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Parametric characterisation of a chaotic attractor using two scale Cantor measure
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A chaotic attractor is usually characterised by its multifractal spectrum which gives a geometric
measure of its complexity. Here we present a characterisation using a minimal set of independant
parameters which are uniquely determined by the underlying process that generates the attractor.
The method maps the f(α) spectrum of a chaotic attractor onto that of a general two scale Cantor
measure. We show that the mapping can be done for a large number of chaotic systems. In order
to implement this procedure, we also propose a generalisation of the standard equations for two
scale Cantor set in one dimension to that in higher dimensions. Another interesting result we have
obtained both theoretically and numerically is that, the f(α) characterisation gives information only
upto two scales, even when the underlying process generating the multifractal involves more than
two scales.

PACS numbers: 05.45.Ac, 05.45.Tp, 05.45.Df

I. INTRODUCTION

The existence of a multifractal measure for any system most often indicates an underlying process generating it, be
it multiplicative or dynamic. In the context of chaotic attractors arising from dynamical systems, their multifractal
measure result from a time ordered process, which may be an iterative scheme or a continuous flow [1]. The description
of the invariant measures in terms of Dq [2] or f(α) [3], however, provides only a characterisation of their geometric
complexity. Feigenbaum et.al [4, 5] and Amritkar and Gupte [6] have shown that it is also possible to get the
dynamical information in some specific cases by inverting the information contained in a multifractal measure using
a thermodynamic formalism.

In this paper, we seek to get a characterisation of a chaotic attractor in terms of the underlying process that
generates it. It appears that the process of generation of a multifractal chaotic attractor is similar to that of a typical
Cantor set (where measure reduces after each step), with the dissipation in the system playing a major role. We show
this specifically below using the example of Cat map which is area preserving. But a key difference is that, for chaotic
attractors, the nature of this reduction is governed by the dynamics of the system. This implies that if the Dq and
f(α) curves of a chaotic attractor are mapped onto that of a model multiplicative process, one can derive information
about the underlying process that generates the strange attractor, provided the mapping is correct. Here we try to
implement this idea using an algorithmic scheme and show that this gives a set of parameters that can be used to
characterise a given attractor.

A similar idea to extract the underlying multiplicative process from a multifractal has been applied earlier by
Chhabra et.al [7]. In order to make this inversion process successful, one needs to take into account two aspects,
namely, the type of process [7] (whether L process, P process or LP process) and the number of scales involved
(whether two scale or multi scale). Chhabra et.al [7] have shown that different multiplicative processes with only three
independant parameters produce good fits to many of the observed Dq curves. Thus the extraction of underlying
multiplicative process, based solely on the information of Dq curve, is nonunique and additional thermodynamic
information is needed for the inversion process.
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But the problem that we address here is slightly different. In our case, the model multiplicative process is fixed as
a general two scale Cantor set which is the simplest nontrivial process giving rise to a multifractal measure. We then
scan the whole set of parameters possible for this process (which include the L process, P process and LP process)
and choose the statistically best fit Dq curve to the Dq spectrum computed for the attractor from the time series,
which is then used to compute the final f(α) spectrum. In this way, the f(α) spectrum of a chaotic attractor gets
mapped onto that of a general two scale Cantor set. We show that the mapping can be done for a large number of
standard chaotic attractors. The resulting parameters can be considered to be unique to the underlying process that
generates the attractor, upto an ambiguity regarding the number of scales involved.

The success of this procedure also implies that the Dq and f(α) spectrum of a multiplicative process involving
more than two scales also can be mapped onto that of a two scale Cantor set. We prove this theoretically as well as
numerically in Sec.IV, by taking Cantor sets with more than two scales. This, in turn, suggests that though the f(α)
spectrum has contributions from all the scales involved in the generation of a multifractal, the information contained
in an f(α) spectrum is limited only upto two scales. In other words, given an f(α) spectrum, one can retrieve only the
equivalent two scales which are different from the actual scales. Thus, while Chhabra et.al [7] argues that additional
information is needed to extract the underlying multiplicative process, our result indicate that the f(α) formalism
itself is unable to extract more than two scales.

The motivation for using a Cantor set to characterise the multifractal structure of a chaotic attractor comes from
the fact that some well known chaotic attractors are believed to have underlying Cantor set structure. For example,
it has been shown [8] that in the x − y plane corresponding to z = (r − 1) of the Lorenz attractor, a transverse cut
gives a multi fractal with Cantor set structure. Even the chaotic attractor resulting from the experimental Rayleigh-
Bernard convection holds a support whose transverse structure is a Cantor set [9]. These Cantor sets are known to
be characteristic of the underlying dynamics that generate the attractor.

A more general arguement to support the above statement is by using the concept of Kolmogorov entropy. Kol-
mogorov entropy can be obtained by a successively fine partition of the attractor in a hierarchical fashion. Going from
one partition to the next gives one set of scales as shown in [6]. These can be treated as scales of higher dimensional
Cantor sets. In general, there can be several scales. But the f(α) curve appears to be determined by only two scales.

In order to implement our idea, the first step is to compute the Dq spectrum of the chaotic attractor from its time
series. This is done by the standard delay embedding technique [10], but by extending the nonsubjective scheme
recently proposed by us [11] for computing D2. The Dq spectrum is then fitted by a smooth Dq curve obtained
by inverse Legendre transformation equations [12, 13] of the f(α) curve for a general two scale Cantor set. The
statistically best fit curve is chosen by changing the parameters of the fit from which, the f(α) curve for the time
series is evaluated along with a set of independant parameters characteristic of the Cantor set. This procedure also
gives a couple of other interesting results. For example, we are able to propose a generalisation of the standard
equations of two scale Cantor set for higher dimensions. Moreover, we explicitely derive the equations for Dq and
f(α) spectrum of a three scale Cantor set and show that they can be exactly mapped onto that of a two scale Cantor
set.

Our paper is organised as follows: The details of our computational scheme are presented in Sec.II and it is tested
using time series from the logistic map and different Cantor sets with known parameters in Sec.III. In Sec.IV, the
f(α) spectrum of Cantor sets with more than two scales is considered both theoretically and numerically. Sec.V is
concerned with the application of the scheme to standard chaotic attractors in higher dimensions. The conclusions
are drawn in Sec.VI.

II. NUMERICAL SCHEME

As the first step, the spectrum of generalised dimensions Dq are computed from the time series using the delay
embedding technique [10]. For a given embedding dimension M , the Dq spectrum are given by the standard equation

Dq ≡
1

q − 1
lim
R→0

log Cq(R)

log R
(1)

where Cq(R) represents the generalised correlation sum. In practical considerations, Dq is computed by taking the
slope of log Cq(R) versus log R over a scaling region. In our scheme, the scaling region is computed algorithmically
[11] for each Dq using conditions for Rmin and Rmax and the spectrum of Dq for q in the range [−20, 20] is evaluated
with an error bar.

Assuming that the corresponding f(α) curve is a smooth convex function, we seek to represent it using the standard



3

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIG. 1: The upper panel shows the Dq values (points) and its best fit curve of the strange attractor at the period doubling
accumulation point of the logistic map, computed from a time series with 30000 data points. The lower panel shows the f(α)
spectrum computed from the best fit curve (dashed line) along with the theoretically predicted curve (continuous line). The
agreement between the two is evident.

equations [3, 14] of α and f(α) for the general two scale Cantor set

α =
r log p1 + (1 − r) log p2

r log l1 + (1 − r) log l2
(2)

f =
r log r + (1 − r) log(1 − r)

r log l1 + (1 − r) log l2
(3)

where l1 and l2 are the rescaling parameters and p1 and p2 are the probability measures with p2 = (1−p1). Thus there
are three independent parameters which are characteristic of the multiplicative process generating a given f(α) curve.
Here r is a variable in the range [0, 1], with r → 0 corresponding to one extreme of scaling and r → 1 corresponding
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to the other extreme. Taking log p2/log l2 > log p1/log l1, as r → 0, we get

α → αmax ≡
log p2

log l2
(4)

and as r → 1

α → αmin ≡
log p1

log l1
(5)

By inverting Eqs. (2) and (3) and using the standard Legendre transformation equations [12, 13] connecting α and
f(α) with q and Dq, we get

q =
d

dα
f(α) (6)

Dq =
αq − f(α)

(q − 1)
(7)

Changing the variable η = 1/r, (2) and (3) reduce to

α =
log p1 + (η − 1) log p2

log l1 + (η − 1) log l2
(8)

f =
(η − 1) log(η − 1) − η log η

log l1 + (η − 1) log l2
(9)

Differentiating (8) and (9) with respect to η and combining

df

dα
=

(log l1(log(η − 1) − log η) + log l2 log η)

(log l1 log p2 − log l2 log p1)
(10)

Using eq. (6) and changing back to variable r

q =
df

dα
=

log l1 log(1 − r) − log l2 log r

log l1 log(1 − p1) − log l2 log p1
(11)

Eqs. (11) and (7) give both q and Dq as functions of the three independent parameters l1, l2 and p1.
For a given set of parameters, the Dq curve is determined by varying r in the range [0, 1] and fitted with the

computed Dq values from the time series. The procedure is repeated by changing the values of p1 in the range [0, 1]
and for each p1, scanning the values of l1 and l2 with the condition that both l1, l2 < 1. A statistical χ2 fitting is
undertaken and the best fit curve given by the χ2 minimum is chosen. The complete f(α) curve is derived from it
along with the complete set of parameters p1, l1, l2, αmin and αmax, for a particular time series.

III. TESTING THE SCHEME

In order to illustrate our scheme, we first apply it on standard multifractals where the f(α) curve and the associated
parameters are known exactly. In all the examples discussed in this paper, 30000 data points are used for the analysis.
The first one is the time series from the logistic map at the period doubling accumulation point. The Dq spectrum
is first computed using Eq. (1) (with M = 1), for q values in the range [−20, +20]. The computation is done taking
a step width of ∆q = 0.1. Choosing p1 = 0.5, αmin = D20 and αmax = D−20 as input parameters, the Dq curve is
computed from the above set of equations and fitted with the Dq values. The procedure is repeated by scanning p1

in the range [0, 1] in steps of 0.01. For each p1, αmin and αmax (which in turn determine l1 and l2) are also varied
independantly over a small range. The best fit Dq curve is chosen as indicated by the χ2 minimum. Since the error
in Dq generally bulges as q → −20, the error bar is also taken care of in the fitting process. The Dq values computed
from the time series and its best fit curve are shown in Fig. 1.

The complete f(α) spectrum for the time series is computed from the best fit Dq curve. To make a comparison, the
spectrum is also determined from Eqs. (2) and (3) using the known values of p1, l1 and l2 for the logistic map, namely,
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FIG. 2: The Dq values (dashed lines) of four different two scale Cantor sets computed from their time series along with the
numerical fit (continuous line) in each case.

p1 = 0.5, l1 = 0.158(1/α2
F ) and l2 = 0.404(1/αF ) where αF is Feigenbaum’s universal number. Both the curves are

also shown in Fig. 1. The three parameters derived using our scheme are p1 = 0.5, l1 = 0.146 and l2 = 0.416 which
are reasonably accurate considering the finiteness of the data set.

As the second example, we generate time series from four Cantor sets using four different sets of parameters as
given in Table I. Fig. 2 shows the computed Dq values along with the best fit curves in all the four cases. Note that
the fit is extremely accurate for the whole range of q in all cases. The corresponding f(α) curves, both theoretical and
computed from scheme are shown in Fig. 3. The parameter values derived from our scheme in the four cases are also
given in Table I for comparison. It is clear that the scheme recovers the complete f(α) spectrum and the parameters
reasonably well. In order to convince ourselves that the scheme does not produce any spurious effects, we have also
applied it to a time series from a pure white noise. The Dq versus q curve for white noise should be a straight line
parallel to the q axis with D0 = M . The corresponding f(α) spectrum would be a δ function which has been verified
numerically.

From the numerical computations of two scale Cantor sets, we also find the following results: While the end points
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FIG. 3: The f(α) curves for the Cantor sets shown in Fig. 2 computed from the best fit Dq curve (dashed line) along with
the theoretical curves (continuous line). The parameter values used for constructing the Cantor sets agree very well with those
derived using our scheme in all the cases (see Table I).

of the spectrum, αmin and αmax, are determined by the ratios log p1/ log l1 and log p2/ log l2, the peak value D0 is
determined by only the rescaling parameters l1 and l2. As (l1 + l2) increases (that is, as the gap length decreases), D0

also increases and D0 → 1 as (l1 + l2) → 1. In this sense, the gap length also influences the f(α) spectrum indirectly.
We will show below that this is not true in the case of three scale Cantor set where we miss some information regarding
the scales. We also find that as the difference between αmin and αmax increases (that is, as the spectrum widens),
more number of data points are required, in general, to get good agreement between theoretical and numerical f(α)
curves.



7

TABLE I: Comparison of the parameters used for the generation of the different Cantor sets discussed in the text with those
computed by applying our numerical scheme. Close to 30000 points are used for computation in all cases.

Cantor set No. Parameters used Parameters computed

Cantor set 1 p1 = 0.60, l1 = 0.22, l2 = 0.48 p1 = 0.58, l1 = 0.21, l2 = 0.49

Cantor set 2 p1 = 0.42, l1 = 0.22, l2 = 0.67 p1 = 0.45, l1 = 0.24, l2 = 0.67

Cantor set 3 p1 = 0.66, l1 = 0.18, l2 = 0.62 p1 = 0.69, l1 = 0.19, l2 = 0.64

Cantor set 4 p1 = 0.72, l1 = 0.44, l2 = 0.48 p1 = 0.66, l1 = 0.39, l2 = 0.52

3Scale Cantor set p1 = 0.25, p2 = 0.35, p3 = 0.4

l1 = 0.12, l2 = 0.35, l3 = 0.18 p1 = 0.50, l1 = 0.26, l2 = 0.52

4Scale Cantor set p1 = 0.34, p2 = 0.38, p3 = 0.16, p4 = 0.12

l1 = 0.12, l2 = 0.25, l3 = 0.18, l4 = 0.08 p1 = 0.58, l1 = 0.30, l2 = 0.57

IV. MULTI SCALE CANTOR SETS

In this section, we consider the f(α) spectrum of a Cantor set with more than two scales. First we show the
numerical results using our scheme. For this, we first generate the time series for a general 3 scale Cantor set and
compute its Dq spectrum. The geometrical construction of a general 3 scale Cantor set is shown in Fig. 4. At
every stage, an interval gets subdivided into three so that the set involves 3 rescaling parameters l1, l2, l3 and 3
probability measures p1, p2, p3 as shown. The numerically computed Dq spectrum for a typical 3 scale Cantor set
(with parameters given in Table I) is shown in Fig. 5 (upper left panel). The Dq curve can be very well fitted by
a 2 scale Cantor set and the complete f(α) spectrum for the 3 scale Cantor set is evaluated (lower left panel). We
have repeated our computations for a 4 scale Cantor set as well and the results are also shown in Fig. 5 (right panel).
In both cases, the parameters used for the construction of the Cantor sets and those computed by our scheme are
given in Table I. Thus it is clear that the f(α) spectrum cannot pick up the full information about the various scales
and probability measures. No matter how many scales are involved in the generation of the multifractal, the f(α)
spectrum can be reproduced by an equivalent 2 scale Cantor set.

We now derive explicite expressions for α and f(α) for a 3 scale Cantor set. We follow the arguements given in
Halsey et.al [3], Sec.II-C-4. For the 3 scale Cantor set, one can write

Γ(q, τ, n) =

(

pq
1

lτ1
+

pq
2

lτ2
+

pq
3

lτ3

)n

= 1 (12)

Expanding

Γ(q, τ, n) =
∑

m1,m2

n!

m1!m2!(m − m1 − m2)!
pm1q
1 pm2q

2 p
(m−m1−m2)q
3 l−m1τ

1 l−m2τ
2 l

−(m−m1−m2)τ
3 = 1 (13)

In the limit n → ∞, the largest term contributes. Hence we have

∂Γ

∂m1
= 0 (14)

∂Γ

∂m2
= 0 (15)

Using the Stirling approximation and simplifying the above two conditions we get

− log r + log(1 − r − s) + q log(p1/p3) − τ log(l1/l3) = 0 (16)

− log s + log(1 − r − s) + q log(p2/p3) − τ log(l2/l3) = 0 (17)
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FIG. 4: The construction of a general 3 scale Cantor set.

where r = m1/n and s = m2/n are free parameters. Also from Eq. (13), using a similar procedure, one can show that

r log r−s log s−(1−r−s) log(1−r−s)+q(r log p1+s log p2+(1−r−s) log p3)−τ(r log l1+s log l2+(1−r−s) log l3) = 0
(18)

Combining Eqs. (16), (17) and (18) and eliminating τ we get the following relations for q

q =
log(l2/l3) log((1 − r − s)/r) − log(l1/l3) log((1 − r − s)/s)

log(l1/l3) log(p2/p3) − log(l2/l3) log(p1/p3)
(19)

q =
log(l1/l3)(−r log r − s log s − (1 − r − s) log(1 − r − s)) − (r log l1 + s log l2 + (1 − r − s) log l3) log((1 − r − s)/r)

(r log l1 + s log l2 + (1 − r − s) log l3) log(p1/p3) − log(l1/l3)(r log p1 + s log p2 + (1 − r − s) log p3)
(20)

These two equations for q can be used to obtain a relation between r and s.
To compute the Dq spectrum, vary r from 0 to 1. For every value of r, the value of s that satisfies the Eqs. (19)
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FIG. 5: The Dq and f(α) curves of a 3 scale and a 4 scale Cantor set computed using our scheme. The Dq curves computed
from the time series (dashed lines) are fitted with that of equivalent two scale Cantor sets (continuous lines) in both cases. The
parameters used and computed by the scheme are compared in Table I.

and (20)simultaneously is computed numerically, with the condition that 0 < s < (1 − r). For every value of r and
s, q and τ can be determined using Eqs. (19) and (16), which in turn gives Dq = τ/(q − 1).

The singularity exponent α is determined by the condition

pm1

1 pm2

2 p
(m−m1−m2)
3 =

(

lm1

1 lm2

2 l
(m−m1−m2)
3

)α

(21)

This gives the expression for α

α =
r log p1 + s log p2 + (1 − r − s) log p3

r log l1 + s log l2 + (1 − r − s) log l3
(22)

Similarly, the density exponent f(α) is determined by

n!
(

lm1

1 lm2

2 l
(m−m1−m2)
3

)f(α)

= m1!m2!(m − m1 − m2)! (23)
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FIG. 6: The left panel shows the theoretical Dq curve of a 3 scale Cantor set with parameters shown in the figure. The
right panel shows the corresponding f(α) curve (continuous line) calculated theoretically using Eqs. (22) and (24). This is
superimposed on the f(α) spectrum (points) computed using our numerical code by fitting 2 scale Cantor set. Close to 30000
data points are used for the computations.

which gives the following expression for f(α)

f(α) =
r log r + s log s + (1 − r − s) log(1 − r − s)

r log l1 + s log l2 + (1 − r − s) log l3
(24)

By varying r from 0 to 1, the f(α) spectrum for a given 3 scale Cantor set can be determined theoretically. In Fig. 6,
the theoretically computed Dq and f(α) spectrum for a typical 3 scale Cantor set is shown. Along with the theoretical
f(α) curve, we also show the numerical one (points) for the same Cantor set, computed using our scheme. Thus it is
evident that the f(α) spectrum of a 3 scale Cantor set can be mapped onto that of a 2 scale Cantor set. Also, our
numerical results on 4 scale Cantor set (Fig. 5) suggests that this mapping onto 2 scale Cantor set can possibly be
extended for the f(α) spectrum of four or more scale Cantor sets.
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FIG. 7: The multifractal spectrum of the one dimensional projection of Henon and Lorenz attractors, which show the underlying
Cantor set structure. Note that the peak values of the spectrum in both cases are equal to 1.

V. CHARACTERISATION OF STRANGE ATTRACTORS

Evaluating the f(α) spectrum of one dimensional sets is straightforward. But computing the spectra of even
synthetic higher dimensional attractors is a challenging task. Generally, the f(α) spectrum for higher dimensional
chaotic attractors is calculated taking only one dimension [15, 16, 17], which characterise the transverse self similar
structure on the attractor equivalent to a Cantor set. In the resulting f(α) spectrum, the peak value (that is, D0)
will be equal to 1, as the higher dimensional attractor is projected into one dimension. This is shown in Fig. 7 for
Henon and Lorenz attractors and the results are consistent with the earlier results.

In order to extend our scheme to higher dimensional strange attractors, their f(α) spectra are to be considered
analogous to a two scale Cantor measure in higher dimensions. While the f(α) curve can be recovered using the correct
embedding dimension M , the meaning of the parameters have to be interpreted properly. For a one dimensional Cantor
set, p1 is a probability measure while l1 and l2 are fractional lengths at each stage. Extending this analogy to two and
three dimensions, p1 can still be interpreted as a probability measure for the two higher dimensional scales, say τ1
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FIG. 8: The upper panel gives the Dq spectrum, with error bar, of the Rossler attractor computed from the time series.
The lower panel shows the accuracy of fitting with again the Dq values (dashed line) and its best fit curve (continuous line)
computed using the scheme.

and τ2. These can be considered as fractional measures corresponding to area or volume depending on the embedding
dimension M . In other words, p1 is a measure representing the underlying dynamics, while τ1 and τ2 correspond to
geometric scaling. This gives an alternate description of the formation of a strange attractor if it is correlated to a
higher dimensional analogue of the Cantor set.

As discussed in Sec.II, for the one dimensional Cantor set, αmin and αmax are given by Eqs. (4) and (5) in terms of
the parameters. For p1 = p2 and l1 = l2, αmin = αmax ≤ 1 and the set becomes a simple fractal with α ≡ f(α) = D0,
the fractal dimension. Extending this analogy to higher dimensions, we propose that Eqs. (4) and (5) are to be
modified as

αmax = M
log p2

log τ2
(25)
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FIG. 9: The f(α) curve of the Rossler attractor computed from the best fit Dq curve shown in Fig. 8.

and

αmin = M
log p1

log τ1
(26)

As in the case of one dimensional Cantor sets, for p1 = p2 and τ1 = τ2, αmax = αmin ≤ M and the set is again a
simple fractal with fractal dimension D0 = α ≡ f(α). Rewriting the above equations,

αmax =
log p2

log(τ2
1/M )

=
log p2

log l2
(27)

and

αmin =
log p1

log(τ1
1/M )

=
log p1

log l1
(28)
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TABLE II: The complete set of parameters computed using our scheme for six standard chaotic attractors. See [18], for example,
for the details of the chaotic systems and the values of the parameters used.

Attractor αmin αmax D0 p1 τ1 τ2

Rossler attractor

(a = b = 0.2, c = 7.8) 1.46 ± 0.02 3.39 ± 0.14 2.31 ± 0.02 0.65 0.42 0.41

Lorenz attractor

(σ = 10, r = 28, b = 8/3) 1.38 ± 0.03 3.71 ± 0.12 2.16 ± 0.04 0.50 0.22 0.57

Ueda attractor

(k = 0.05, A = 7.5) 1.73 ± 0.05 3.78 ± 0.13 2.62 ± 0.06 0.64 0.46 0.44

Duffing attractor

(b = 0.25, A = 0.4, Ω = 1) 1.84 ± 0.04 3.59 ± 0.08 2.78 ± 0.04 0.81 0.71 0.25

Henon attractor

(a = 1.4, b = 0.3) 0.96 ± 0.02 2.27 ± 0.08 1.43 ± 0.03 0.50 0.24 0.54

Tinkerbell attractor

(a = 0.9, b = −0.6, c = 2, d = 0.5) 0.83 ± 0.02 3.43 ± 0.12 1.65 ± 0.03 0.60 0.29 0.58

Replacing l1 and l2 by τ
1/M
1 and τ

1/M
2 in Eqs. (2) and (3), the defining equations for the two scale Cantor set in M

dimension can be generalised as

α =
M [r log p1 + (1 − r) log p2]

r log τ1 + (1 − r) log τ2
(29)

f =
M [r log r + (1 − r) log(1 − r)]

r log τ1 + (1 − r) log τ2
(30)

Just like l1 + l2 < 1 for one dimensional Cantor set, we expect τ1 + τ2 < 1 in M dimensions. This is because, the
measure keeps on reducing after each time step due to dissipation and τ1 and τ2 represent the fractional reduction in
the measure for the two scales. It should be noted that since, in general, different scales apply in different directions,
τ1 and τ2 should be treated as some effective scales in higher dimension.

We now check these results using the time series from a standard chaotic attractor, namely the Rossler attractor for
parameter values a = b = 0.2 and c = 7.8 with 30000 data points. Fig. 8 shows the Dq spectrum computed from the
time series taking M = 3, along with the best fit curve applying our scheme. The fit is found to be very good for the
whole range of q values. The complete f(α) spectrum computed from the best fit Dq curve is shown in Fig. 9. The
scheme also calculates the three parameters as p1 = 0.65, τ1 = 0.42 and τ2 = 0.41 so that τ1 + τ2 = 0.83 < 1. Thus
one can say that if the f(α) spectrum of the Rossler attractor is made equivalent to a two scale Cantor set in three
dimension, the resulting probability measures are 0.65 and 0.35 and rescaling parameters 0.42 and 0.41. Interestingly,
it appears that the Rossler attractor is generated by a P process rather than a LP process.

The scheme has also been applied to several standard chaotic attractors in two and three dimensions. The f(α)
spectrum are shown in Fig. 10 for four of them, while the complete set of parameters for six standard chaotic
attractors are given in Table II. The error bars given for αmax, αmin and D0 are those reflected from the computed
Dq values. In a way, the two sets of parameters given above, that is p1, τ1, τ2 and αmax, αmin, D0, can be considered
as complementary to each other. While the former contain the finger prints of the underlying process that generate
the strange attractor (the extent of stretching and folding and redistribution of measures at each time step), the
latter characterises the geometric complexity of the attractor once it is formed. Both can be independantly used to
differentiate between chaotic attractors formed from different systems or from the same system for different parameter
values. The former may be more relevant in the case of chaotic attractors obtained from experimental systems.

Finally, we wish to point out that dissipation is a key factor leading to the multifractal nature of a chaotic attractor.
To show this, we consider a counter example, namely, that of Cat map which is area preserving. The fixed points
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FIG. 10: The multifractal spectrum of four standard chaotic attractors computed by applying our algorithmic scheme. The
parameter values used for generating the time series are also shown.

of the Cat map are hyperbolic, which are neither attractors nor repellers and the trajectories uniformly fill the phase
space as time t → ∞. Its Dq spectrum computed from the time series is found to be a straight line as shown in
Fig. 11, just like that of a white noise. The corresponding f(α) curve is a δ function, also shown in Fig. 11. Since
αmin = αmax, a two scale fit gives the parameters as p1 = 0.5, τ1 = 0.49 and τ2 = 0.51. Thus the Cat map attractor
turns out to be a simple fractal rather than a multifractal.

VI. DISCUSSION AND CONCLUSION

In this paper, we show that a chaotic attractor can be characterised using a set of three independant parameters
which are specific to the underlying process generating it. The method relies on a scheme that maps the f(α) spectrum
of a chaotic attractor onto that of a general two scale Cantor set. The scheme is first tested using one dimensional
chaotic attractors and Cantor sets whose f(α) curves and parameters are known and subsequently applied to higher
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FIG. 11: The Dq curve of the Cat map (left panel) computed using our scheme which is a straight line parallel to the q axis just
like that of a white noise. The corresponding f(α) curve is shown in the right panel, which is δ function with α ≡ f(α) = 2.

dimensional cases.
In the scheme, the Dq spectrum of a chaotic attractor is compared with the Dq curve computed from a model

multiplicative process. Similar idea has also been used to deduce certain statistical characteristics of a system and
infer features of the dynamical processes leading to the observed macroscopic parameters. One such example has been
provided earlier by Meneveau and Sreenivasan [19] in the study of energy dissipation rate in fully developed turbulent
flows. By comparing the experimental Dq data with that of a two scale Cantor measure, they have shown that the
dynamics leading to the observed multifractal distributions of the energy dissipation rate can be well approximated
by a single multi step process involving unequal energy distribution in the ratio 7/3.

Usually, a multifractal is characterised only by the range of scaling involved [αmin, αmax], which roughly repre-
sents the inhomogeinity of the attractor. So the set of parameters computed here seems to give alternative way of
characterising them. But we wish to emphasize that the information contained in these parameters is more subtle.
For example, once these prameters are known, αmin and αmax can be determined using Eqs. (27) and (28). Thus
by evaluating p1, l1 and l2, we get additional information regarding the dynamic process leading to the generation
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of the strange attractor. Moreover, these parameters can also give indication as to why the degree of inhomogeinity
varies between different chaotic attractors. As is well known from the srudy of Cantor sets, the primary reason for the
increased inhomogeinity is the wide difference between the rescaling measures l1 and l2. Looking at the parameter
values, rescaling measures τ1 and τ2 are very close for Rossler and Ueda attractors which appear less inhomogeneous,
while that for Lorenz and Duffing are widely different making them more inhomogeneous with two clear scrolls.

Another novel aspect of the scheme worth commenting is the use of two scale Cantor measures in higher dimension
as analogues of chaotic attractors. Eventhough such objects are not much discussed in the literature, one can envisage
them, for example, as generalisation of the well known Sierpinsky carpets in two dimension or the Menger sponge
in three dimension. But a key difference between these and a chaotic attractor is that the rescaled measures are
not regular in the generation of the latter. Recently, Perfect et. al [20] present a general theoretical framework for
generating geometrical multifractal Sierpinsky carpets using a generator with variable mass fractions determined by
the truncated binomial probability distribution and to compute their generalised dimensions. It turns out that the
chaotic attractors are more similar to multifractals generated in higher dimensional support, such as, fractal growth

patterns and since the rescaled measures are irregular, a one dimensional measure such as l1 = τ
1/M
1 need not have

any physical significance.
Finally, for a complex chaotic attractor in general, the redistribution of the measures as it evolves in time can take

place in more than two scales. Thus it appears that a characterisation based on only two scales is rather approximate
as we tend to lose some information regarding the other scales involved. But we have found that the Dq and f(α)
curves of a multi scale Cantor set can be mapped onto that of an equivalent two scale Cantor set. These two scales
may be functions of the actual scales involved and may contain the missing information in an implicit way. Thus,
an important outcome of the present analysis is the realisation that the dynamical information that can be retrieved
from the f(α) spectrum is limited to only two scales. In this sense, a two scale Cantor measure can be considered as
a good approximation to describe the multifractal properties of natural systems.
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