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Abstract. We review some recent work on the synchronization of coupled dynamical
systems on a variety of networks. When nodes show synchronized behaviour, two inter-
esting phenomena can be observed. First, there are some nodes of the floating type that
show intermittent behaviour between getting attached to some clusters and evolving in-
dependently. Secondly, two different ways of cluster formation can be identified, namely
self-organized clusters which have mostly intra-cluster couplings and driven clusters which
have mostly inter-cluster couplings.
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1. Introduction

The phenomena of synchronization of several dynamical variables or oscillators is
important for many physical and biological systems [1]. Some important physi-
cal systems showing synchronization are arrays of lasers [2], microwave oscillators
and superconducting Josephson junctions [1] while some important biological sys-
tems showing synchronization are synchronous firing of neurons [3], network of
pacemaker cells in the heart [4], metabolic synchrony in yeast cell suspensions
[5], congregations of synchronously flashing fireflies [6], and cricket that chirp in
unison [7].

Coupled oscillators were first studied by Winfree [8] and Kuramoto [9]. The
Kuramoto model describes a large population of coupled limit cycle oscillators
with random frequencies. If the coupling strength exceeds a critical threshold, the
system exhibits a phase transition to a synchronous state where several oscillators
synchronize and lock to a common frequency [10].

Two important developments have regenerated interest in the study of synchro-
nization of dynamical variables. First is the recognition that chaotic dynamical
systems can show exact or phase synchronization [11]. Second is the observation
that several natural systems have an underlying geometric structure which can
be described by complex networks [12,13]. This has opened up the possibility of
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discovering new interesting phenomena in coupled dynamical systems on complex
networks. We discuss some of these aspects in this article.

Several networks in the real world consist of dynamical elements interacting with
each other and the interactions define the links of the network. Several of these
networks have a large number of degrees of freedom and it is important to under-
stand their dynamical behaviour. A general model of coupled dynamical systems
on networks will consist of the following three elements:

1. The evolution of uncoupled elements.

2. The nature of couplings.

3. The topology of the network.

Most of the earlier studies of synchronized cluster formation in coupled chaotic
systems have focused on networks with large number of connections (∼N 2) [14]
or nearest-neighbour couplings on lattice models. Recently, we have considered
complex networks with number of connections of the order of N [15]. This small
number of connections allows us to study the role that different connections play in
synchronizing different nodes and the mechanism of synchronized cluster formation.
The study reveals two interesting phenomena. First, when nodes form synchronized
clusters, there can be some nodes which show an intermittent behaviour between
independent evolution and evolution synchronized with some cluster. Secondly,
the cluster formation can be in two different ways, driven and self-organized phase
synchronization [15]. The connections or couplings in the self-organized phase syn-
chronized clusters are mostly of the intra-cluster type while those in the driven-
phase-synchronized clusters are mostly of the inter-cluster type. We will briefly
review these features in this article.

2. Synchronization of dynamical systems

Synchronization of different dynamical variables can be defined in several ways. Ex-
act synchronization corresponds to the situation where the dynamical variables have
identical values, i.e. two dynamical variables xi and xj are exactly synchronized if
xi(t) = xj(t) [16]. Generalized synchronization is defined by some functional rela-
tion between the dynamical variables [17]. Several other types of synchronization
such as phase synchronization [18], lag synchronization [19], anticipatory synchro-
nization [20] etc. have been defined.

2.1 Kuramoto model of coupled oscillators

Kuramoto model of coupled oscillators can be introduced through the evolution
equation [9]

θ̇i = ωi +
K

N

N
∑

j=1

sin(θj − θi), i = 1, . . . , N, (1)
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where θi is the phase of oscillator i, ωi is its natural frequency and K is the coupling
strength. Phase synchronization of the oscillators can be studied using the complex
order parameter defined as

reiψ =
1

N

N
∑

j=1

eiθj ,

where r measures the phase coherence, and ψ is the average phase. Clearly, r
vanishes for a uniform distribution of phases θi, and r = 1 if all θi are equal. The
evolution equation for the phases can be written as

θ̇i = ωi +Kr sin(ψ − θi).

This is a mean field form of the equation. For K less than some threshold Kc,
the oscillators show unsynchronized behaviour. But, when K > Kc, the oscillator
population splits into two groups: the oscillators near the center of the frequency
distribution lock together at some frequency ω0 to form a synchronized cluster,
while those in the tail retain their natural frequencies and drift relative to the
synchronized cluster. This state is often called partially synchronized state. With
further increase in K, more and more oscillators are recruited into the synchronized
clusters [9,21,22].

Kuramoto’s model was originally motivated by biological oscillators [8], but it has
found applications in many diverse systems such as flavour evolution of neutrinos
[23], arrays of Josephson junction [24], semiconductor lasers [25] and in several
other systems [26,27].

2.2 Synchronization of chaotic systems

Pecora and Carroll [11] showed that two identical chaotic systems can synchro-
nize if appropriate driving mechanisms are introduced. Let x be an n-dimensional
dynamical variable evolving as (drive system)

ẋ = f(x). (2)

Divide the dynamical variables into two parts, x = (xd,xr), a drive part and a
response part. Consider another dynamical system (response system) given by

ẋ′ = f(xd,x
′
r), (3)

where the drive variables xd are obtained from eq. (2). Under suitable conditions,
i.e. the conditional Lyapunov exponents are negative, the response variable x′

r syn-
chronize with those of the drive system, xr. The conditional Lyapunov exponents
are obtained by considering the subspace of response variables. The important
interesting feature is that the variables synchronize even when they are evolving
chaotically. Thus we do not have frequency locking, but we can have phase synchro-
nization if a suitable phase variable can be defined [18]. Such phase synchronization
is observed in several biological systems [1].
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2.3 Coupled dynamics on complex networks

Several complex systems have underlying structures that are described by networks
or graphs [12,13]. Recent interest in networks is due to the discovery that several
naturally occurring networks come under some universal classes and they can be
simulated with simple mathematical models, viz. small-world networks [28], scale-
free networks [29] etc.

Consider a network of N nodes and Nc connections (or couplings) between the
nodes. Let each node of the network be assigned an m-dimensional dynamical
variable xi, i = 1, 2, . . . , N . A very general dynamical evolution can be written
as

dxi
dt

= F({xi}). (4)

Here, we consider a separable case and the evolution equation can be written as

dxi
dt

= f(xi) +
ε

ki

∑

j∈{ki}

g(xj), (5)

where ε is the coupling constant, ki is the degree of node i, and {ki} is the set of
nodes connected to the node i. A diffusive version of eq. (5) would be

dxi
dt

= f(xi) +
ε

ki

∑

j∈{ki}

(g(xj)− g(xi)) . (6)

Discrete versions of eqs (5) and (6) are

xi(t+ 1) = f(xi(t)) +
ε

ki

∑

j∈{ki}

g(xj(t)) (7)

and

xi(t+ 1) = f(xi(t)) +
ε

ki

∑

j∈{ki}

(g(xj(t))− g(xi(t))) . (8)

In numerical studies, for the discrete evolution we can use any discrete map such
as logistic or circle maps while for the continuous case we can use chaotic systems
such as Lorenz or Rössler systems.

As noted before, synchronization of coupled dynamical systems [1] is manifested
by the appearance of some relation between the functionals of different dynamical
variables. When the number of connections in the network is small (Nc ∼ N) and
when the local dynamics of the nodes (i.e. function f(x)) is in the chaotic zone,
and we look at exact synchronization, only few synchronized clusters with small
number of nodes are formed. However, when we look at phase synchronization,
synchronized clusters with larger number of nodes are obtained.
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3. General properties of synchronized dynamics on complex networks

We consider some general properties of synchronized dynamics. They are valid for
any coupled discrete and continuous dynamical systems. Also, these properties are
applicable for exact as well as phase or any other type of synchronization and are
independent of the type of network.

3.1 Behaviour of individual nodes

As the network evolves, it splits into several synchronized clusters. Depending on
their asymptotic dynamical behaviour the nodes of the network can be divided into
three types.

(a) Cluster nodes: A node of this type synchronizes with other nodes and forms a
synchronized cluster. Once this node enters a synchronized cluster it remains in
that cluster afterwards.
(b) Isolated nodes: A node of this type does not synchronize with any other node
and remains isolated for all the time.
(c) Floating nodes: A node of this type keeps on switching intermittently between
an independent evolution and a synchronized evolution attached to some cluster.

Of particular interest are the floating nodes and we will discuss some of their
properties afterwards.

3.2 Mechanism of cluster formation

The study of the relation between the synchronized clusters and the couplings
between the nodes represented by the adjacency matrix C shows two different
mechanisms of cluster formation [15,30].

(i) Self-organized clusters: The nodes of a cluster can be synchronized because of
intra-cluster couplings. We refer to this as the self-organized synchronization and
the corresponding synchronized clusters as self-organized clusters.
(ii) Driven clusters: The nodes of a cluster can be synchronized because of inter-
cluster couplings. Here the nodes of one cluster are driven by those of the others.
We refer to this as the driven synchronization and the corresponding clusters as
driven clusters.

In numerical studies it is possible to observe ideal clusters of both the types, as
well as clusters of the mixed type where both ways of synchronization contribute to
cluster formation. Figure 1 shows some examples of ideal as well as mixed clusters
in coupled map networks [15]. In general, we find that the scale-free networks and
the Caley tree networks lead to better cluster formation than the other types of
networks with the same average connectivity.

Geometrically the two mechanisms of cluster formation can be easily understood
by considering a tree-type network. A tree can be broken into different clusters in
different ways.
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Figure 1. The figure shows node vs. node diagrams for several examples il-
lustrating the self-organized and driven-phase synchronization and the variety
of clusters that are formed. The examples are for coupled maps on a scale-free
network with N = 50, the local dynamics is given by the logistic 4x(1 − x)
and the coupling function is linear. The solid circles show that the two corre-
sponding nodes are coupled (i.e. Cij = 1) and the open circles show that the
corresponding nodes are phase-synchronized. In each case the node numbers
are reorganized so that nodes belonging to the same cluster are numbered con-
secutively and the clusters get displayed in decreasing sizes. (a) Figure shows
turbulent phase for coupling constant ε = 0.10. (b) An ideal self-organized
phase synchronization for ε = 0.16. (c) Mixed behaviour for ε = 0.32. (d) An
ideal driven-phase synchronization for ε = 0.90.

(a) A tree can be broken into two or more disjoint clusters with only intra-cluster
couplings by breaking one or more connections. Clearly, this splitting is not
unique and will lead to self-organized clusters. Figure 2a shows a tree forming
two synchronized clusters of self-organized type. This situation is similar to
an Ising ferromagnet where domains of up- and down-spins can be formed.

(b) A tree can also be divided into two clusters by putting connected nodes into
different clusters. This division is unique and leads to two clusters with only
inter-cluster couplings, i.e. driven clusters. Figure 2b shows a tree forming
two synchronized clusters of the driven type. This situation is similar to
an Ising anti-ferromagnet where two sub-lattices of up- and down-spins are
formed.
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(c)(a) (b)

Figure 2. Different ways of cluster formation in a tree structure are demon-
strated. The open, solid and gray circles show nodes belonging to different
clusters. (a) shows two clusters of the self-organized type, (b) shows two
clusters of driven type and (c) shows three clusters of the driven type.

(c) Several other ways of splitting a tree are possible. For example, it is easy to
see that a tree can be broken into three clusters of the driven type. This is
shown in figure 2c. There is no simple magnetic analog for this type of cluster
formation. It can be observed close to a period three orbit. We note that
four or more clusters of the driven type are also possible. As compared to the
cases (a) and (b) discussed above which are commonly observed, the clusters
of case (c) are not so common and are observed only for some values of the
parameters.

4. Linear stability analysis

A suitable network to study the stability of self-organized synchronized clusters is
the globally coupled network. The stability of globally coupled maps is well-studied
in [31–33]. An ideal example to consider the stability of the driven synchronized
state is a complete bipartite network. A complete bipartite network consists of two
sets of nodes with each node of one set connected with all the nodes of the other
set and no connection between the nodes of the same set. Let N1 and N2 be the
number of nodes belonging to the two sets. We define a bipartite synchronized state
as the one that has all N1 elements of the first set synchronized to some value, say
X1(t), and all N2 elements of the second set synchronized to some other value, say
X2(t).

All the eigenvectors and the eigenvalues of the Jacobian matrix for the bipar-
tite synchronized state can be determined explicitly. The eigenvectors of the type
(α, . . . , α, β, . . . , β)T determine the synchronization manifold and this manifold has
dimension two. All other eigenvectors correspond to the transverse manifold. Lya-
punov exponents corresponding to the transverse eigenvectors for eq. (8) with one-
dimensional variables and g(x) = f(x) are

λ1 = ln|(1− ε)|+
1

τ
lim
τ→∞

τ
∑

t=1

ln|f ′(X1)|,

λ2 = ln|(1− ε)|+
1

τ
lim
τ→∞

τ
∑

t=1

ln|f ′(X2)|, (9)
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and λ1 and λ2 are respectively N1−1 and N2−1 fold degenerate [30]. Here, f ′(X1)
and f ′(X2) are the derivatives of f(x) at X1 and X2 respectively. The synchro-
nized state is stable provided the transverse Lyapunov exponents are negative. If
f ′ is bounded then from eqs. (9) we see that for ε larger than some critical value,
εb(< 1), bipartite synchronized state will be stable. Note that this bipartite syn-
chronized state will be stable even if one or both the remaining Lyapunov exponents
corresponding to the synchronization manifold are positive, i.e. the trajectories are
chaotic. The linear stability analysis for other types of couplings and dynamical
systems can be done along similar lines.

5. Floating nodes

We had stated earlier that the nodes can be divided into three types; cluster nodes,
isolated nodes and floating nodes, depending on the asymptotic behaviour of the
nodes. Here, we discuss some properties of the floating nodes which show an in-
termittent behaviour between synchronized evolution with some cluster and an
independent evolution.

Let τ denote the residence time of a floating node (i.e. the continuous time
interval that the node is in a cluster) in a cluster. Figure 3 plots the frequency of
residence time ν(τ) of a floating node as a function of the residence time τ . A good
straight line fit on log-linear plot shows an exponential dependence, i.e.,

ν(τ) ∼ exp(−τ/τr), (10)

where τr is the typical residence time for a given node. We have also studied the
distribution of the time intervals for which a floating node is not synchronized with
a given cluster. This also shows an exponential distribution.

Several natural systems show examples of floating nodes, e.g. some birds may
show intermittent behaviour between free flying and flying in a flock. An interesting
example in physics is that of particles or molecules in a liquid in equilibrium with its
vapour where the particles intermittently belong to the liquid and vapour. Under
suitable conditions it is possible to argue that the residence time of a tagged particle
in the liquid phase should have an exponential distribution [30], i.e. a behaviour
similar to that of the floating nodes (eq. (10)).

6. Discussion and conclusion

We have briefly discussed synchronization properties of coupled dynamical elements
on complex networks. In the course of time evolution these dynamical elements form
synchronized clusters.

In several cases when synchronized clusters are formed, there are some isolated
nodes which do not belong to any cluster. More interestingly there are some floating
nodes which show an intermittent behaviour between an independent evolution
and an evolution synchronized with some clusters. The residence time spent by a
floating node in the synchronized cluster shows an exponential distribution.
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Figure 3. The figure plots the frequency of residence time ν(τ) of a floating
node in a cluster as a function of the residence time τ . A good straight line
fit on log-linear plot shows exponential dependence.

We have identified two mechanisms of cluster formation: self-organized and
driven-phase synchronization. For self-organized clusters intra-cluster couplings
dominate while for driven clusters inter-cluster couplings dominate.
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[13] R Albert and A L Barabäsi, Rev. Mod. Phys. 74, 47 (2002) and references therein
[14] K Kaneko, Physica D124, 322 (1998)
[15] S Jalan and R E Amritkar, Phys. Rev. Lett. 90, 014101 (2003)
[16] H Fujisaka and T Yamada, Prog. Theor. Phys. 69, 32 (1983)
[17] H F Rulkov, M M Sushchik, L S Tsimring and H D I Abarbanel, Phys. Rev. E51,

980 (1995)
[18] M G Rosenblum, A S Pikovsky and J Kurth, Phys. Rev. Lett. 76, 1804 (1996)
[19] M G Rosenblum, A S Pikovsky and J Kurth, Phys. Rev. Lett. 78, 4193 (1997)
[20] H U Voss, Phys. Rev. E61, 5115 (2000)
[21] J D Crawford, J. Stat. Phys. 74, 1047 (1994)

J D Crawford and K T R Davies, Physica D125, 1 (1999)
[22] S H Strogatz, Physica D143, 1 (2000)
[23] J Pantaleone, Phys. Rev. D58, 3002 (1998)
[24] K Wiesenfeld, P Colet and S H Strogatz, Phys. Rev. E57, 1563 (1998)
[25] G Kozyreff, A G Vladimirov and P Mandal, Phys. Rev. Lett. 85, 3809 (2000)
[26] Y Maistrenko, O Popovych, O Burylko and P A Tass, Phys. Rev. Lett. 93, 841021

(2004)
[27] M G Earl and S H Strogatz, Phys. Rev. E67, 036204 (2003)
[28] D J Watts and S H Strogatz, Nature (London) 393, 440 (1998)
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