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Abstract. Explicit equations are given for unramified coverings of the affine

line in characteristic two with Mathieu groups of degrees 23 and 24 as Galois

groups.

1. Introduction

_ Let k be a field of characteristic p ^ 0, and consider the polynomial
-^23,20,i,i = T23 + XY3 + 1 of degree 23 in Y with coefficients in k[X].

Inspired by Serre's linearization trick (cf. [6] as reported in Section 1 of [5]),

in the case of p — 2, in (1.5) of [4] a linearization lemma was proved for this

polynomial and, together with the transitivity lemma (1.3) of [4], it showed

that the said polynomial gives an unramified covering of the affine line Lk (in

characteristic two) having AT23 (= the Mathieu group of degree 23 ) as Galois
group. In the present paper, by modifying this procedure, we shall prove the

following:

First Mathieu Group Theorem (1.1). If p = 2 then, for any a £ k, the Galois

group Gal(Y24 + aY4 + Y + X, k(X)) equals the Mathieu group AT24 of degree
24.

From (1.1) it follows that, for p = 2, the equation Y24 + aY4 + Y + X = 0
gives an unramified covering of the affine line Lk with Galois group AT24 . It

may be noted that this covering is a special case of the family of unramified
coverings given in Proposition 2 of the 1957 paper [1]. Moreover, the subcase
a = 0 is part of the tilde family on pp. 74 and 103-108 of [2] and in (9.5)
of [3] it was called a border value case giving interesting Galois group. In the

subcase a = 0, recently McKay and Conway have independently shown the

Galois group to be AT24 .
By "throwing away" a root of the above equation [see (2.1)], by (1.1) we get

the following:
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Second Mathieu Group Theorem (1.2). If p = 2 and a is any element of k
then upon letting <ï> = Y~X[(Y + X)24 - X24] + aY~x[(Y + X)4 - X4] + 1 =

T23 + X&YX5 + Xx6Yn + aY3, + 1, the equation d> = 0 gives an unramified

covering of the affine line Lk with Gal(0, k(X)) = AT23.

To explain the linearization trick, let us recall that an additive polynomial

0 over a domain D of characteristic p is a polynomial of the form 6 =

YpM + YlíoXaiYPi where a, £ D with a0 ¿ 0. Clearly the T-derivative
of 6 equals the nonzero constant ao and hence, for any overfield A of D,

the Galois group Gal(6, A) is defined. Moreover, the roots of 8 obviously

form an elementary abelian group of order pM and hence, as a permutation
group, Gal(6, A) is a subgroup of GL(AT, p). Now let there be given a monic

polynomial Y of degree N > 0 in Y with coefficients in D. Assume that the

T-discriminant of Y is nonzero so that we can talk about the Galois group

Gal(r, A). We shall say that Y linearizes over D at AT if there exists an

additive polynomial 8 over D of degree pM such that IT* = 8 for some

T* £ D[Y]. If this is so, then Gal(T, A) is a homomorphic image of Gal(8, A)
and hence the order |Gal(T, A)| of Gal(r, A) divides the order |GL(AT, p)\
of GL(AT, p). It is easily seen that Y always linearizes over A at M = N.

But if it linearizes at a significantly smaller value of AT then we can obtain
reasonable bounds for the prime power factors of |Gal(r, A)|.

In (1.5) of [4] it was shown that, for p = 2, the polynomial ^23,20,1,1 =

T23 + XY + 1 linearizes over k[X] at 11. In the Linearization Lemma (5.1)
of Section 5, by slightly modifying the proof of ( 1.5) of [4], we shall show that,
for p = 2 and for any element T in an overfield of k[X] (for instance, T

could be transcendental over k[X] ), the polynomial F* — TT^, 20,1,1 + T

linearizes over k[X, T] at 12. By taking (a, X) for (X, T) in F*, it follows

that |Gal(y24 + ay4 + y + X,Â:(A'))| divides |GL(12,2)|.
For p = 2, in (1.3) of [4] it was shown that Gal(T23 + XY3 + 1, k(X)) is

doubly transitive and, as said above, this together with the fact that Y23+XY3 +

1 linearizes at 11 shows that Gal(y23 + XY3 + 1, k(X)) = AT23. This time, in
the Transitivity Lemma (4.1) of Section 4, we shall show that for certain monic
polynomials F of degree n = mq in Y with coefficients in k[X] where q
is the highest power of p which divides n and where p need not be 2, the

Galois group Gal(.F, k(X)) is doubly transitive and its order is divisible by

n(n - l)(q - 1). The proof of the Transitivity Lemma (4.1) will be based on

some auxilliary lemmas which we shall prove in Section 2 and an irreducibility
lemma which we shall prove in Section 3. Thus the Linearization Lemma (5.1)

shows that Gal(T24 + aY4 + Y + I, k(X)) is not too big and the Transitivity
Lemma (4.1) shows that it is not too small. In Section 6, Theorem (1.1) will be

deduced from these two facts.

2. Auxilliary lemmas

LetF = F(Y) = Yn + R„,r" + B„2YH> + ••• + BnhYn" + X where h and
n > «1 > «2 > ■■■ > nn = 1 are positive integers, and 0 ^ Bn¡ £ k for

1 < 1 < h. Assume that n is divisible by p and let m and q be the unique

positive integers with n — mq such that m is nondivisible by p and q is a

power of p . For 1 < 1 < h— 1 assume that «, is divisible by p and let m¡ and

q¡ be the unique positive integers with n¡ = m¡q¡ such that m¡ is nondivisible
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by p and q¡ is a power of p. [Note that the y-derivative of F equals the
nonzero element B„h of k and hence the Galois group Gal(T", k(X)) makes
sense and the equation F = 0 gives an unramified covering of the affine line

Lk.]
In the Transitivity Lemma (4.1) of Section 4 we shall show that if certain

conditions are satisfied then Gal(.F, k(X)) is doubly transitive and its order is

divisible by n(n -l)(q-l). To prepare the ground work for this, here we shall
prove two auxilliary lemmas.

First let us note that F is irreducible because it is linear in X, and hence

Gal(F, k(X)) is transitive. By "throwing away" the root Y of F we get the

monic polynomial Q,(Y, Z) = Z~X[F(Z + Y) - F(Y)] of degree n-l in Z
with coefficients in k(Y) = k(X, Y) ; for the method of "throwing away" roots

and its relation to one-point stabilizers, see [2]. Since the y-derivative of F
is a nonzero element of k, it follows that the Z-discriminant of Q(Y, Z) is

a nonzero element of k and Gal(£!(y, Z), k(Y)) is isomorphic to the one-

point stabilizer of Gal(.F, k(X)). For every positive integer u let EU(Y, Z) =

Z-X\(Z + YY-Y"]. Then clearly il(Y, Z) = En(Y, Z) + Y!¡=x Bn¡En¡(Y, Z).
Therefore, by writing X and Y for Y and Z , respectively, we get the follow-
ing:

Auxilliary Lemma (2.1). With F as above, let £l(X, Y) be the monic polyno-

mial of degree n-l in Y with coefficients in k[X] obtained by putting

h

a(X,Y) = E„(X,Y) + YIBn¡En¡(X, Y)
i=i

where, for every positive integer u, by EU(X, Y) we are denoting the homoge-

neous polynomial of degree u - 1 in (X, Y) with coefficients in k obtained by

putting EU(X, Y) = Y~X[(Y+X)U-XU]. Thenthe Y-discriminantof il(X, Y)
is a nonzero element of k and hence the equation £l(X, Y) = 0 gives an un-

ramified covering of the affine line Lk . Moreover, Gal(F, k(X)) is transitive
and its one-point stabilizer is isomorphic to Gal(fí(A', Y), k(X)).

Now the fc(Z)-automorphism Y » XY of k(X)[Y] sends Xx~ncl(X, Y)

to 0?(X, Y) = Xx~"Çl(X, XY) =- En(l, Y) + £*_i Bn¡Xn^nEn¡(l, Y) which
is a monic polynomial of degree n-l in Y with coefficients in k(X). Like-
wise the it-automorphism (X, Y) >-> (l/X, Y) of k(X)[Y] sends Q*(X, Y)

to 0!(X,Y) = ÍY(l/X,Y) = E'n(Y) + ¿f=1 Bn¡X"-"'E'n.(Y) which is a monic
polynomial of degree n-l in Y with coefficients in k[X], where for ev-

ery positive integer u we have put E'U(Y) - Y~X[(Y + l)u - 1]. It follows

that the y-discriminant of £l'(X, Y) is a nonzero element of k[X], and
Gal(Q'(X, Y), k(X)) is isomorphic to Gal(n(X, Y), k(X)). Therefore, by
(2.1) we get the following:

Auxilliary Lemma (2.2). With F as above, let Q'(X, Y) be the monic poly-
nomial of degree n-l in Y with coefficients in k[X] obtained by putting

Q'(X, Y) = E'n(Y) + Y!¡=iBniX"-n¡E'n.(Y) where, for every positive integer

u, by E'U(Y) we are denoting the monic polynomial of degree u - 1 in Y

with coefficients in k obtained by putting E'U(Y) = Y~X[(Y + 1)" - 1]. Then
the Y-discriminant of Q,'(X, Y) is a nonzero element of k[X].   Moreover,



1010 S. S. ABHYANKAR AND IKKWON YIE

Gal(F, k(X)) is transitive and its one-point stabilizer is isomorphic to
Gal(Q'(X,Y),k(X)).

3. Irreducibility

As another step toward the Transitivity Lemma, let us prove the following:

Irreducibility Lemma (3.1). Let V be a real discrete valuation ofa field K (note
that then V maps K onto Z U {oo}), let 0 < r < d be integers, let f(Y) =

Ylj=objYd~J be a polynomial of degree d in Y with coefficients bj in K

such that V(bj) > V(b0) = V(br) = 0 < V(bd) < oo for 0 < j < r, and
V(bj)/V(bd) > (j - r)/(d -r) for r<j<d, and let

s = (d- r)/ GCY>(V(bd), d - r).

Then we have the following.
(3.1.1) If y is a root of f(Y) in an overfield of K and W is an extension

of V to K(y) with W(y) > 0 (where we again assume W to map K(y) onto

Z U {oo} ), then the reduced ramification exponent e of W over V is divisible

by s.
(3.1.2) If d = d-r = s, then f(Y) is irreducible in K[Y].
(3.1.3) If f( Y) is irreducible in K[Y] and has no multiple root in any overfield

of K, then | Gal(/(y)/60, K)\ is divisible by s.

For a moment let the situation be as in (3.1.1). Then W(bj) = eV(bf) for

0 < j < d, and hence W(bj) > W(b0) = W(br) = 0 < W(bd) < oo for
0 < ; < r, and W(bj) > (j -r)W(bd)/(d -r) for r < j < d. Since W(y) > 0,
we see that W(bjyd~j) > W(bryd~r) for 0 < / < r ; therefore, since f(y) = 0,

there must be at least two minimal W-value terms amongst (bjyd~j)r<j<d.

Now if W(y) > W(bd)/(d - r) then for r < j <d we would have

W(bjyd~i) = W(bf) + (d-j)W(y) > [(j -r) + (d-j)]W(bd)/(d - r) = W(bd)

which would contradict the existence of two minimal value terms. Likewise, if

W(y) < W(bd)/(d - r) then for r < j <d we would have

W(bjyd-J) = W(bj) + (d- j)W(y) > (j - r)(d - r)~xW(bd) + (d - j)W(y)

> (j - r)W(y) + (d - j)W(y)

= (d - r)W(y) = W(bryd-r)

which would again contradict the existence of two minimal value terms. Con-

sequently we must have W(y) = W(bd)/(d - r). Therefore eV(bd)/(d - r) =

W(y) £ Z and hence e is divisible by 5. This proves (3.1.1).
Next for a moment let the situation be as in (3.1.2). We can take a root y

of f(y) in an overfield of K and we can take an extension W of V to K(y).
Since f(y) = 0, there must be at least two minimal P^-value terms amongst

(bjyd-j)o<j<d . Since d = d-r, we must have W(b0) = 0 < W(b¡) for 1 < j <
d. Since f(y) = 0 and V(bd) ^ oo, we must also have v # 0. Consequently

W(y) > 0 because otherwise boyd would be the only minimal value term.

Therefore, since s = d, by (3.1.1 ) we see that the reduced ramification exponent
of W over V is divisible by d and hence it must equal d and f(Y) must be

irreducible in A^[y]. This proves (3.1.2).
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Finally let the situation be as in (3.1.3). Let yi, y2,... , yd be the distinct
roots of f(Y) in a splitting field L of f(Y) over A', and take an extension U

of V to L. Since V(b0) = 0 < V(b¡) for 1 < j < d, we must have U(b¡) > 0

for 1 < i < d. Since yxy2...yd = (-l)dbd/b0 and V(bQ) = 0 < V(bd), we
conclude that U(y¡) > 0 for some i. Let y = y¡ and let W be the extension

of V to K(y) such that U is an extension of If to L. Now W(y) > 0 and

hence by (3.1.1) we see that the reduced ramification exponent of W over V

is divisible by s. Therefore |Gal(/(y)/Z?0, K)\ is divisible by 5. This proves

(3.1.3).

4. Transitivity

Finally let us state and prove the:

Transitivity Lemma (4.1). Let F = F (Y) = Yn+BnJ^+Bn2Y^ + ---+BnJn" +

X where h and n > nx > n2 > ■■■ > nn = I are positive integers, and 0 ^

Bn¡ £ k for 1 < i < h. Assume that n is divisible by p and let m and q be
the unique positive integers with n = mq such that m is nondivisible by p and

q is a power of p. For 1 < i < h - 1 assume that n¡ is divisible by p and
let m¿ and q¡ be the unique positive integers with n, = /m/ö,- such that w, is

nondivisible by p and q¡ is a power of p. [Note that the Y-derivative of F
equals the nonzero element B„h of k and hence the Galois group Gal(.F, k(X))

makes sense and the equation F — 0 gives an unramified covering of the affine

line Lk.] Now considering the conditions

(*)
GCD(n-l,q-l) = l   and   (q¡- \)(n-\) > (q- l)(n,-1)   forl<i<h-l,

and

(**) (n - n¡)(q - I) > (n - l)(q - q¡)   for I < i < h - I,

we have that: (*) => Gal(.F, k(X)) is doubly transitive, and (*) + (**) =>
| Gal(F, k(X))\ is divisible by n(n - l)(q - 1).

To prove (4.1), in view of (2.2), it suffices to show that in the situation

of (2.2), (*) => Cl'(X, Y) is irreducible in k(X)[Y], and (*) + (**) =>
\Gal(Cl'(X, Y), k(X))\ is divisible by q - 1. So let the situation be as in
(2.2) and assume (*), let K - k(X) and d = n - 1, and let V be the order
of zero at X = 0, i.e., V(X'P(X)/Q(X)) = t for all integers t and all P(X)
and Q(X) in k[X] with R(0) # 0 ^ Q(0). Note that now V(E'„(X)) = q-l,
V(E'n.(X)) = q,■■- 1 for 1 < i < h - 1, and E'„h(X) = 1.

For a moment let r = 0 and f(Y) = &(Y, X) = Y?j=o bJY<i'j with bj € K.

Then b0 = B„hE'nh(X) = the nonzero element B„h of k . Also bd = E'n(X) and

hence V(bd) = q - 1. Moreover, for 1 < i < h we have 0 < n¡ - 1 < d and

¿>„,_! =Bn¡E'n.(X) andhence V(bn¡-X) = q¡-l and therefore V(bm-X)/V(bd) >

(n, - I)/d. Clearly bj = 0 for all j £ {1,2, ... , d}\{nx, n2, ... , nn), and
hence V(b¡)/V(bd) > j/d for0<j<d. Since GCD (n-1, q-1) = 1, we also
get GCD(V(bd), d) = I, and hence upon letting s = (d-r)/GCD(V(bd), d-r)
we have d = d-r = s. Consequently by (3.1.2) we conclude that Q'(Y, X) is

irreducible in k(X)[Y]. Therefore Cï'(X, Y) is irreducible in k(Y)[X], and
hence by Gauss's Lemma we see that Q'(X, Y) is irreducible in k(X)[Y].



1012 S. S. ABHYANKAR AND IKKWON YIE

Now assume (**) and let r = n-q and f(Y) = SV(X, Y) = Edj=obJYd~J

with bj £ K. Then V(bf) > V(b0) = V(br) = 0 < V(bd) = n - 1 =
d for 0 < j < r, and V(bj)/V(bd) > (j - r)/(d - r) for r < j < d.
Also (d - r)/GCD(V(bd),d - r) = q - 1. Therefore by (3.1.3) we see that
|Gal(0'(jr, Y), k(X))\ is divisible by q - 1.

5. Linearization

Let us now prove the:

Linearization Lemma (5.1). If p — 2 and T is any element in an overfield

of k(X) [for instance, T could be transcendental over k(X) ], then there exist

elements Aq, Ax, ..., Ax2 in k[X, T] with Ao ̂  0 and Al2 = I such that

ZHo^iY2' = HF* for some H£k[X, T][Y] where F* = YF23,20, i,i + T.

The proof of (5.1) is simply obtained by adding obvious terms involving T
in the RHS of various equations occurring in the proof of (1.5) of [4] given in
Section 5 of [4]. In greater detail: To prove (5.1) assume that p — 2. Now

F* = Y24 + XY4 + Y+T

and by adding F* + Y24 to both sides of this we get

(/2'4) Y24 = XY4 + Y + T + F*.

Let P = Q mean P - Q = HF* for some H £ k[X, T][Y]. Then multiplying
(/2'4) by T'"24 for i = 24, 26, 32, 36 we get:

(Ju) Y24 = XY4 + Y + [T],

( J26 ) Y26 = XY6 + Y3 + [TY2],

(J32) Y32 = XYX2 + Y9 + [TYS],

(J36) Y36 = XYX6 + YX3 + [TYX2].

Squaring (^32) we get

y64 = x2y24 + y18 + [t2yX6],

and using (/24) we obtain

( J64 ) y64 = y18 + X3Y4 + X2Y + [T2YX6 + X2T].

Likewise, by squaring (^4) and then using (/jo) we obtain

( ^128 )       T128 = XY16 + y13 + X6Y* + X4Y2 + [T4Y32 + TYX2 + X4T2].

Again, by squaring (/12s) and then using (J24), (J26), and (J32) we obtain

Y256 = Xl2Yl6 + X3Yx2 + X2Y9 + XY6 + XiY4 + Y3

+ [TSY64 + X2TYS + XT2Y4 + TY2 + T2Y + X%T4 + T3].

Similarly, by squaring (J2st) and then using (^24) and (^32) we obtain

(J512) '
y512 _ ^4yl8 + (^2 + ^25)yl2 + ^24y9 + X16y8 + y6 + ^7y4 + ^6y

+ rjl6yl28 + X4j.2yl6 + (^j-4 + X24T)Y*

+ T2Y4 + T4Y2 + (XX6T% + T6 + X6T)].
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Likewise, by squaring (/512) and then using (724) and (/3o) we obtain

yl024 s X48yl8 + (Jf9 + Z32)y16 + x*yl3 + yl2

+ A'l4T8 + (X5 + X5X)Y4 + XX2Y2 + (X4 + X50)Y

( ^1024 ) + [T32Y256 + X*T2Y32 + (X4T* + X4*T2)YX6 + X*TY12

+ (T4 + XXiT + X64T)YS + T*Y4

+ (X32TX6 + TX2 + XX2T2 + X50T + X4T)].

Finally, by squaring (T1024) and then using (J24), (J2(¡), (J32), and (/3e) we
obtain

( ^2048 )
y2048 = (X28 + X97}yl6 + Z96yl3 + (^19 + X65)yl2

+ (X18 + X64)Y9 + (XX0 + XX02)Y* + XX1Y6

+ (X + X24)Y4 + XX6Y3 + (X* + XX00)Y2 + Y

i   rTr64y512   i    v'16T'4y64 _.   ¡vi'rlt   ,    v,96lr,4\y32

+ (T* + X36T2 + Xmf*)Yif + X96TY12

+ (r16 + XIST + X64T)YS + XX1T2Y4 + XX6TY2 + Xl6T2Y

+ (X64T32 + T24 + X24T4 + XX6T3 + XxmT2 + X*T2 + T)].

Since the above formulas (J24), (J2(,), ... , (/204s) are obtained by adding

T-terms in the RHS of the corresponding formulas (^4), (^20) » • • • > (/204s)

of Section 5 of [4], by modifying the last formula of that section to compensate
for the T-terms we get

y2048   ,   y64y512   ,   yl6y256   ,   j^96yl28   ,   (XSTX6 + X64)Y32

+ (Tx6 + XX0)YS + XY4 + X%Y2 + Y + (X64T32 + T24 + X*T2 + 71 = 0.

Alternatively the above equation can be proved directly by using (/204s), (J512) >

(■^256) > (-^128) > and (^32). By multiplying the above equation by its constant

term X64T32 + T24 + X*T2 + T and then adding the resulting equation to the
square of the above equation we get

y4096 + / y64y32   ,   j-24 + XST2 + T)Y204* + T'128y1024

1   1 y64'r96   ,   -rift   ■    v-8t>66   ■   y65   ■    v32\y512

+ (X*°T32 + XX6T24 + X24T2 + XX6T + XX92)Y256

+ (XX60T32 + X96T24 + XX04T2 + X96T)YX2S + (XX6T32 + Xm)Y64

+ (X12T4S + X*T40 + xx2iT32 + X64T24

+ XX6TXS + X*TX1 + X12T2 + X64T)Y32 + (T32 + X20)Y16

+ (x64T4i + T40 + x14T32 + xx0T24

+ X*TXS + Txl + XX%T2 + XX0T + X2)Y*

+ (X65T32 + XT24 + X9T2 + XT + XX6)Y4

+ (X72T32 + X*T24 + XX6T2 + X*T + l)Y2

+ (X64T32 + T24 + X*T2 + T)Y = 0,

and this proves (5.1).
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6. Mathieu group

To prove (1.1) assume that p = 2, let a be any element of k, and let

G = Gal(Y24 + aY4 + Y + X, k(X)). Then by (4.1) we see that G is a doubly
transitive permutation group of degree 24 whose order is divisible by 7, and

hence by CTT and Special CDT on pp. 86 to 89 of [2], we must have G — M24
or ^24 or 524. As said in the Introduction, by taking (a, X) for (X, T)

in (5.1) we see that \G\ divides |GL(12, 2)|. Finally, as a factorization of
|GL(12, 2)| into powers of prime numbers we have

n

|GL(12,2)| = n(212-2')
¿=o

= 266 x 38 x 53 x 74 x 11 x 13 x 17 x 23 x 312 x 73 x 89 x 127,

but |.¿241 and IS24I are obviously divisible by ll2 and hence we must have

G = AT24.
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