enough, then by the

definition of the inverse image q−1
0 (R ′(F3, H)) and Lemma 3.1(2) it follows immediately

that the complement of the open dense subset

q−1
0

(
R ′(F3, H

)) ⋂(
K

C
(
x1

) × K

C
(
x2

) × K

C
(
x3

)
)

⊂ K

C
(
x1

) × K

C
(
x2

) × K

C
(
x3

) (3.32)

is of codimension at least four.

Since the image ofK/Z in q−1
0 (R ′(F3, H)) lies in (q−1(R ′(F3, H)))

⋂
Orb

K3
(x1, x2, x3),

whose complement is of codimension at least four in

Orb
K3

(
x1, x2, x3

)
=

K

C
(
x1

) × K

C
(
x2

) × K

C
(
x3

) , (3.33)



Universal Families on Moduli Spaces 15

it follows that the homomorphism π1(K/Z) → π1(q−1
0 (R ′(F3, H))) in the proposition fac-

tors through

π1

((
q−1

0

(
R ′(F3, H

))) ∩ Orb
K3

(
x1, x2, x3

))

= π1

(
K

C
(
x1

) × K

C
(
x2

) × K

C
(
x3

)
)

= π1(K/T)3,
(3.34)

where T is a maximal torus of K.

For any maximal torus T ⊂ K, the quotient K/T is diffeomorphic to H/B, where B

is a Borel subgroup of H. Since H/B is simply connected, we conclude that (K/C(x1)) ×
(K/C(x2)) × (K/C(x3)) is simply connected. This completes the proof of the proposition.

�

We now complete the proof of the nonexistence of the covering M̃ → q−1

(R ′(F3, H)) as in (3.16).

Since the homomorphism of fundamental groups π1(K/Z) → π1(q−1
0 (R ′(F3, H)))

is trivial (see Proposition 3.2), the induced covering K → K/Z is trivial (see the diagram

(3.16)). But this is a contradiction to the fact that K is connected.

Therefore, we have proved the following theorem.

Theorem 3.3. If the centre Z(H) is nontrivial, then there is no universal bundle over X×
M ′

X(H). �

Acknowledgments

We thank A. King, A. Nair, and P. Sankaran for useful discussions. All authors are members of the in-

ternational research group Vector Bundles on Algebraic Curves (VBAC), which is partially supported

by EAGER (EC FP5 Contract no. HPRN-CT-2000-00099) and by EDGE (EC FP5 Contract no. HPRN-

CT-2000-00101). The fourth author would also like to thank the Royal Society and CSIC, Madrid, for

supporting a visit to CSIC during which his contribution to this work was completed.

References

[1] J. F. Adams, Lectures on Lie Groups, W. A. Benjamin, New York, 1969.

[2] V. Balaji and C. S. Seshadri, Semistable principal bundles. I. Characteristic zero, Journal of Al-

gebra 258 (2002), no. 1, 321–347.

[3] A. Borel, Linear Algebraic Groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer,

New York, 1991.



16 V. Balaji et al.

[4] J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-
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