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Dynamic algorithm for parameter estimation and its applications
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We consider a dynamic method, based on synchronization and adaptive control, to estimate
unknown parameters of a nonlinear dynamical system from a given scalar chaotic time series. We
present an important extension of the method when time series of a scalar function of the variables
of the underlying dynamical system is given. We find that it is possible to obtain synchronization
as well as parameter estimation using such a time series. We then consider a general quadratic flow
in three dimensions and discuss applicability of our method of parameter estimation in this case.
In practical situations one expects only a finite time series of a system variable to be known. We
show that the finite time series can be repeatedly used to estimate unknown parameters with an
accuracy which improves and then saturates to a constant value with repeated use of the time series.
Finally we suggest an important application of the parameter estimation method. We propose that
the method can be used to confirm the correctness of a trial function modeling an external unknown
perturbation to a known system. We show that our method produces exact synchronization with
the given time series only when the trial function has a form identical to that of the perturbation.

PACS number(s): 05.45.-a, 05.45.Tp, 05.45.Xt

I. INTRODUCTION

An experimental observation often consists of reading
a time series output from a dynamical system. Such a
time series can contain information about the number as
well as the form of the functions governing the evolution
of the system variables including nonlinearities (if any)
and the parameters [1]. The estimation of parameter val-
ues from a given chaotic scalar time series of a nonlinear
system is the topic of our interest here.

We have recently given a method to dynamically esti-
mate unknown parameters from the chaotic time series of
a single phase space variable when the system equations
are known [2]. The method is based on a combination of
synchronization [3–5] and adaptive control [6] similar to
that used by John and Amritkar [7,8].

The problem of parameter estimation in nonlinear dy-
namics has been considered earlier. Parlitz, Junge and
Kocarev have given a static method [9] based on min-
imization while Parlitz has developed a method based
on auto-synchronization [10]. Unlike our method, auto-
synchronization method requires an ansatz for the pa-
rameter control loop and gives slower convergences in
many cases. A method requiring a vector time series
is given by Baker, Gollub and Blackburn [11] and an-
other method based on symbolic dynamics is discussed in
Refs. [12–14]. The effect of noise on parameter estimation
was studied by us [2] and recently by Goodwin, Brown
and Junge [15]. In contrast to many of these methods our
method in Ref. [2] works asymptotically so that an ex-
act estimation of the parameters is in principle possible.

The static methods based on minimization are computa-
tionally expensive because they take a longer time to run
due to many iterations required for convergence and they
also require annealing to eliminate the possibility of get-
ting trapped into a local minimum. The dynamic method
as described in Ref. [2] requires only one time evolution
of the system equations. The method also takes care of
annealing in a dynamic way.

In the first part of this paper we review our method
for parameter estimation in brief. We then extend it to
a case when the time series of a scalar function of phase
space variables is given. We then go on to study the ap-
plicability of the method to a general quadratic flow in
three dimensions. This system has a large number of pa-
rameters and we try to estimate some of them using our
method.

In the second part, we show that it is possible to ex-
tend our method to a more realistic situation, when the
given time series is truncated after a finite time. We
find that a repetitive use of the finite time series can be
made to estimate the unknown parameters of the under-
lying system without altering the dynamic nature of the
method. The accuracy of such an estimation increases
with the increasing length of the given time series. We
also see that the accuracy saturates with the number of
times the finite time series is used.

Lastly in the third part of this paper, we suggest an
interesting application of parameter estimation method.
Consider a situation where an unknown perturbation dis-
turbs a known chaotic system. In many practical situ-
ations when the external perturbation is unknown, an
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ansatz function modeling the behaviour of the external
perturbation is tried. We show that it is possible to use
our parameter estimation method, to confirm the form of
an ansatz function modeling the external perturbation.

In section IIA we briefly introduce our method of pa-
rameter estimation and discuss its important features.
In section IIB we extend it to a general situation when
the given time series is obtained as a scalar function of
the phase space variables. Section IIC deals with a gen-
eral quadratic flow in three dimensions. In section III
we extend the method to the case of finite time series
and present two examples. Finally in section IV we give
the application of the method in confirming the form of
an unknown external perturbation to a known dynamical
system. In section V we conclude with a summary of the
results.

II. PARAMETER ESTIMATION

A. The method

Here, we briefly introduce our method for parameter
estimation from a scalar time series. We would like to
direct the reader to Ref. [2] for a more detailed discus-
sion. We start by considering an autonomous dynamical
system of the form,

ẋ = f (x, α) , (1)

where x = (x1, x2, . . . , xn) is an n-dimensional state vec-
tor whose evolution is described by the function f =
(f1, . . . , fn). We denote a set of m unknown scalar pa-
rameters by α = (α1, α2, . . . , αm). A possible appear-
ance of any other parameters (assumed to be known) is
not shown in Eq. (1).

Without loss of generality we assume that a time se-
ries of the variable x1 is given. The problem we consider
is to estimate α from the given scalar time series of x1

assuming the functional form of f to be known.
In analogy with the control method used earlier by

John and Amritkar [7,8], we combine synchronization
with adaptive control to achieve our goal of estimating
α in Eq. (1) as follows. We construct another system
of variables x

′ having a structure identical to that of
Eq. (1) with a linear feedback proportional to the dif-
ference x′

1 −x1 added in the evolution of the variable x1.
Thus the system is given by,

ẋ′
1 = f1(x

′, α′) − ǫ(x′
1 − x1)

ẋ′
j = fj(x

′, α′), j = 2, . . . , n. (2)

where the function f = (f1, . . . , fn) is the same as that
in Eq. (1). The initial values of parameters α′ which
correspond to the unknown parameters α in Eq. (1) are
chosen randomly. The newly introduced parameter ǫ is
the feedback constant. It is known that if α′ = α then the
systems (1) and (2) synchronize after an initial transient,

provided the conditional Lyapunov exponents (CLE’s)
of the system (2) are all negative [2]. The CLE’s are
obtained from the eigenvalues of the Jacobian matrix J
whose elements are given by,

Jij =
∂fi

∂xj

− ǫδi1δj1 (3)

Since the values α = (α1, . . . , αm) are unknown, we
need to set α′ = (α′

1, . . . , α
′
m) to random initial values

and evolve them adaptively so that they converge to the
values α. Note that a good guess for the initial values of
α′, can be useful in many cases.

We first consider the case when α (and its counterpart
α′) contains only a single element, i.e. the case when only
a single parameter in Eq. (1) is unknown. For notational
simplicity we now denote this single parameter by α. We
start with a random initial value for α′ and evolve it in
a controlled fashion so that it converges to α. This is
achieved by raising α′ to the status of a variable which
evolves as,

α̇′ = −δ(x′
1 − x1) w

(

∂f1

∂α′

)

, (4)

where δ is called stiffness constant and w is some suit-
ably chosen function of ∂f1/∂α′. A simple choice for w
is w = ∂f1/∂α′ giving the adaptive evolution equation
for α′ as,

α̇′ = −δ(x′
1 − x1)

∂f1

∂α′
. (5)

Eq. (4) or Eq. (5) when coupled with Eq. (2) con-
stitutes our method of parameter estimation. A vector
(x′, α′) initially set to random values asymptotically con-
verges to a vector (x, α) in Eq. (1) provided the con-
ditional Lyapunov exponents (CLE’s) for the combined
system (Eqs. (2) and (5)) are all negative. This facilitates
the estimation of α.

Eq. (5) is equivalent to a dynamic algorithm for min-
imization of synchronization error between Eqs. (1) and
(2) as discussed in Ref. [2].

Note that if we assume in the above discussion that the
unknown parameter α appears in the function f1 corre-
sponding to the variable x1 for which the time series is
given then the calculation of the factor ∂f1/∂α′ in Eq. (5)
is straightforward. However this may not be necessarily
the case. The parameter α may appear in any of the
other system functions. If it appears in the functions for
the variables for which the time series is not given, e.g.
in any of the functions f2, . . . , fn in Eq. (1), then corre-
spondingly the calculation of the factor ∂f1/∂α′ becomes
nontrivial.

To make this point clear we assume that the unknown
parameter α appears in the function fk(x) governing the
evolution of variable xk with k 6= 1 while the time series
of x1 is given. In such a case Eq. (5) gets modified to,
(See Ref. [2])
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α̇′ = −δ(x′
1 − x1)

∂f1

∂x′
k

∂fk

∂α′
. (6)

Further if the variable xk itself does not appear in the
function f1 then the complexity of the calculation still
increases. This issue has been explained in detail with
an example in Ref. [2].

Next we consider the case when the set α of un-
known parameters contains more than one element, say
(α1, α2, . . .). Now we set up an adaptive evolution for
each of the corresponding parameters (α′

1, α
′2, . . .). For

the case of two unknown parameters α1 and α2, appear-
ing in functions fk and fl respectively, the adaptive evo-
lution is given by,

α̇′
1 = −δ1(x

′
1 − x1)

∂f1

∂x′
k

∂fk

∂α′

α̇′
2 = −δ2(x

′
1 − x1)

∂f1

∂x′
l

∂fl

∂α′
, (7)

where δ1 and δ2 are two stiffness constants deciding the
rates of convergence. For estimating the values of α1 and
α2 Eqs. (7) can be coupled with Eqs. (2) which provide
the necessary synchronization of system variables if the
associated CLE’s are negative.

In the next subsection we extend our method to a sit-
uation when a time series of a scalar function of phase
space variables is given. We show that it is not only possi-
ble to build a synchronizing system but also to adaptively
estimate an unknown parameter.

B. Parameter estimation using time series of a scalar

function of variables

In our discussion of parameter estimation in earlier
subsection, we have assumed that time series of one of
the phase space variables is given. This may not be the
case in many practical applications and in general the
observed quantity can be a function of the phase space
variables, say s(x). It is possible to construct a synchro-
nization scheme in such a situation [16].

We consider the system given by Eq. (1) and assume
that the time series s(x) which is a function of phase
space variables is given. A synchronization scheme can
be set up in this case by using a suitable modification of
the feedback in Eq. (2) as follows [16].

ẋ′
1 = f1(x

′, α) − ǫ sgn

(

∂s′

∂x′
1

)

(s′ − s(x))

ẋ′
j = fj(x

′, α) j = 2, . . . , n. (8)

where s′ = s(x′) and we give a feedback proportional to
(s′ − s) in the function f1 with feedback constant ǫ. The
function s(x) denotes the given time series.

It can be shown that if the parameters α are as-
sumed to be known, the above system of equations for

x′ (Eqs.(8)) converges to x, provided the CLE’s are all
negative [16].

In Eqs. (8), we have assumed that s(x) has an explicit
dependence on the variable x1 so that ∂s′/∂x′

1 6= 0. If
this is not the case, we can choose any other variable for
the feedback on which s(x) depends explicitly. The fac-
tor sgn() in Eq. (8) makes sure that the term provides a
‘negative feedback’ for all the time so that a convergence
is feasible.

To estimate parameter α in such a case, we set up a
synchronization scheme combined with an adaptive con-
trol in analogy with Eqs. (2) and (4). This system can
be written as,

ẋ′
1 = f1(x

′, α′) − ǫ sgn

(

∂s′

∂x′
1

)

(s′ − s(x))

ẋ′
j = fj(x

′, α′) j = 2, . . . , n.

α̇′ = −δ sgn

(

∂s′

∂x′
1

)

(s′ − s(x))
∂f1

∂α′
. (9)

Eqs. (9) can be used for estimating α when a time series
of s(x) is given. The condition for such an estimation of
α to be possible is that the CLE’s associated with the
system (9) are all negative.

To demonstrate the above procedure, we consider the
Lorenz system given by,

ẋ = σ(y − x)

ẏ = rx − y − xz

ż = xy − bz, (10)

where the variables (x, y, z) define the state of the system
while (σ, r, b) are the three parameters. We consider the
case when the time series of s(x, y, z) = 0.5x2 + 1.1y is
given as an output of the above system and the parame-
ter σ is unknown.

To estimate the value of σ, we form a system of vari-
ables (x′, y′, z′, σ′) similar to Eq. (9). The evolution equa-
tions are

ẋ′ = σ′(y′ − x′) − ǫ sgn(x′)(s′ − s(x, y, z))

ẏ′ = rx′ − y′ − x′z′

ż′ = x′y′ − bz′

σ̇′ = −δ sgn(x′)(s′ − s(x, y, z))(y′ − x′), (11)

where s′ = 0.5x′2 + 1.1y′.
Figures 1(a)-(d) show the evolution of the differences

x′−x, y′−y, z′−z, σ′−σ respectively (Eqs. (10) and (11))
as a function of time t. We see that these differences all
go to zero as t → ∞. This indicates that an unknown σ
can be estimated using Eq. (11).

The CLE’s are obtained using the Jacobian matrix J
given by

J =







−σ − ǫ sgn(x)x σ − 1.1ǫ sgn(x) 0 y − x
r − z −1 −x 0

y x −b 0
−δ sgn(x)x(y − x) −1.1δ sgn(x)(y − x) 0 0







(12)
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We have verified that all the CLE’s are less than zero
except one trivial CLE which is zero.

We have performed simulations and successfully esti-
mated unknown parameters in Lorenz system with other
forms of the function s(x, y, z). The function s(x, y, z)
should however be such that all the associated condi-
tional Lyapunov exponents should be negative.

C. A general quadratic flow in 3-D

Now we consider a quadratic flow in 3-D given by,

ẋ = a0 + a1x + a2y + a3z + a4x
2 + a5y

2

+ a6z
2 + a7xy + a8yz + a9xz

ẏ = b0 + b1x + b2y + b3z + b4x
2 + b5y

2

+ b6z
2 + b7xy + b8yz + b9xz

ż = c0 + c1x + c2y + c3z + c4x
2 + c5y

2

+ c6z
2 + c7xy + c8yz + c9xz, (13)

where (a0, . . . , a9, b0, . . . , b9, c0, . . . , c9) form a thirty di-
mensional parameter space and (x, y, z) are the three
variables. We have performed simulations in which we
have assumed more than one of the thirty parameters
of the system (13) to be unknown and tried to estimate
them when a time series of one of the variables is given.

To elaborate, we assume some of the thirty parameters
to be unknown while the remaining to be known. Some of
the known or unknown parameters may be zero thereby
making the corresponding term absent from the system.
To illustrate the procedure we consider a case when three
parameters (a1, a2, a7) are unknown and a time series of
x is given, we set up a system of equations similar to
Eq. (2) with the adaptive control loops similar to Eq. (7)
for the three parameters (a′

1, a
′
2, a

′
7) as,

ȧ′
1 = −δ1(x

′ − x)x′

ȧ′
2 = −δ2(x

′ − x)y′

ȧ′
7 = −δ3(x

′ − x)x′y′. (14)

Eqs. (14) when coupled to the system of variables
(x′, y′, z′) with an identical structure of evolution as
Eq. (13) with a feedback term in the evolution of x′, can
provide the necessary estimation of parameters when the
CLE’s associated with the reconstructed system are all
negative.

In Fig.2(a)-(c) we plot the time evolution of the differ-
ences a′

1 − a1, a
′
2 − a2, a

′
7 − a7 as a function of time. The

correct value of a7 was zero while the other two were non-
zero. All the differences go to zero indicating the feasi-
bility of simultaneous estimation of the three parameters
(a1, a2, a7) even when the actual value of one of them is
zero. This shows that the method does not falsely detect
a term which is absent in the system.

We have found cases when our method can be used
successfully for the system (13) to simultaneously esti-
mate as many as five parameters. (One such case is the

set of parameters a1, a2, a7, b3, c1, while the time series of
x is given.)

Further we have also found that when any two of the
thirty parameters in the system (13) are unknown, we
can apply our method to simultaneously estimate them
asymptotically to any desired accuracy when the time se-
ries of a suitably chosen variables is given. Our results
suggest that the information about all the thirty param-
eters should in principle be contained in the time series
of a single variable of the system, though at present we
do not have any systematic approach to the simultaneous
estimation of all of them.

III. PARAMETER ESTIMATION USING A

FINITE TIME SERIES

A. Algorithm for repetitive use

In this section we discuss an algorithm for repetitive
use of our method to impove the accuracy of parameter
estimation when the given time series is of finite duration.

Before going on to describe the algorithm it should be
mentioned here that even if a finite time series is used
repeatedly, we do not expect an exact estimation of the
unknown parameter. A finite chaotic trajectory sets a
limit on the accuracy to which the unknown parameter
can be estimated. This can be seen as follows :

We consider symbolic dynamics on the attractor which
provides a generating partion of the attractor. It is well
known that as the system evolves in time, a finer and finer
coarse graining is required to specify a particular trajec-
tory or alternatively, the trajectory gives us a finer coarse
grained information about the attractor. The number of
coarse grained partitions as a function of time goes as,

np ∼ exp{ht}, (15)

where h is the Kolmogorov entropy [17].
If ξd is the volume of a hypercube in a d dimensional

phase space and if the size of the attractor is normailized
to unity, the number of hypercubes in a generating par-
tion may be approximated as,

np ∼
1

ξd
. (16)

Equations (15) and (16) indicate that the length scale of
a hypercube in a generating partition goes as,

ξ ∼ exp{−
h

d
t}. (17)

It can be seen from Eq. (17) that as long as t is finite,
the volume of the hypercube in a coarse graining of the
attractor will not reduce to zero. Thus a finite trajectory
sets a limit on the accuracy to which any information
can be extracted from it. This can be further related
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to Lyapunov exponents using the famous Kaplan-Yorke
conjecture [18] as,

ξ ∼ exp{−

∑

λ>0
λ

d
t}, (18)

where λ is the characteristic Lyapunov exponent of the
system. For a chaotic system with a single positive Lya-
punov exponent denoted by λ+, eqn. (18) reduces to,

ξ ∼ exp{−
λ+

d
t}. (19)

Now we will discuss the algorithm for repetitive use of
a finite time series to estimate an unknown parameter.
Similar to the case considered in section IIA, we assume
that the parameters α = (α1, α2, . . . , αm) in Eq.(1) are
unknown while the time series of x1 is given. We further
assume that the time series is truncated after a finite time
T .

For the time interval 0 ≤ t ≤ T , we can use the proce-
dure identical to that described earlier (Eqs. (2) and (5))
to evolve variables (x′, α′) with random initial conditions.
The given finite time series is fed in system (2) as in the
earlier case. In this way we can get an approximate value
of α which we denote as, α1 = α′(T ).

Now at time t = T we set the variables x
′ to exactly

the same (randomly chosen earlier) initial values while
α′ = α1 and feed the same finite time series {x(t)|0 ≤
t ≤ T } again into the system (2) through the feedback
terms in Eqs. (2) and (5), i.e. we set x(t + T ) = x(t).
We now evolve the variables (x′, α′) for the time interval
T ≤ t ≤ 2T to obtain a new estimated value of α which
is α2 = α′(2T ).

We repeat the procedure to get successive estimates for
the value of α denoted by α1, α2, α3, . . . , αN , . . . at times
t = T, 2T, 3T, . . . , NT, . . . respectively. Thus, starting
from an initial guess for the value of α we obtain a se-
quence of estimates α0, α1, . . . , αN after N usages of the
given finite time series. For large enough N we get a
better and better estimate of α, although eventually the
accuracy of such an estimate saturates as N is increased
further.

The conditions for the method of parameter estimation
using a finite time series to work successfully are :

1. The conditional Lyapunov exponents associated
with the reconstructed system should be all neg-
ative.

2. The time T after which the given time series is trun-
cated should satisfy T > τ where τ denotes the
transient time required for synchronization of the
systems (1) and (2) with the parameter evolution
given by Eq. (5).

In the next subsection, we discuss two examples of pa-
rameter estimation from a finite time series, viz. Lorenz
system and an electrical circuit of a phase converter.

B. Examples

1. Lorenz system

As our first example we choose the Lorenz system
given by Eq. (10) where we assume that the time se-
ries {x(t)|0 ≤ t ≤ T } is given and the value of σ is to be
estimated. We set up the following system of equations
(see Eqs. (2) and (5)).

ẋ′ = σ(y′ − x′) − ǫ(x′ − x)

ẏ′ = rx′ − y′ − x′z′

ż′ = x′y′ − bz′

σ̇′ = −δ(x′ − x)(y′ − x′) (20)

where we feed the given time series in the evolution of x
for the interval 0 ≤ t ≤ T to obtain the first estimate σ1.

As described in the earlier subsection, we then go on
repetitively feeding the same finite time series x(t) in
Eq.(20) to obtain successive estimates for the value of
σ. Starting from a random initial value we denote this
sequence of estimates by σ0, σ1, . . . , σN where N denotes
the number of times we use the given time series.

In Fig.3 we plot the evolution of the difference σ′−σ as
a function of time t during the time interval 0 ≤ t ≤ 3T
where we use the time series x(t) thrice. We see that the
difference decreases as we increase the number of times
the finite time series is used. We also observe that shortly
after each resetting of the initial vector (x′, y′, z′) which
is done at times T, 2T , the synchronization weakens and
fluctuations are present. This is due to the random reset-
ting of the y and z components which gives a transient
before the synchronization is recovered. An appropriate
feedback constant ǫ may be chosen to lessen this transient
in every usage of the time series.

In Fig.4 we plot the successive differences σN − σ as a
function of N , the number of times we use the given finite
time series. We see that the difference σN −σ goes on de-
creasing with increasing N . However, as N is increased
further, it saturates to a constant finite value depending
on the length of the time series used for the calculations.
This is consistent with our expectations that finite time
series can contain only finite information about the sys-
tem as discussed in the previous subsection, e.g. using
λ+ ∼ 0.9, the finest length scale that can be obtained
using a finite time series with T = 30 is estimated to be
0.05 (Eq. (19)) which means an accuracy of about 10−3.
This is also the order of magnitude of the accuracy of
parameter estimation.

The three curves in Fig. 4 correspond to three different
values of T = T1 < T2 < T3. We see that an increasing
T gives better estimate of the parameter. This is natural
since a very long time series corresponding to T → ∞
is expected to give an exact estimation of the unknown
parameter.

5



We have similarly implemented our method to estimate
other parameters of Lorenz system using finite time series
of either x or y. The method fails to estimate any of the
parameters when the time series of z is given. The rea-
son for this is that one of the associated conditional Lya-
punov exponents is critically zero and the convergences
are slow.

2. A phase converter circuit

As our next example, we consider the set of equations
describing an electrical circuit for a phase converter [19]
system in a dimensionless form given by,

ẋ1 = x2

ẋ2 = −kx2 −
x1

4

(

x2
1 + 3x2

3

)

ẋ3 = x4

ẋ4 = −kx4 −
x3

4

(

x2
1 + 3x2

3

)

+ B cos t (21)

where k and B are the two parameters. Here we consider
the time series {x2(t)|0 ≤ t ≤ T } to be given. Notice that
the system (21) has a simple time dependent term making
it a non-autonomous system. Such a system is equivalent
to an autonomous system in higher dimensions. We have
successfully estimated any one of the parameters k or B
(or both) using finite time series of x2(t).

Figure 5(a) shows a schematic diagram of the circuit
for the phase converter. The system in known to exhibit
a chaotic behaviour due to period doubling bifurcations,
codimension two bifurcations etc. Figure 5 (b) shows a
chaotic attractor in the x1 −x2 plane of the phase space.

Figure 6 shows the plot of the successive differences
kN − k as a function of N , the number of times we use
the given time series for two different values of the trunca-
tion time T. As expected the accuracy of the estimation
increases with increasing T while showing a saturation
with increasing number of repeated usages.

Thus, we have shown how the method of parameter
estimation can be used when a finite time series is given.
The method works when the CLE’s associated are all
negative and the time series given is of longer duration
than the transient time required for synchronization.

IV. FORM OF A MODEL PERTURBATION

Here we describe an interesting application of our
method to test a function modeling an unknown exter-
nal source of perturbation to a known chaotic system. In
many practical situations when an external source of dis-
turbance in not known, a trial function is used to model
the perturbation.

We imagine a situation when it is required to verify a
proposed trial model form for the perturbation. We de-
note the actual perturbation by a function F (x, µ) and

the trial function by G(x′, µ′) where µ and µ′ are param-
eters. In the following, we demonstrate the use of our
method of parameter estimation to confirm the form of
the trial function. Note that here we do not deal with
the issue of obtaining the form of the model function.

Now if the proposed trial function G models the ex-
ternal perturbation F correctly, then a scheme based on
synchronization combined with adaptive control should
produce synchronization of variables and make the pa-
rameters µ′ converge (to µ). Thus a successful synchro-
nization should then indicate a correctly chosen model
function. In this manner we can use the method to dis-
tinguish between a correct model and a wrong model for
an external perturbation. We elaborate on this applica-
tion further using the example of Lorenz system.

Consider the Lorenz system perturbed by a sinusoidal
term F = A sin(ωx),

ẋ = σ(y − x) + A sin(ωx)

ẏ = rx − y − xz

ż = xy − bz, (22)

where we assume the unperturbed Lorenz system to be
known. The function F = A sin(ωx) is the external per-
turbation. We assume that the time series of x is given
as an output of the system (22).

To set up the required scheme we construct a system
of variables (x′, y′, z′) and their evolution as,

ẋ′ = σ(y′ − x′) + G(x′, y′, z′, µ′) − ǫ(x′ − x)

ẏ′ = rx′ − y′ − x′z′

ż′ = x′y′ − bz′,

µ̇′ = −δ(x′ − x)
∂G

∂µ′
. (23)

where G(x′, y′z′) is the trial perturbation function.
We feed the time series x(t) obtained from system (22)

into the model system (23). Now if G models the be-
haviour of F correctly then the two systems should ex-
hibit synchronization while the parameters should show
convergence to the correct values. In our simulations we
have tried several different forms for the trial function G.

Figures 7(a)-(c) show the time evolution of x′ − x, µ1

and µ2 respectively while the feedback is given into x and
the trial function is G = µ1x

2 +µ2. It can be clearly seen
that there is no synchronization of variables. The trial
function G = µ1x

2 + µ2 thus fails to produce synchro-
nization and hence can be discarded as a plausible model
for F . We also note that the parameters µ′

1 and µ′
2 do

not show convergence.
In Figs. 8 and 9, we plot similar graphs for two more

choices of the trial function. In Fig. 8(a)-(c) we use
G = µ1x − µ2x

3 and plot x′ − x, µ1 and µ2 respectively.
We choose this form of G since it represents the two
leading terms in the series expansion of the the func-
tion F = A sin(ωx). We can see from Fig. 8 that such an
approximation fails to produce synchronization and also
the convergence of parameters.
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As a third choice we use G = µ1 sin(µ2x) in Eq. (23)
and plot the time evolution of x′ − x, µ1 and µ2 in
Fig.9(a)-(c) respectively. The difference x′ − x goes to
zero as time increases showing synchronization. The pa-
rameters µ1 and µ2 converge to the correct values A and
ω respectively. The variables y′ and z′ also synchronize
with y and z respectively. This confirms that this trial
function correctly models the function F .

Now as a last consideration, we use the form G =
µ1 sin(µ2x) again but unlike in Eq. (23) we perturb a
wrong variable in the model system, i.e. we choose to
add the trial perturbation in the evolution of say y′. The
feedback is given in x. The evolution equations are

ẋ′ = σ(y′ − x′) − ǫ(x′ − x)

ẏ′ = rx′ − y′ − x′z′ + G(x′, y′, z′, µ′)

ż′ = x′y′ − bz′,

µ̇′ = −δ(x′ − x)
∂G

∂µ′
. (24)

In Fig.10 (a)-(c) we plot the time evolution of x′−x, µ1

and µ2 respectively. We see that even if G correctly mod-
els F , synchronization does not take place. This shows
that along with the form of F we can also confirm a guess
about the perturbed variable.

Thus, the results presented in this section suggest that
the method which we use for estimating parameters can
be used to distinguish between a correct trial function
and the wrong trial functions for an unknown external
perturbation to a known system [20].

V. SUMMARY AND CONCLUSIONS

We have described dynamic method of parameter esti-
mation from a given chaotic time series of a phase space
variable of a dynamical system [2]. Further, We have
generalized the method for the case when the quantity
for which the time series is given is a scalar function of
the phase space variables. We have shown that it is not
only possible to synchronize two systems using the time
series of the scalar function but also to asymptotically
estimate unknown parameters adaptively to any desired
accuracy. This is done by providing a linear feedback in
the evolution of one of the variables on which the scalar
function explicitly depends. The method works success-
fully provided the function for which the time series is
given is such that the associated conditional Lyapunov
exponents are all negative.

We have also applied our method to a system with a
large number of parameters, i.e. a general quadratic flow
in 3-D. We have observed that a simultaneous estimation
of a few parameters is possible provided the condition of
convergence as stated in Ref. [2] is satisfied i.e. all the
CLE’s are negative.

As a next consideration, we have extended our method
to a realistic situation when the given series is truncated

after a finite time. We have shown that repetitive use of
a finite time series can be made to estimate an unknown
parameter of the system. The accuracy of the parameter
estimation saturates as the given finite time series is used
more and more number of times. The accuracy increases
with the increasing length of the given time series.

In the end we have demonstrated an important applica-
tion of our method in confirming the correctness of a trial
model function for an unknown external perturbation to
a known system. We see that a perfect synchronization
between a perturbed system and its dynamical copy us-
ing a model for the perturbation is possible only when
the form of the trial function is correctly guessed. These
results indicate that our method can be used as a test for
the trial model for an unknown external perturbation to
a known system. Another possible application (not dis-
cussed in the paper) is as follows. Our method may be
employed to experimentally measure the unknown value
of a component added to a known circuit. In such a situ-
ation the equations governing the circuit are known, and
can be used to estimate the unknown component value
accurately. This is feasible due to the asymptotic con-
vergences in our method.
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FIG. 1. The plots (a)-(d) show the evolution of the differences x′ − x, y′ − y, z′ − z, σ′ − σ as a function of time for the
Lorenz system (Eqs. (10) and (11)) respectively for the case when a time series for s(x, y, z) = 0.5x2 + 1.1y is given and σ is
unknown. The differences go to zero asymptotically indicating that it is possible to use our method to estimate an unknown
parameter when time series for s(x) is given.
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FIG. 2. The plots (a)-(c) show the evolution of the differences a′
1 − a1, a

′
2 − a2, a

′
7 − a7 for a general quadratic flow in 3-D

(Eq. (13) and (14)), plotted as a function of time when the time series of x is given. We see that all the differences approach
zero indicating the feasibility of simultaneous estimation of more than one parameter. The correct value of a7 was zero, showing
that a term absent in the flow equations is not falsely detected by our method.
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Fig.3 (AM & REA) 
FIG. 3. The plot shows the evolution of the difference σ′ − σ as a function of time in the Lorenz system (Eq. (20)) with

unknown parameter σ when the given time series of x is truncated after the time T = 20. We have used The finite time series
thrice and plotted the curve for the interval 0 ≤ t ≤ 3T . We see that the successive values of the difference at t = 0, T, 2T, 3T

decrease. This indicates that a repetitive use of the finite time series can improve the accuracy of parameter estimation.
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FIG. 4. The graph shows the successive differences σN − σ plotted as a function of N , the number of times a finite time

series {x(t)|o ≤ t ≤ T} is used to estimate an unknown σ in a Lorenz system (Eq. (20)). We see that after an initial transient,
the difference decreases showing better accuracy of the estimation. We also see that as N increases further the accuracy of
estimation saturates and it is not possible to improve upon the estimation beyond this. The three curves correspond to three
different values of T where T1 < T2 < T3. It can be seen that a larger T leads to a better estimation as expected.
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FIG. 5. A schematic diagram (Fig. 5(a)) of a phase converter circuit (Eq. (21)) which shows a chaotic behaviour. Fig. 5(b)

shows a chaotic attractor for the parameter values k = 0.1, B = 3.0.
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FIG. 6. The graph shows the successive differences kN − k plotted as a function of N , the number of times a finite time
series {x2(t)|o ≤ t ≤ T} is used to estimate an unknown k in a phase converter circuit system (Eq. (21)). We see that after
an initial transient, the difference decreases showing better accuracy of the estimation. We also see that as N increases further
the accuracy of estimation saturates and it is not possible to improve upon the estimation beyond this using our method.
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FIG. 7. The plots (a)-(c) show the time evolution of x′ − x,µ1 and µ2 respectively for the Lorenz system with the feedback
given in equation for x and with the trial perturbation function G = µ1x

2 +µ2 while the correct perturbation is F = A sin(ωx)
(Eq. (23)). We see that the guess function G = µ1(Eq. (23))x2+µ2 fails to produce synchronization and hence can be discarded
as a plausible model for F . It can also be seen that there is no convergence of the parameters taking place.
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FIG. 8. The plots(a)-(c) show the time evolution of x′ − x, µ1 and µ2 respectively for the Lorenz system with the feedback
given in equation for x and with the trial perturbation function G = µ1x+µ2x

3 while the correct perturbation is F = A sin(ωx)
(Eq. (23)). It can be clearly seen that even when G = µ1x − µ2x

3 matches in form with F upto two leading terms in the
expansion of F , it fails to produce synchronization and hence can be discarded as a plausible model for F . Also there is no
convergence of the parameters taking place.
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FIG. 9. The plots (a)-(c) show the time evolution of x′ − x,µ1 and µ2 respectively for the Lorenz system with the feedback
given in equation for x and with the trial perturbation function G = µ1 sin(µ2x) while the correct perturbation is F = A sin(ωx)
(Eq. (23)). It can be clearly seen that the difference x′−x converges to zero asymptotically indicating an exact synchronization
between the variables. Thus by using our method the guess for the model perturbation function can be easily justified.
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FIG. 10. The plots (a)-(c) show the time evolution of the difference x′ − x and the parameters µ1 and µ2 respectively for
the Lorenz system with the feedback given in the equation for x and with the trial perturbation function G = µ1 sin(µ2x) in
the equation for y while the correct perturbation is F = A sin(ωx) in the equation for x (Eq. (24)). Thus, unlike the case
plotted in Fig.9 the trial function used here, perturbs the wrong variable. It can be clearly seen that the trial function G does
not produce synchronization between variables. The parameters also do not converge. Thus as expected, the guess function
G = µ1(sin µ2x) when added to a wrong variable, cannot model the perturbation.
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