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ABSTRACT 

Nice trinomial equations are given for unramified coverings of the affine line 

in nonzero characteristic p with PSL(m, q) and SL(m, q) as Galois groups. 

Likewise, nice trinomial equations are given for unramified coverings of the 

(once) punctured affine line in nonzero characteristic p with PGL(m, q) and 

GL(m,q) as Galois groups. Here m > 1 is any integer and q > i is any 

power of p. 

1. I n t r o d u c t i o n  

Given a bivariate polynomial 

N 

F = F(X, Y) = yN + ~ Bi(X)yN-i  with Bi(X) e k[X] 
i = 1  

where k is an algebraically closed field, let Discy (F) E k[X] be the Y-discriminant 

of F; recall that by definition Discy(F)  equals the Y-resultant Resy(F,  F r )  

of F and its Y-derivative Fy. As observed by Galois (or maybe Riemann), 

assuming chark = 0 (where char stands for characteristic), if Discy(F)  is a 

nonzero constant, i.e., if 0 ~t Discy(F)  C k, then F factors into linear factors in 
N Y, i.e., F = 1-L=I(Y - ~i(X)) with r  E k[X]. In terms of Galois theory 

this says that,  assuming char k = 0, if Discy(F)  is a nonzero constant then the 

Galois group Gal (F ,k(X))  is the identity group; recall that if Disc r (F)  ~ 0 

then Gal(F, k(X)) is the permutation representation of the Galois group of the 
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splitting field of F over k (X)  acting on the roots of F. Moreover, again assuming 

char k = 0, if Discy(F) has at most one root in k, then Gal(F, k(X) )  is cyclic. In 

case of k = C these assertions respectively follow from the facts that  the plane 

R 2 = C is simply connected and the fundamental group of the punctured plane, 

R 2 - a point, is cyclic. These assertions can also be deduced from the Riemann- 

Hurwitz genus formula (cf. [AD3]) and upon letting G = Gal(F, k(X)) ,  in case 

of char k = p ~ 0, this deduction shows that if Discy(F)  is a nonzero constant 

then G is a quasi-p g roup ,  i.e., G = p(G) where p(G) denotes the subgroup of 

G generated by all its p-Sylow subgroups, and if Discy(F) has at most one root 

then G is quasi-p by  cyclic, i.e., G/p(G) is cyclic. 

Everything in the above paragraph remains valid (cf. Result 4 on page 841 

of [Abl]) if we replace d i s c r i m i n a n t  points ,  i.e., roots of Discy(F)  in k, by 

branch points of the equation F = 0 in k. To recall what is a branch point, 

given any value of X in k, say X = A E k, we can write F ( X  + A,Y)  = 

f l (X,  y)dl . . .  fh(X,  y)dh where d l , . . . ,  dh are positive integers and f l ( X ,  Y ) , .  . ., 

fh(X,  Y)  are pairwise distinct monic irreducible polynomials of degrees el > 

0 , . . . ,  eh > 0 in Y with coefficients in the (formal) power series ring k[[X]]; note 

that if Discy(F)  ~ 0 then dl . . . . .  dh = 1. Now X = A is a b r a n c h  po in t  

if d~e~ > 1 for some i. By nensel's Lemma (cf. [Ab3]) f~(0, Y) = (Y - #~)e~ for 

some #i C k. Since Discy(F) = Resy(F, Fy),  we also see that X = A E k is a 

discriminant point iff the equation F(A, Y) = 0 has less than N roots. It follows 

that every branch point is a discriminant point but not conversely, as seen by 

taking F = y N  _ X g with 1 < N r char k and X = A = 0. Let us recall that a 

branch point X = A is t a m e  if e l , . . . ,  eh are all nondivisible by char k; otherwise 

it is wild. 

If the equation F = 0 has no branch point in k, then we say that the equation 

F = 0 gives an u n r a m i f i e d  cover ing  of  t he  affine line Lk over  k. If the 

equation F = 0 has no branch point in k other than possibly X = 0, then we 

say that the equation F = 0 gives an u n r a m i f i e d  cover ing  of  t h e  (once)  

p u n c t u r e d  affine line Lk,1. If the equation F = 0 has no branch point in 

k other than possibly X = 0, which is tame in case it is branched, then we 

say that the equation F = 0 gives a t a m e l y  u n r a m i f i e d  cover ing  of  t h e  

(once)  p u n c t u r e d  afflne line Lk,1. Finally, if the polynomial F is irreducible 

in k(X)[Y] and the equation F = 0 gives ... covering ... , then we say that the 

equation F = 0 gives an i r r educ ib le  ... cover ing  .... 



Vol. 88, 1994 NICE EQUATIONS FOR NICE GROUPS 3 

Contrary to the characteristic zero situation, in nonzero characteristic p, there 

are plenty of unramified coverings of Lk and Lk,1. Indeed, as conjectured in [Abl], 

their Galois groups should span all quasi-p groups and all quasi-p by cyclic groups 

respectively. 

To exhibit interesting examples of such coverings, h e n c e f o r t h  we a s s u m e  

t h a t  k is an  a lgebra ica l ly  c losed field w i th  char k = p ~ 0, and we consider 

the trinomial 

F* = F * ( X , Y )  = y n  _ a X ~ Y t  + b X  8 

where 

n > t > O a n d r > O < s i n Z  and a r  (for i n s t a n c e a = l = b ) .  

We are particularly interested in the equation F* = 0 in the three cases: (1") 

n is nondivisible by p but n - t is divisible by p; (2*) n is nondivisible by p but 

t is divisible by p; (3*) n is divisible by p but t is nondivisible by p. We are 

especially interested in the three special cases: (1') s = 0 and (1 ' )  holds; (2') 

s = 0 and (2*) holds; (3') r = 0 and s is divisible by t and (3*) holds. 

Now if (1") holds then F* - t - I Y F ~  = b X  8 and hence Discy(F*) = b * X  ~* 

with 0 ~ b* E k and 0 _< s* E sZ and therefore the equation F* = 0 gives 

an unramified covering of Lk,1. Likewise, if (2*) holds then F~ = n Y  n -1  and 

hence Discy(F*) = b * X  s• with 0 ~ b* E k and 0 _< s* E sZ and therefore the 

equation F* = 0 gives an unramified covering of Lk,1. Finally, if (3*) holds then 

F~. = - t a X ~ Y  t -1  and hence Discy(F*) = b * X  8. with0 ~ b* E k and 0 < s* E Z 

and therefore the equation F* = 0 gives an unramified covering of Lk,1. 

It follows that in cases (1"), (2*) and (3"), the equation F* = 0 gives an 

unramified covering of Lk,1; in these cases we let 

G* = Gal(F*, k ( X ) ) .  

It also follows that in cases (1'), (2') and (3'), the equation F* = 0 gives an 

unramified covering of Lk. Cases (1') and (2') can be converted into each other 

by reciprocation, i.e., by sending Y to y - 1  and then multiplying by y n .  In 

the 1957 paper [Abl], the equation F* = 0 in cases (1') and (3') was written 

down (cf. Propositions 1 and 2 of [Abl]) and it was suggested that  the Galois 

groups of the corresponding unramified coverings of Lk be computed. In [Ab4], 

[Ab5], [Ab6], [Ab7], lAPS], [AOS], [AY1] and [AY2], where cases (1') and (3') 
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were respectively called bar and tilde, this was done for several values of n and 

t. Here we continue the project by doing it for a few more values. 

In particular we shall prove the following Theorems 1.1 and 1.2 which further 

illustrate case (1"). Recall that  < and ,~ denote subgroup and normal subgroup 

respectively. To avoid repetition, h e n c e f o r t h  let  q b e  a n y  p o s i t i v e  p o w e r  o f  

p, i .e.,  q = p~ for  s o m e  p o s i t i v e  i n t e g e r  u. 

THEOREM 1.1: Assume that  n = 1 + q + �9 .. + qm-1 where m > 1 is an integer. 

Also assume that  t = 1 + q + . . .  + q~- i  where 1 <_ # < m is an integer with 

GCD(n,  t) = 1 (for instance p = 1 and t = 1). Then  we have the following. 

(1.1.1) I f  s E n Z  and r > s( n - t ) / n (for instance i f  r > 0 = s ), then the equation 

F* = 0 gives an irreducible unramified covering o f  the aft/he line Lk with 

Galois group G* = PSL(m, q). 

(1.1.2) I f  G C D ( s , m , q -  1) = 1 and r > s (n  - t ) / n  (for instance i f  r = 1 = s), 

then the equation F* = 0 gives an irreducible tamely  unramified covering 

o f  the punctured  a//ine line Lk,x with Galois group G* = PGL(m,  q). 

(1.1.3) I f  r ~ s (n  - t ) / n ,  then the equation F* = 0 gives an irreducible unram- 

ified covering o f  the punctured  afflne line Lk,1 with PSL(m, q) < G* < 

PGL(m,  q). 

THEOREM 1.2: Assume that  n = qm _ 1 where m > 1 is an integer. Also assume 

that  t -- q~' - 1 where 1 < # < m is an integer with GCD(n , t )  = q - 1 (for 

instance # = 1 and t = q - 1). Then  we have the following. 

(1.2.1) H s  e nZ and r > s ( n - t )  / n  (for instance i f  r > 0 = s), then the equation 

F* = 0 gives an irreducible unramified covering of  the at//ne line Lk with 

Galois group G* = SL(m, q). 

(1.2.2) I f  G C D ( s , q  - 1) -- 1 and r > s (n  - t ) / n  (for instance i f  r = 1 = s), then 

the equation F* = 0 gives an irreducible tamely  unramified covering o f  

the punctured  affine line Lk,1 with Galois group G* = GL(m,  q). 

(1.2.3) I f r  ~ s ( n - t ) / n ,  then the equation F* = 0 gives an irreducible unramified 

covering o f  the punctured  a//ine line Lk,1 with SL(m, q) < G* < GL(m,  q). 

The proof of Theorem 1.1 will be a slight modification of the "ascending" proof 

of PSL(2, q) coverings given in Section 21 of [Ab4] (cf. Footnote 85 of page 122 

of [Ab4]), the main difference being that  in addition to the Zassenhaus-Fei t-  

Suzuki Theorem (cf. pages 83 and 114 of lab4]) we shall also use Theorem I 

of the Cameron-Kantor  paper  [CaK]. Theorem 1.2 will be deduced from Theo- 
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rem 1.1. Note  tha t  P G L ( m ,  q) -- G L ( m , q ) / ( s c a l a r  matr ices)  and PSL(m,  q) -- 

SL(m,  q) / ( sca la r  matr ices  of de te rminan t  1), where GL(m,  q) is the group of all 

m by m mat r ices  whose entries are in the field GF(q)  of q elements  and whose 

de te rminan t  is nonzero and SL(m,  q) is the subgroup of G L ( m ,  q) consisting of 

those matr ices  whose de te rminan t  is 1. Also note t ha t  P G L ( m ,  q) and PSL(m,  q) 

are regarded as p e r m u t a t i o n  groups on an m - 1 dimensional  project ive space 

over GF(q) ,  and the cardinal i ty  of such a project ive space is (qm _ 1) / (q  - 1) = 

1 + q + . . .  + qm-1.  Likewise, GL(m,  q) and SL(m, q) are p e r m u t a t i o n  groups on 

an m dimensional  vector  space over GF(q);  a l ternat ively  G L ( m ,  q) and SL(m,  q) 

are regarded as p e r m u t a t i o n  groups on the set of nonzero vectors  in an m dimen- 

sional vector  space over GF(q) ,  and the cardinal i ty  of such a set is qm _ 1; the 

first or the second meaning  is taken when subgroups of G L ( m ,  q) are regarded as 

Galois groups of equat ions of degree qm or qm _ 1 respectively. 

From the above Theorems  1.1 and 1.2, by "reciprocat ion" we shall deduce the 

following Theorems  1.3 and 1.4 which i l lustrate case (2*). 

THEOREM 1.3: A s s u m e  tha t  n = 1 + q + . . .  + qm-1 where m > 1 is an integer. 

Also assume tha t  t = q~ + q~+l + . . .  + qm-1 where 1 < # < m is an integer wi th  

G CD(n ,  t) = 1 (for ins tance # = 1 and t = n - 1). Then  we have the following. 

(1.3.1) I f  s E n Z  and r > s ( n - t ) / u  (for instance i f r  > 0 = s), then the equation 

F* = 0 gives an irreducible unramified covering o f  the  af/ine line Lk wi th  

Galois group G* = PSL(m,  q). 

(1.3.2) I f  GCD(s ,  m, q - 1) = 1 and r > s (n  - t ) / n  (for instance i f  r = 1 = s), 

then the equation F* = 0 gives an irreducible t a m e l y  unramified covering 

o f  the punc tured  afflne line Lk,1 wi th  Galois group G* = P G L ( m ,  q). 

(1.3.3) I f  r ~ s (n  - t ) / n ,  then the equation F* = 0 gives an irreducible unram-  

ified covering o f  the  punc tured  afllne line Lk,1 wi th  P S L ( m ,  q) < G* < 

P G L ( m , q ) .  

THEOREM 1.4: A s s u m e  tha t  n = qm _ 1 where m > 1 is an integer. Also  assume 

that  t = qm _ q~ where 1 _< # < m is an integer wi th  G C D ( n , t )  -- q - 1 (for 

instance # = 1 and t = qm _ q). Then  we have the  following. 

(1.4.1) I f  s E n Z  and r > s ( n - t ) / n  (for instance i f r  > 0 = s), then the equation 

F* = 0 gives an irreducible unramified covering of  the aftine line Lk wi th  

Galois group  G* = SL(m,  q). 

(1.4.2) I f  G C D ( s , q -  1) = 1 and r > s ( n -  t ) / n  (for instance i f  r = 1 = s),  then 
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the equation F* = 0 gives an irreducible tamely unramified covering of 

the punctured affine line Lk,1 with Galois group G* = GL(m,  q). 

(1.4.3) I f  r ~ s(n - t ) /n ,  then the equation F* = 0 gives an irreducible unram- 

ified covering of the punctured affine line Lk,i with SL(m, q) < G* < 

GL(m,q) .  

As an il lustration of case (3*) we shall prove the following Theorem 1.5, where 

we note tha t  AGL(1,  q) is the group of all affine t ransformations of the affine 

line over GF(q),  i.e., the group of all permutat ions  x ~-~ ax  + ~ of GF(q),  with 

0 # a E GF(q) and ~ E GF(q).  

THEOREM 1.5: Assume that n = q, t = q - l ,  r = 0 and s = 1. Then the equation 

F* = 0 gives an irreducible tamely unramified covering of  the punctured affine 

line Lk,1 with Galois group G* = AGL(1,q) .  

2. S o m e  l e m m a s  

Recall tha t  ] ] denotes cardinality, and [:] denotes index as well as field degree. 

Note tha t  GF(q)* and GF(q) + respectively denote the underlying multiplicative 

and additive groups of GF(q).  

TRANSITIVITY LEMMA 2.1: In t h i s / emma (where we reprove and slightly gen- 

eralize the double transitivity results of  [Ab4] and [Ab7]), without assuming 

char k to be nonzero, but assuming GCD(n ,  t) = 1, we consider the two cases 

r - 1 = 0 -- s and r = 0 = s - 1 and in these two cases we let F* be denoted by 

and F respectively, and we take a subfield ko such that k is an algebraic closure 

of ko and the elements a and b belong to ko. In other words, just  in th i s /emma,  

let a ~ 0 ~ b be elements in a field ko which need not be algebraically closed and 

whose characteristic m a y  or m a y  not be zero, let k be an algebraic closure of  ko, 

let n > t > 0 be integers with GCD(n,  t) = 1, and consider the trinomials 

and 

T" = T'(X, Y )  = y n  _ a X y t  + b 

= Y )  = Y "  - a Y  t + b X .  

For every integer u > 0 let f t , - l ( Y )  be the monic polynomial of degree u - 1 in 

Y with coefficients in ko given by 

f ~ - t ( Y )  = y - l [ ( y  + 1)~ _ 1] 
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and consider the monic polynomials f'~ and F'  of degree n - 1 in Y with coem- 

cients in ko IX] given by 

/~' = / ~ ' ( X ,  V) = f n - l ( Y )  -- (1 + b X n ) f t _ l ( V )  

and 

/~' = F t ( X , Y )  = f n - l ( V )  - a X n - t f t _ x ( V ) .  

By  the discriminant calculation on pages 103-105 of [Ab4] we have 

Discy(/~) = nnb n-1 - (n - t ) n - t t t a n b t - l x  n 

and 

Discy(F)  - - -  n n b n - l  x n - 1  - (n - t ) n - t t t  a n b t - l  x t - l .  

Consequently, Discy(/~) r 0 ~ Discy(F)  and hence the Galois groups G = 

Gal(F,  ko(X))  and G = GaI(F,  ko(X))  are defined. Concerning these Galois 

groups we have the following. 

(2.1.1) G and G are transitive. Moreover, Discy(F ' )  # 0 # Discy(F ' ) ,  and 

Gal(F ' ,  ko(X))  and Gal(F ' ,  ko(X))  are the 1-point stabilizers of G and 

respectively. 

(2.1.2) G is doubly transitive. 

(2.1.3) I f  t ~ 1 then G is doubly transitive. Likewise, if t = 1 and n is not a 

power of char k then G is doubly transitive. 

(2.1.4) I f t  = 1 and n is a power of char k and GF(n) C ko and a n-1 = a for some 

a E ko then, (as proved in [AbT]), G = GF(n) + (and hence G is sharply 

1-transitive and therefore it is not doubly transitive unless n = 2). 

(2.1.5) I f  t = n - 1 and n is a power (.f char k and GF(n)  C ko then G = 

AGL(1, n). fit will be observed in the proof that cases (2.1.4) and (2.1.5) 

go over into each other by "modified reciprocation" which exhibits the 

of (2.1.4) as a normal subgroup of the G of (2.1.5) in a natural way so 

that the factor group is GF(n)*]. 

(2.1.6) I f t  = 1 and n -  1 is a positive power of chark and G F ( n -  1) C ko then 

= PGL(2,  n - 1). [As will be explained in the proof, the G of (2.1.5) 

is the 1-point stabilizer of the G of (2.1.6)]. 

(2.1.7) I f  n - 1 is a positive power of chark  and either t = 1 or t = n - 1 

then, (as proved in [Ab4]), PSL(2, n - 1) < G, and if also ko = k then 

= PSL(2, n - 1). 
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Proof" t ~ and F are irreducible because they are linear in X. Therefore G and 

are transitive. To find the 1-point stabilizers of G and (7 we use the twisted 

derivative method of throwing away roots as illustrated in Sections 18 to 21 of 

[Ab4]. By solving _P = 0 we get X = a - l y  n-t + a - l b y  -t E ko(Y) and hence 

upon letting 

.~(Y, Z) -- Z-I[F ' (a- Iy  n-t + a - l b y  -t ,  Z + Y) - F ( a - l V  n-t + a - l b y  -t ,  V)] 

we see that  Discz(ff(Y, Z)) r 0 and Gal(ff(Y, Z), ko(Y)) is the i-point stabilizer 

of (~. Likewise, by solving F = 0 we get X = - b - l Y  n + b - laY  t E ko(Y) and 

hence upon letting 

f t (y ,  Z) = Z - I [ F ( - b - I y  n + b - l a y  t, Z + Y) -- F ( - b - I y  n + b - l a y  t, Y)] 

we see that Discz(f ' (Y, Z)) # 0 and Gal(f '(Y, Z), ko(Y)) is the 1-point stabilizer 

of G. Upon letting F~,_I(Y, Z) = Z - I [ ( z  + Y)~ - Y~] for every integer u > 0, in 

view of the defining equations of F' and F,  by the above two displayed equations 

we get 

i f(Y,  Z) = Fn-I (Y, Z) - (y,~-t + by- t )Ft_l  (y, Z) 

and 

]'t(y~ Z) = Fn- l (Y ,  Z)  - a F t_ l (Y ,  Z) .  

By comparing the above two equations with the defining equations of _~r and _P~, 

we get 

f"(Y,  Z) = y n - l f r ( y - 1 ,  y - 1 z )  

and 

z) = Yn-xf 'w- ' ,  y - ' z ) .  

Now by writing iX, Y) for (Y,Z) we see that Discy (P(X ,Y) )  # 0 # 

D i s c y ( P ( Z ,  Y)), and Gal(fi"(Z, Y), ko(X)) and Gal(F ' (X,  Y), ko(X)) are the 

1-point stabilizers of G and G respectively. This completes the proof of (2.1.1). 

Let ~(Y) = -b f t - x (Y )  and f/(Y) = f n - l ( Y ) -  f t - l (Y ) .  Also let ~-(Y) = 

- a f t - l ( Y )  and 0"(Y) = fn - l (Y) .  

Since GCD(n, t )  = 1, for any y E k with yn = 1 = yt we must have y = 1. 

Therefore 1 is the only common root of y n  _ 1 and y t  _ 1 in k. It follows 

(Y - 1 ) - I (Y  n - 1) and (Y - 1 ) - I (Y t - 1) are nonzero coprime polynomials in 
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k[Y]. Therefore by applying the k-automorphism Y H Y + 1 of k[Y] we see that  

fn-l(Y) and f t- l(Y) are nonzero coprime polynomials in k[Y]. It follows tha t  

~(Y) and f/(Y) are nonzero coprime polynomials in k[Y]. I t  also follows that  

~(Y) and ~(Y) are nonzero coprime polynomials in k[Y]. 

It  is clear tha t  if n is nondivisible by char k then (Yn - 1) is devoid of multiple 

roots in k, and hence so is (Y - 1 ) - I ( Y  n - 1). On the other hand, if n is divisible 

by but  not a power of cha rk  then Y~ - 1 = ( y n "  _ 1)~' with integer n"  > 1 

nondivisible by char k and integer n ~ > 1 which is a power of char k, and we can 

take a root  z r 1 of y n "  _ 1 in k and for any such root, in k[Y], the polynomial  

(Y - 1 ) - I ( Y  ~ - 1) is divisible by (Y - z) n' but  not by (Y - z) 1+~'. 

Since n > 1, by applying the k-automorphism Y ~-* Y + 1 of k[Y] we can find 

a monic polynomial  r  E k[Y] of degree 1 (hence irreducible) such tha t  upon  

letting n* to be the largest integer for which ~Pn(Y)'* divides f n - l ( Y )  in k[Y] we 

have that :  if n is nondivisible by char k then n* = 1, whereas if n is divisible by 

but  not a power of char k then n* = the highest power of char k which divides n; 

note tha t  since GCD(n ,  t) = 1, in both  the situations we have G C D ( n - t ,  n*) = 1; 

also note tha t  n* is the largest integer for which r  divides "~(Y)~(Y) in 

k[Y]. Similarly, in case t ~ 1, we can find a monic polynomial  ~t(Y) E k[Y] of 

degree 1 (hence irreducible) such that  upon letting t* to be the largest integer for 

which 9t(Y) t" divides f t - l ( Y )  in k[Y] we have that :  if t is nondivisible by char k 

then t* = 1, whereas if t is divisible by but  not a power of char k then t* = the 

highest power of char k which divides t; note tha t  since GCD(n ,  t) = 1, in bo th  

the situations we have G C D ( n  - t, t*) = 1 = GCD(n ,  t*); also note tha t  t* is the 

largest integer for which 9t(Y) t• divides ~(Y)~(Y) in k[Y], and t* is the largest 

integer for which Ct(Y) t• divides ~(Y)fl(Y) in k[Y]. 
If t = 1 and n - t is a power of chark  then clearly fl(Y) = yn-2(y + 1) 

and hence, in k[Y], the polynomial  ~(Y)(I(Y) is divisible by (Y + 1) but  not 

by (Y + 1) 2. Now upon letting (r  N)  = (~Pt(Y), t*) or (Y + 1, 1) according 

as t r 1 and t is not a power of chark  or t = 1 and n - t  = is a power of 

char k, in bo th  the situations we see that  G C D ( n , t )  = 1 and r  is a non- 

constant  irreducible polynomial  in k[Y] and N is the largest integer for which 

~(y)N divides ~(Y)~(Y) in k[Y], and therefore by taking (X, I/, n, 0, ~, ~, r N)  

for (I/, Z, A, #, ~, ~, r v~) in the First Irreducibility Lemma on page 101 of [Ab4] 

we conclude tha t  the polynomial  Fv(X, Y) is irreducible in k(X)[Y] and hence 

also in ko(X)[Y]. Consequently, in view of (2.1.1), we see tha t  
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(1) if t ~ 1 and t is not a power of char k then  G is doubly transit ive,  

and also tha t  

(2) if t = 1 and n - t is a power of char k then  G is doubly transit ive.  

Note  tha t  (1) implies tha t  

(3) if 1 < t ~ 0 (mod char k) then  G is doubly transi t ive,  

and (2) implies (the tr ivial  assertion) tha t  

(4) if n = 2 then  G is doubly transit ive.  

By  reciprocat ion (i.e., by sending Y to y - l )  we see tha t  Gal (Y n - a X Y  t + 

b, ko(X)) and Gal (Y n - a X Y  n-t  + b, ko(X)) are isomorphic to each other,  and 

G CD(n ,  t) = 1 implies tha t  GCD(n ,  n - t) = 1 and either t ~ 0 (mod char  k) or 

n - t ~ 0 (mod char k); therefore in view of (3) we see tha t  

(5) if 1 < t < n - 1 then G is doubly transit ive.  

Again by reciprocation,  in view of (1), we see tha t  

(6) if n - t r 1 and n - t is not a power of char k then  G is doubly transi t ive.  

By  (2), (4) and (6) we conclude tha t  

(7) if t = 1 then  G is doubly transit ive.  

By reciprocat ion,  in view of (7), we see tha t  

(8) if t = n - 1 then G is doubly transit ive.  

By (5), (7) and (8) we get (2.1.2). 

Now GCD(n ,  t) = 1 implies tha t  if n is a power of char k then t cannot  be divis- 

ible by char k. Consequently, upon let t ing (r  T)  = ( r  n*) or (g0t(Y), t*) 

according as n is not a power of char k or t r 1 and n is a power of char  k, we 

see tha t  G C D ( n  - t, T)  = 1 and r  is a nonconstant  irreducible polynomia l  

in k[Y] and T is the largest integer such tha t  "~(y)T divides "~(Y)~(Y) in k[Y], 

and therefore by taking (X, Y, n - t, 0, ~, ~, r T)  for (Is, Z, A, #, ~, ~, r z~l) in the 

First  Irreducibi l i ty L e m m a  on page 101 of [Ab4] we conclude tha t  the polynomia l  

-P'(X, Y) is irreducible in k(X)[Y] and hence also in ko(X)[Y]. Consequently,  in 

view of (2.1.1), we see tha t  (1") if t r 1 then G is doubly'  t ransit ive,  and also 

t ha t  (2*) if t = 1 and n is not a power of char k then  G is doubly transi t ive.  By  

(1") and (2*) we get (2.1.3). 

If  t = 1, n is a power of char k, GF(n )  C k0, and a ~-1 = a for some a �9 k0, 

then  

a-nF' (X,  aY )  = y n  _ y + a-,~bX 

and hence by taking (n, a - n b X )  for (pro, x) in (7.1"*) of Section 7 of [Ab7] we 

get G = GF(n )+ ;  since G is abelian, it must  be sharply  1-transit ive and hence it 
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cannot be doubly transitive unless n = 2. This proves (2.1.4). 

To prove (2.1.5), for a moment  assume that  t = n - 1 and n is a power of char k 

and GF(n)  C ko. Let 

= F ( X , Y )  = Y ' ~ - a X Y + X  and ~t = F t ( X , Z )  = z n - l - a X n ( a X - 1 ) - l .  

Then 

Y) = xYn (b-lx -1, y- l )  

and by solving F = 0 we get X = Y n ( a Y  - 1)-1 'and  we have 

/~ t (y ,  Z )  = w - l [ F ( y n ( a y  - 1) - 1  , W q- Y )  - F ( y n ( a y  - 1) - 1  , Y)] .  

Therefore Discy(F)  # 0 and Gal(F,  ko(X)) = 5 ,  and Discy(F ' )  # 0 and 

G a l ( P ,  ko(X)) is the 1-point stabilizer of Gal(F,  k0(Z)).  By the First Irre- 

ducibility Lemma on page 101 of [Ab4] we see that  F '  is irreducible in ko(X)[Y]. 

Moreover, since GF(n)  C k0, we get G a l ( P ,  k0(X)) = GF(n)*. Therefore 

Gal(F ' ,  ko(X))  is sharply 1-transitive. Consequently G is sharply 2-transitive 

and hence by Zassenhaus' Theorem (see page 78 of [AD4]) G = AGLNF(1, 9 )  

for some finite near-field 9.  Now the 1-point stabilizer of AGLNF(1, k~) is the 

underlying multiplicative group 9"  of ko; moreover ko* is abelian if and only 

if ko is a field. Since the 1-point stabilizer of G is abelian, we must have 

= AGL(1, n). This proves (2.1.5). To explain the bracketed remark in (2.1.5), 

note that  X ~ F ( X  1 - n , X - 1 Y )  = Yn - aY  § X and hence, by the Substitu- 

tional Principle on page 98 of [Ab4], we have Gal(Y n - aY  + X,  ko(X))  ~ G with 

G / G a l ( Y  n - aY  + X,  ko(X))  = GF(n)* /M for some M < GF(n)* and, assuming 

(~n-1 = a for some c~ �9 k0, by (2.1.4) we get Gal(Y n - aY  + X) = GF(n)  + and 

therefore we must have M = 1. 

To prove (2.1.6) and (2.1.7), henceforth assume that  t -- 1 and n - 1 = q = pU 

with positive integer u and chark = p  # 0. Now F '  = Y q + Y q - l + l - a X  q 

and hence (either obviously or by the Substitutional Principle on page 98 of 

[Ab4]) we see that  G'  = Gal (F ' ,  ko(X))  = Gal(Yq + yq-1  + 1 - aX, ko(X))  = 

Gal(Yq + yq-1  + X,  ko(X))  and therefore by (2.1.5) we get G'  = AGL(1, q). 

Consequently G is sharply 3-transitive and hence by the Zassenhaus-Feit-Suzuki 

Theorem (see page 83 of [Ab4]) we see that  either G = PGL(2, q) or q is an 

even power of an odd prime p and G = PML(2, q). By the description given on 
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page 163 of [HUB] we see that the 2-point stabilizer of PML(2, q) is nonabelian. 

Therefore we must have G = PGL(2, q). In Section 21 of [Ab4] it is proved that  

Gal(Y q+l - X Y  + 1, k (X) )  = PSL(2, q). 

Since b-lT'(a-lbq/(q+l)X, bW(q+l)Y) = yq+l _ X Y  + 1, we get Gal(F,  k (X) )  = 

Gal(Y q+l - X Y  + 1, k(X)).  Since k0 C k, we also get Ga l (F ,k (X) )  

< Gal(F,  ko(X)). Therefore PSL(2, q) = Ga l (F ,k (X) )  < G. Finally, by re- 

ciprocation we get Gal(Y q+l - aXYq  + b, ko(X)) = Gal(Y q+l - a b - l X Y  + 

b -1, ko(X)) = G. This completes the proof of (2.1.6) and (2.1.7). 

SYLOW SUBGROUP LEMMA 2.2: Let H < A7 with [H[ - 0 (mod 14) where A7 

is the alternating group on {1, 2 , . . . ,  7}. Then a 2-Sylow subgroup P of H cannot 

be normal in H. 

Proof." Since 14 -= 0 (mod 7), H contains a seven cycle a. Since 14 = 0 (mod 2), 

we have P r 1. Since the order of P is a power of 2, P is contained in a 2-Sylow 

subgroup Q of A7. Let A~ be the alternating group on {1 , . . . ,  i - 1, i + 1 , . . . ,  7} 

regarded as a subgroup of A7, and let pi  be a 2-Sylow subgroup of A61. Since 

[A7:A61] = 7 ~ 0 (mod 2), P '  is a 2-Sylow subgroup Q' of A7. Therefore Q = 

T--1Q~T for some T e A7. Let j = T(1). Then Q c A~. Since P ~ 1, we can 

find ~- C P and l E {1, 2 , . . . ,  7} such that 7r(l) r l. Since a is a seven cycle, for 

some integer e we have ae(l) = j .  It follows that (a-17ra)(j) r j ,  and hence 

a - l i r a  ~ A~. Since P C Q c A~, we get a-17ra r P. Since l r e  P and a e H,  P 

cannot be normal in H. 

TRANSVECTION LEMMA 2.3: Given any integer m > 1, let r GL(m,q)  --* 

PGL(m,  q) be the canonical epimorphism. Then for any H < GL(m, q) we have 

that: SL(m, q) < H ~ PSL(m, q) < r  

Proof: ~ is obvious. To prove ~ let any H < GL(m, q) with PSL(m, q) < r  

be given. We are going to use the well-known fact (cf. Theorem 9.2 on page 74 

of [Suz]) that  the transvections {I + AEIj: i r j ,  A E GF(q)} generate SL(m, q), 

where I is the m by m identity matrix and Eij is the m by m matrix with 1 in 

the ( i , j ) - th  spot and zero elsewhere. Fix i r j ,  and let D = {cI: 0 r c E GF(q)} 

and Dij = { I +  AEij: A E GF(q)}. For all c,c' ,A,A' in GF(q) we clearly have 

(cI + AEij)(c'I  + A'Eij) = cc'I + (cA' + c'A)Eij. It follows that  D = ker r  < 

GL(m, q) and Dij < SL(m, q), and c ~-* cI and A ~-~ I + AE~j give isomorphisms 
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GF(q)* --* D and GF(q) + -~ Dij respectively. Let 

Jij = (cI  + AEij: 0 ~ c E GF(q), A E GF(q)}. 

Then J~j = {c[I+AE~j]: 0 ~ c E GF(q), A E GF(q)} and for all c, c t, A, A' in GF(q) 

with c ~ 0 ~ c' we have (c[I + AEij])(c'[I + A'EIj]) = ec'I + cc'(A + A~)E{j, and 

hence J~j = DD~j = D x Dij < GL(m, q) where D x D~j is internal direct product. 

Let r Jij --* D{j be the projection map. Since IDI = q - 1 and ID{jl = q, we 

have GCD(IDI, IDijl) -- 1. Consequently by the General Subgroup Lemma (cf. 

[Ab8] or (4.19) on page 141 of [Suz]), every subgroup of Jij whose image under 

is D~j must contain Dij. Since kerr  = kerr  and r < PSL(m,q) < r we 

get H N J~j < J~j with r  n Jij) = Dij, and hence Dij < (H M J~j). Therefore 

Dij < H. This being so for all i r j ,  we conclude that  SL(m, q) < H. 

COMPOSITE POLYNOMIAL LEMMA 2.4: Let V = V(Y), W = W ( Y ) ,  E = E ( Y )  

be monic polynomials of degrees v > 0, w > 0, e > 0 in Y with coefficients in 

a field K,  respectively, such that Discy(V) ~ 0 and V ( Y )  = W ( E ( Y ) ) .  Let R v  

and R w  be the roots of V and W in an algebraic closure f~ of K,  respectively. 

Then we have the following. 

(1) Discy(W) r 0 (equivalently IRwl = w),  and upon le t t ing R w  = 
~ W i {Oi: 1 < i < w} and A~ {S  E [(: E(S)  Oi} we have that Rv  = [.J~=l i 

is a disjoint partition of R v  with [Rv[ = v = we and [A~I = e for i < i < w. 

(2) K ( R v )  D K ( R w )  where these are the respective splitting fields of V and 

W over K in [(. Thinking of Gal(K(Rv) ,  K ) a n d  Gal (K(Rw) ,  K)  as the 

group of all K-automorphisms of K ( R v  ) and K ( R w  ) respectively, for every 

g E Gal(K(Rv) ,  K)  we have g ( K ( R w ) )  -- K ( R w )  and, upon letting g* to 

be the bijection of K ( R w )  onto itself such that g*(S) = g(S) for all S E 

K ( R w ) ,  we have g* E Gal (K(Rw) ,  K).  Moreover g ~ g* gives the usual 

Galois theory group epimorphism whose kernel is Gal( K ( R v  ), K ( R w  ) ). 

(3) Thinking of Gal(V, K) as a permutation group on Rv ,  given any g E 

G a l ( K ( R v ) , K )  we have g(Rv)  = R v  and, upon letting gv to be the 

permutation of R v  such that gv(S)  = g(S) for all S E Rv ,  we have gv E 

Gal(V, K).  Moreover g ~ gv gives a group isomorphism GaI( K ( R v  ), K)  -~ 

Gal(V, K) (which is the usual permutation representation). 

(4) Thinking of Gal(W, K) as a permutation group on R w ,  given any g E 

Gal (K(Rw) ,  K)  we have g (Rw)  = R w  and, upon letting gw to be the 

permutation of R w  such that gw(S)  = g(S) for all S E R w ,  we have gw E 
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Gal(W, K ). Moreover g ~ gw gives a group isomorphism Gal( K ( R w  ), K)  

---* GaI(W, K)  (which is the usual permutation representation). 

(5) Given any g C Gal (K(Rv) ,  K)  we have g (Rw)  = R w  and upon letting 

9v, w to be the permutation of R w  such that 9v, w (S )  = 9(S) for all S E 

R w  , we have 9v, w E GaI(W, K).  Moreover 9 ~ 9v, w gives a group epimor- 

phism Gal( K ( R v  ), K)  -* Gal(W, K) whose kernel is Gal( K ( R v  ), K ( R w  ) ). 

(6) Given any 7 E Gal(V,K), for every i E {1 , . . . ,w}  we have 7(Ai) = Aj for 

some j E {1 , . . . ,  w} and, upon letting 7' to be the permutation of R w  such 

that 7'(O/) = Oj for all i E {1 , . . . ,  w}, we have 7' E Gal(W, K). Moreover 

7 ~ 7' gives a group epimorphism Gal(V, K) ~ Gal(W, K)  whose kernel 

is Gal(V, K ( R w ) ) .  

(7) For every g �9 G a l ( g ( R v ) ,  K)  we have gv, w = (g*)w = (gy)'. 

(8) I r E ( Y )  = ye  then for some h �9 K ( R v )  we have h e = (-1)~Y(0).  

Proof: We can first write W ( Y )  = I]/~=I(Y- O~) with O~ � 9  and then we can 
I e y write E ( Y )  - 6)~ = 1-Ij=x( - Aij) with Aij �9 /~. Since V ( Y )  = W ( E ( Y ) ) ,  we 

YIi=I( - A/j). Since D/say(V) r 0, we must have hq  r hi,j, get V ( Y )  1"I~=1 w y 

whenever ( i , j )  r ( i ' , j ' ) .  This proves (1) with e i  = O~ and A / =  CA/j: 1 < j < e} 

for 1 < i < w .  

Since E ( Y )  �9 K[Y] and {E(S): S �9 R v }  = R w ,  we get g ( R v )  D K ( R w )  

and then the rest of (2) is obvious. 

Items (3) to (5) are obvious. Items (6) and (7) follow from items (1) to (5). 

If E ( Y )  = y e  then upon letting A = A11" 'A~1 we get A �9 K ( R v )  with 

A e = O~.- .  O~ = (-1)~Y(0) which proves (8). 

PROJECTIVE SPACE LEMMA 2.5: In the situation of 2.4, assume that K is an 

overfield of GF(q). Also assume that E ( Y )  = yq-1 ,  and assume that upon letting 

U(Y)  = Y V ( Y )  we have U = U(Y)  = Yq~ -~ ~-~m rv.yq"- '  where m > 1 is an " A - ~ i ~ - I  ~ z  

integer and C1, . . . ,  Cm are elements in K with C,~ r O. Let Ru  be the roots of 

U in [( and note that then Ru  = { 0} U R v  is a disjoint partition of Ru,  and we 

have K ( R u )  = K ( R v ) .  Let K ( R u )  be equipped with the structure of a vector 

space over GF(q) acquired in virtue of its being an overfield of GF(q). Then we 

have the following. 

(i) Ru is an m-dimensional vector subspace of K ( R u )  and upon letting 

GL(Ru) to be the group of all vector space isomorphisms of Ru,  which 

we regard as a permutation group on the nonzero vectors Rv ,  we have 
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Gal(V, K) < GL(Ru). 

(ii) For an m-dimensional vector space D over GF(q), let D* = D \{0}  be 

called an m-dlmens lona l  p u n c t u r e d  vec to r  space over GF(q), and re- 

call that an (m - 1)-dimensional projective space over GF(q) is a set A 

together with a surjective map ~: D* --* A such that the inverse images 

of the points of A are exactly all the 1-dimensional punctured vector sub- 

spaces of D*, and also recall that a projective transformation of A is a 

permutation of  A induced by a vector space isomorphism of  D and the 

set of all these permutations is the group PGL(A), and finally recall that 

this g/yes a canonical group epimorphism r GL(D) --* PGL(A) whose 

kernel is GF(q)*. With all this in mind, we claim that A1, . . . ,A~  are 

exactly all the distinct 1-dimensional punctured vector subspaces of  the 

m-dimensional punctured vector space R v  over GF(q), and by putt ing 

r = E(S )  = S q-1 for all S C R v  we get a surjective map ~: R v  

R W ~-- { 0 1 . . .  ,Ow} with ~--1(0{) ~-- A~ for 1 <_ i <_ w which makes 

R w  into an (m - 1)-dimensional projective space over GF(q), and finally 

with this structure we have ~b(Gal(V, K)) = Gal(W, K) < PGL(Rw) where 

~b: GL(Ru) --* PGL(Rw) is the canonical group epimorphism. 

(iii) Without  assuming K to be an overfield of  GF(q), for some A E K ( R v )  we 

have A q - 1  = ( - l ) l+q+'"+qm-l  C m. 

Proof: Clearly U ( Y  + Z) = U(Y)  + U(Z)  and for every S C GF(q) we have 

U ( S Y )  = SU(Y) .  Therefore Ru is a vector subspace of K ( R u ) .  Since [Ru[ = 

qm = [ GF(q)Im, the dimension of the said subspace must be m. The rest of (i) 

now follows from (3) of Lemma 2.4. 

Now a 1-dimensional punctured vector subspace of K ( R u )  is a subset of K ( R u )  

of the form {ST: 0 ~ S E GF(q)} with 0 ~ T C K ( R u ) .  Equivalently, it is a set 

of the form {S E/~:  E(S )  = T}  C K ( R u )  with 0 ~ T E K ( R u ) .  Therefore (ii) 

follows from (i) and Lemma 2.4. 

Finally, (iii) follows from (8) of Lemma 2.4. 

COROLLARY 2.6: A part of (2.1.7) can be strengthened by saying that, in the 

situation of 2.1, i f  n -  1 is a positive power of char k and G F ( n -  1) c ko and 

either t = 1 o f t  = n -  1 then PSL(2, n -  1) < G < PGL(2, n -  1). 

Proo~ Follows from (2.1.7) and part (ii) of Lemma 2.5. 
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3. Addi t ive  polynomials  

Let K be a field of characteristic p r 0, let q be a positive power of p, let m > 1 

be an integer, let C1, . . . ,  Cm be elements in K with Cm ~ 0, and consider the 

polynomials 

and 

and 

u = u ( Y ) =  r q ~  + 

V=V(Y) =Yq~-l+ 

W = W ( Y )  = y (q '~- l ) / (q -1)  + 

m 

Z ciyq ~-' 
i = l  

m 

Z ciyq'~-'-I 
i----1 

m 

Z CiY(q"~-~-l)/(q-1)" 
i = 1  

Here U is an addit ive polynomial,  i.e., a polynomial such that U ( Y  + Z )  = 

U ( Y )  + U ( Z ) .  Moreover, V is obtained by dividing U by Y, and W is obtained 

by substituting y1 / (q -1 )  for Y in V. Clearly V + Y V y  = Cm = W - Y W y  with 

0 r  E K, and hence Discy(V) r 0 r Discy(W), and therefore Gal(V, K) 

and Gal(W, K) are well defined. Concerning these Galois groups we have the 

following. 

PROPOSITION 3.1: For some A in the  sp l i t t ing  field o f  V over K we have A q-1 = 

(-1)~Cm where v -- 1 § q + . . .  + qm-1. Moreover,  i f  GF(q) C K then, in 

a natural  manner, we may regard Gal(V, K) < GL(m, q) and Gal(W, K) < 

PGL(m, q) in such a manner that  r K)) = Gal(W, K) where r GL(m, q) 

--~ PGL(m, q) is the canonical epimorphism.  

Proof: Let R u ,  R v  and R w  be the roots of U, V and W in an algebraic closure 

/4 of K, respectively. Now everything follows from Lemma 2.5 by identifying 

GL(Ru) and PGL(Rw) with GL(m, q) and PGL(m, q) respectively. 

As a consequence of Lemmas 2.1-2.3 and Proposition 3.1 we shall now prove 

the following. 

PROPOSITION 3.2: Recall  tha t  k is an algebraically closed field o f  characterist ic  

p, and let  ko be a subfield o f  k such tha t  k is an algebraic closure o f  ko and 

GF(q) C ko. Assume that  K = k o ( X ) .  Le t  1 <_ # < m be an integer such tha t  

GCD(v, 7) = 1 where v = 1 + q + . . . + q m - 1  and T = 1 + q + . . . + q ~ - l .  Assume 

tha t  C m - ~  = - a X  p and Cm = b X  ~ where a and b are nonzero e lements  in ko, 

and p and a are integers such tha t  p ~ a (u  - T)/U (for instance p ~ 0 = a or 
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p = 0 # a). Also assume that C1 . . . . .  C m -~- i  = Cm-~+l . . . . .  Cm-1 : O. 

Then we have the following. 

3.2.1) We have PSL(m, q) < Gal(W, k (X) )  < GaI(W, ko(X))  < PGL(m, q) and 

we have 

[Gal(W, k(X)): PSL(m, q)] _= 0 (mod Gc---D-~(a,m,, q : - i ) )  ' G C D ( m '  q - 1) 

Moreover, i f  a E vZ  then G a l ( W , k ( X ) )  = PSL(m,q). Likewise, i f  

GCD(a, m, q - 1) = 1 then Gal(W, ko(X))  = PGL(m, q). 

3.2.2) The polynomial W is irreducible in k(X)[Y],  and X = 0 and X = oo 

are the only valuations of k ( X ) / k  which are possibly ramified in the 

splitting field of  W over k (X ) .  Moreover, i f  p > a(v  - T)/V and the 

valuation X = 0 of  k ( X ) / k  is ramified in the splitting field of  W over 

k ( X )  then it is tamely ramified. Finally, i f  p > a(v  - 7 ) / v  and a 6 vZ  

then X = co is the only valuation of k ( X ) / k  which is ramified in the 

splitting field of  W over k (X) .  

3.2.3) We have SL(m,q) < Gal (V ,k (X) )  < Gal(V, ko(X))  < GL(m,q) and 

we have [Gal(V, k (X) )  : SL(m, q)] - 0 (mod (q - 1)/GCD(a,  q - 1)). 

Moreover, i f  ~ 6 (q - 1)vZ then Gal(V, k (X) )  = SL(m, q). Likewise, i f  

GCD(a, q -  1) = 1 then Gal(V, ko(X))  = GL(m, q). 

3.2.4) The polynomial V is irreducible in k(X)[Y],  and X = 0 and X = co are 

the only valuations of  k( X ) / k which are possibly ramified in the splitting 

field of V over k (X) .  Moreover, i f  p > a ( v -  T) /v  and the valuation X = 0 

of k( X ) / k is ramified in the splitting field of V over k( X ) then it is tamely 

ramified. Finally, i f  p > a(u - T)/V and a 6 (q - 1)uZ then X = oo is 

the only valuation of  k ( X ) / k  which is ramified in the splitting field of  V 

over k (X ) .  

Proo~ For a moment assume that p = 1 and a = 0. If m = 2 then by 

(2.1.7) we get G a l ( W , k ( X ) )  = PSL(2, q). So for a moment also assume that 

m > 2. Then by Proposition 3.1 we have Gal(W, k (X) )  < PGL(m, q), and by 

(2.1.2) we see that  Gal(W, k ( X ) )  is 2-transitive. Now Theorem I of [CaK] says 

that: if G is a subgroup of the group FL(m,q) of semilinear transformations 

with m > 2 and if G is 2-transitive on the set of points of the projective space 

PG(m - 1, q), then either SL(m, q) < G or G is A7 inside SL(4, 2). Therefore 

either PSL(m, q) < Gal(W, k (X) )  or (m, q) = (4, 2) and Gal(W, k ( X ) )  = A7(15) 
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where A7(15) is the representation of A7 as a transitive permutat ion group of 

degree 15. If (re, q) = (4, 2) then v = 15 and, because GCD(v , r )  = 1, we 

have r -- 1 or 7; now (obviously or by Proposition 1 on page 831 of [Abl]) the 

X = oo valuation of k (X)  splits into the valuations Y = ce and Y = 0 of the 

root field of W over k (X)  and their respective ramification exponents are 14 and 

1 in case 7 = 1, and 8 and 7 in case T = 7; in both  the cases the order of an 

inertia group H of an extension of the X = 0 valuation to the splitting field of 

W over k (X)  is divisible by 14; also the inertia group H has a unique 2-Sylow 

subgroup P which is hence normal in H; therefore by Lemma 2.2 we cannot have 

Gal(W, k(X))  = A7(15). Thus PSL(m, q) < Gal(W, k(X))  < PGL(m,  q). Since 

W - Y W y  = b, we see that  X = c~ is the only valuation of k ( X ) / k  which is 

ramified in the splitting field of W and hence Gal(W, k(X) )  is quasi-p. But no 

group between PSL(m, q) and PGL(m,  q), other than PSL(m, q), can be quasi-p. 

Therefore we must have Gal(W, k(X))  = PSL(m, q). So we have shown that:  

(1) If p = 1 and a = 0 then Gal(W, k(X))  = PSL(m,q) .  

Now PSL(m, q) is a nonabelian simple group except when m = 2 and q = 2 or 3 

in which cases it equals $3 and A4 respectively. Therefore, in view of Corollaries 

(3.3), (3.4) and (3.8) of the Substitutional Principle on pages 99 and 100 of [Ab4], 

by (1) we get that:  

(2) If p r 0 = a then Gal(W, k(X) )  = PSL(m, q). 

In the general case, if a E vZ, then upon letting p' = p - a(v - T)/V we have 

0 r p' �9 Z and X - ~  = Y"  - a X d Y  ~ + b and hence Gal(W, k(X) )  = 

Gal(Y" - aXP'Y  ~ + b, k(X)) .  Therefore by (2) we see that: 

(3) If a �9 vZ then Gal(W, k(X))  = PSL(m, q). 

In the completely general case, upon letting p" = vp and a"  = va  we have p" �9 

Z and a"  �9 vZ with p" ~ a " ( v -  T)/V and hence, in view of 

Corollary (3.1) of the Substitutional Principle on page 99 bf [Ab4], by (3) we get 

PSL(m, q) = Gal(Y" - a X d ' Y  T + bX ~''', k (X))  < Gal(W, k(Z) ) .  Since k0 C k, 

we also have Gal(W, k(X))  < Gal(W, ko(X)). Since GF(q) C k0, by Proposition 

3.1 we get Gal(W, ko(Z))  < PGL(m,  q). Thus: 

(4) PSL(m, q) < Gal(W, k (Z ) )  < Gal(W, ko(X)) < PGL(m,  q). 

By (4) it follows that:  

(5) The polynomial W is irreducible in k(X)[Y]. 

Since W - Y W y  = bX ~ we see that:  

(6) X = 0 and X = c~ are the only valuations of k ( X ) / k  which are possibly 
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ramified in the splitting field of W over k (X) .  

Since W - Y W y  =- bX a, we also see that :  

(7) If  p > 0 = a then X = ~ is the only valuation of k ( X ) / k  which is possibly 

ramified in the splitting field of W over k (X) .  

If p > a(v  - T)/V and a C vZ then upon letting p' = p - a(v  - 7 ) / v  we have 

0 < p' �9 Z and X - ~ W ( X ~ / ~ ' Y )  = Y~' - a X d Y  T + b. Hence by (7) we see that :  

(8) If  p > a(u - T ) / v  and a �9 uZ then Z = c~ is the only valuation of k ( X ) / k  

which is ramified in the splitting field of W over k (X) .  

By (8) we see tha t  if p > a(u - 7) /u  then the valuation X = 0 of k ( X ) / k  is 

unramified in the splitting field of Y~" - aX~'PY ~ + bX ~ over k(X) .  From this 

it follows that :  

(9) If p > a(v  - T)/U and the valuation X = 0 of k ( X ) / k  is ramified in the 

splitting field of W over k ( X )  then it is tamely  ramified. 

In view of Proposi t ion 3.1, by (4) we see that :  

(10) SL(m, q) < Gal(V, k ( X ) )  < Gal(V, ko(X))  < GL(m,  q). 

By (10) it follows that :  

(11) The polynomial  V is irreducible in k(X)[Y].  

Since V + Y V y  = bX ~ we see that :  

(12) X = 0 and X = c~ are the only valuations of k ( X ) / k  which are possibly 

ramified in the splitting field of V over k (X) .  

Since V + Y V y  = bX",  we also see that :  

(13) If p > 0 = a then X = c~ is the only valuation of k ( X ) / k  which is ramified 

in the splitting field of V over k(X) .  

If  p > a(v  - T)/V and a �9 (q - 1)vZ then upon letting f f  = p - a(v  - T)/V we 

have 0 < ff �9 Z and X-"V(X'~/((q-1)~')Y)  = y(q-1)~ _ aXdy(q-1) . r  + b. Hence 

by (13) we see that :  

(14) If p > a(v  - T) /v  and a �9 (q - 1)vZ then X = c~ is the only valuation of 

k ( X ) / k  which is ramified in the splitting field of V over k (X) .  

By (14) we see tha t  if p > a(v  - T)/V then the valuation X = 0 of k ( X l / k  is 

unramified in the split t ing field of y(q-1)v _ aX(q-1)~,py(q-1)~ + bX(q-x)~,o over 

k (X) .  From this it follows that :  

(15) If  p > a(v  - T)/V and the valuation X = 0 of k ( X ) / k  is ramified in the 

split t ing field of V over k ( X )  then it is tamely  ramified. 

If  p > a(v  - T)/V and a �9 (q - 1)vZ then by (14) we see tha t  Gal(V, k ( X ) )  is 

quasi-p. But  no group between SL(m, q) and GL(m,  q), other  than  SL(m, q), can 
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be quasi-p. Therefore, in view of (10), we conclude that: 

(16) If p > a(u - r)/s) and a E (q - 1)uZ then Gal(V, k ( X ) )  = SL(m, q). 

By Proposition 3.1 there exists an element X ~ in a splitting field of V over 

k ( X )  with X 'd = X where d = ( q -  1 ) / G C D ( a , q - 1 ) .  Let V'  = V ' ( Y )  = 

y(q-1)~ _ aX,aoy(q-1)-~ + bXtd~,. Then k ( X t ) / k ( X )  is a Galois extension whose 

Galois group is the cyclic group Zd of order d, and we have Gal(V ~, k(X~)) ,~ 

Gal(V, k ( X ) )  with Gal(V, k ( X ) ) / G a l ( Y ' ,  k (X ' ) )  = Gal(k(X'),  k (X) ) .  By (10) we 

also have SL(m, q) < Gal(Y', k(X')),~Gal(V, k ( X ) )  < Gal(V, ko(X))  < GL(m, q). 

Therefore [Gal(V, k(X)) : SL(m, q)] - 0 (mod d). Thus: 

(17) [Gal(V, k (X) ) :  SL(m, q)] - 0 (mod (q - 1)/GCD(cr, q -  1)). 

Since GL(m, q ) / S L ( m ,  q) = Zq- i ,  by (10) and (17) we see that: 

(18) If GCD(a, q - 1) = 1 then Gal(V, ko(X))  = GL(m, q). 

Since G L ( m , q ) / S L ( m , q )  = Zq- i  and P G L ( m , q ) / P S L ( m , q )  = Zt w i t h / =  

GCD(m, q - 1), in view of Proposition 3.1, by (10) and (17) we see that: 

(19) [Gal(W, k(X)) : PSL(m, q)] - 0 (mod GCD(m, q - 1 ) /GCD(a ,  m, q - 1)). 

Since PGL(m, q ) / P S L ( m ,  q) = Zl, by (4) and (19) we see that: 

(20) If GCD(a, m, q - 1) = 1 then Gal(W, ko(X))  = PGL(m, q). 

This completes the proof of the proposition. 

From the above proposition, by reciprocation, we shall now deduce the follow- 

ing. 

PROPOSITION 3.3: Recall that k is an algebraically closed field of characteristic 

p, and let ko be a subfield of  k such that k is an algebraic closure of  ko and 

GF(q) C ko. Assume that K = ko(X).  Let 1 <_ # < m be an integer such that 

GCD(u,T*) -- 1 where u = 1 + q + . . .  + qm-1 and T* = qU + q~+l + . . .  + qm-1. 

Let a* and b* be nonzero elements in ko, and let p* and a* be integers such that 

p* ?~ a*(U--T*)/U (forinstance p* ~ 0 = a* or p* = 0 ~ a*). Let W* = W * ( Y )  = 

Y~ - a * X ~  r" + b* X ~* and V* = V*(Y)  = y(q-1)u _ a . X  P* y(q-1)r* -k b* X a* . 

Then we have the following. 

(3.3.1) We have 

PSL(m, q) < Gal(W*, k ( X ) )  < Gal(W*, ko(X))  < PGL(m, q) 

and we have 

[Gal(W*, k (X) ) :  PSL(m, q)] _ 0 mod 
G C D ( m , q -  1) ) 

G C D ( a * , m , q -  1) " 
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Moreover, if  a* e vZ then Gal (W*,  k (X) )  = P S L ( m , q ) .  Likewise, i f  

G C D ( a * ,  m,  q - 1) = 1 then Gal (W*,  ko(X))  = P G L ( m ,  q). 

(3.3.2) The polynomial W* is irreducible in k(X)[Y],  and X = 0 and  X = co are 

the only valuations of k( X ) / k which are possibly ramified in the splitting 

field of W* over k (X) .  Moreover, if  p* > a*(u - r*) /v  and the valuation 

X = 0 of k ( X ) / k  is r a m i f e d  in the splitting field of W* over k ( X )  then 

it is tamely ramified. Finally, if  p* > a*(v - T*)/V and a* 6 vZ then 

X = oo is the only valuation o [ k ( X ) / k  which is ramified in the splitting 

field of W* over k (X) .  

(3.3.3) We have SL(m,  q) < Gal(V*,  k (X) )  < Gal(V*,  ko(X))  < G L ( m ,  q) and 

we have [Gal(V*, k (X) )  : SL(m,  q)] = 0 (mod (q - 1 ) / G C D ( a * ,  q - 1)). 

Moreover, ira* 6 (q - 1)vZ then ga l (Y* ,  k (X) )  = SL(m,  q). Likewise, if  

GCD(a* ,  q - 1) -- 1 then Gal(V*,  ko(X))  = G L ( m ,  q). 

(3.3.4) The polynomial V* is irreducible in k(X)[Y],  and X = 0 and X -~ oo are 

the only valuations of k ( X ) / k  which are possibly ramified in the splitting 

field of V* over k (X) .  Moreover, if  p* > a*(v - T*)/V and the valuation 

X = 0 o f k ( X ) / k  is ramified in the splitting field of V* over k ( X )  then it 

is tamely ramified. Finally, if  p* > a*(v - z* ) / v  and a 6 (q - 1)vZ then 

X = co is the only valuation o f k ( X ) / k  which is ramified in the splitting 

field of V* over k (X) .  

Proof: Let T = V--T* and p = p * - a *  and a = - a * .  Now, since GCD(v ,  ~-*) -- 1, 

we get GCD(v ,  T) = 1, and since p* # a*(V--T*)/V, we get p # a(v--~-)/v. Clearly 

G CD(a* ,  q - 1) = G C D ( a ,  q - 1) and GCD(a* ,  m, q - 1) = G C D ( a ,  m,  q - 1). 

Also clearly: p* > a*(v -7-*) /u  r p > a ( v - r ) / v .  Likewise: a* �9 vZ ~ a �9 vZ.  

Similarly: a* �9 (q - 1 ) , Z  r a �9 (q - 1)uZ. Let a = a*b *-1 and b = b *-1, and 

let W and V be as in Propos i t ion  3.2. Then  W ( Y )  = b * - I X - ~ * Y ~ W * ( Y  -1) 

and V ( Y )  = b*- IX-~*Y(q-1)~V*(Y-1) .  Therefore  Propos i t ion  3.3 follows f rom 

Propos i t ion  3.2. 

Remark 3.4: We have deduced the "Likewise" in (3.2.1), and hence also the 

"Likewise" in (3.3.1), f rom the "Likewise" in (3.2.3). In  case of m = 2, the 

"Likewise" in (3.2.1), and hence also the "Likewise" in (3.3.1), can be deduced 

directly f rom (2.1.6) by interposing the following mate r ia l  in the proof  of Propo-  

sition 3.2 between (9) and (10): 

For a momen t  suppose t ha t  m = 2 and a ~ 0 ( m o d 2 ) .  If  p --- 2 then  
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PSL(2, q) = PGL(2, q) and hence by (4) we get  Gal(W, k0(X)) = PGL(2, q). 

So also suppose that p r 2. Upon letting W' = W ' ( Y )  = yq+l  _ aXqp Y q_ 

b X  q'~ we obviously have Gal(W I, k ( X ) )  :- Gal(W, k ( X ) ) .  Upon letting a '  = 

qa - (q + 1)p we have x - ( q + I ) p w ' ( x P Y )  = yq+l  _ a Y  + bX  '~' and hence 

Gal(W', k ( X ) )  = Gal(Y q+l - a Y  + bX  a', k ( X ) ) .  Clearly cr' ~ 0 (mod 2) and 

[PGL(2, q): PSL(2, q)] = 2, and by (4) we have 

PSL(2, q) < Gal(Y q+l - a Y  + bX  ~ k ( X ) )  < PGL(2, q), 

and by (2.1.6) we have Gal(Y q+l - a Y  + bX, k ( X ) )  = PGL(2, q); therefore, in 

view of Corollary (3.1) of the Substitutional Principle on page 99 of [Ab4], we get 

Gal(Y q + l - a Y + b z  ~', k ( X ) )  = PGL(2, q). Therefore Gal(W, k ( X ) )  = PGL(2, q), 

and hence by (4) we get Gal(W, ko (X) )  = PGL(2, q). Thus: If m = 2 and a ~ 0 

(mod 2) then Gal(W, ko (X) )  = PGL(2, q). 

4. P r o o f  o f  T h e o r e m s  1.1 to  1.5 

Theorems 1.1 and 1.2 follow from Proposition 3.2. Theorems 1.3 and 1.4 follow 

from Proposition 3.3. Theorem 1.5 follows from (2.1.5). 
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